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Summary

We can recognize objects in complex images in a fraction of
a second [1–3]. Neuronal responses in macaque areas V4

and inferior temporal cortex [4–15] to preferred stimuli are
typically suppressed by the addition of other objects within

the receptive field (see, however, [16, 17]). How can this
suppression be reconciled with rapid visual recognition in

complex scenes? Certain ‘‘special categories’’ could be

unaffected by other objects [18], but this leaves the problem
unsolved for other categories. Another possibility is that

serial attentional shifts help ameliorate the problem of dis-
tractor objects [19–21]. Yet, psychophysical studies [1–3],

scalp recordings [1], and neurophysiological recordings
[14–16, 22–24] suggest that the initial sweep of visual pro-

cessing contains a significant amount of information. We
recorded intracranial field potentials in human visual cortex

during presentation of flashes of two-object images. Visual
selectivity from temporal cortex during the initial w200 ms

was largely robust to the presence of other objects. We
could train linear decoders on the responses to isolated

objects and decode information in two-object images. These
observations are compatible with parallel, hierarchical, and

feed-forward theories of rapid visual recognition [25] and
may provide a neural substrate to begin to unravel rapid

recognition in natural scenes.

Results

We recorded intracranial field potentials (IFPs) from 672 elec-
trodes (296 in different parts of visual cortex) in nine subjects
implanted with subdural intracranial electrodes. Subjects
were presented with contrast-normalized grayscale images
(100 ms duration) containing one or two objects. The single-
electrode analyses focus on 24 visually selective electrodes.
*Correspondence: gabriel.kreiman@tch.harvard.edu
Spatial Summation

Figure 1 illustrates the IFP signals from a visually selective
electrode in the left fusiform gyrus. Consistent with previous
studies (e.g., [24, 26]), this electrode showed an enhanced
response to human faces compared to other categories (Fig-
ure 1A). The activity elicited by two objects from the same
category was almost indistinguishable from the activity in
one-object images (Figure 1A). There was only a small attenu-
ation when the preferred category was paired with a nonpre-
ferred category (Figure 1B). This robustness was largely
independent of the nonpreferred category (Figure S1A avail-
able online). We defined the IFP ‘‘response magnitude’’ as
the signal range, R = max(IFP) 2 min(IFP), in the [50;300] ms
interval after stimulus onset (Figure 1F). Because lack of visual
selectivity could be confused with robustness [12], the single-
electrode analyses were restricted to 24 electrodes that
showed selectivity in one-object images (Experimental Proce-
dures; see Figures S1B–S1E for more examples and Figure 2A
for a normalized average plot). Some electrodes (e.g., Figure 1,
Figures S1C and S1D) showed two peaks in the responses to
one-object or two-object images (also Figure 2A).

Object positions were randomized. If robustness to the
second object were due to a small IFP receptive field sur-
rounding only one position, we would expect to observe
a bimodal response distribution. We did not observe any
evidence for such bimodal distributions (Figure 1F, Figures
S1B4–S1E4). Furthermore, the IFPs to the preferred category
were consistently stronger across different positions (Figures
1C and 1D). The position tolerance index (defined in Fig-
ure 2B) was 0.09 6 0.08 for single objects and 0.08 6 0.07
for two-object images (mean 6 standard deviation [SD]), indi-
cating only a modest response drop across positions. There
was no clear preference for the top or bottom positions
(Figure 2C). There was a weak correlation between the position
tolerance index and the suppression index defined below
(Pearson correlation coefficient r = 0.26; p > 0.05). These
observations suggest that robustness to two-object images
cannot be ascribed to a small IFP receptive field surrounding
only the preferred category. However, the IFP response in
both positions still allows for pooling over neurons with smaller
receptive fields.

Single-neuron responses in macaque area V4 [4, 5] or infe-
rior temporal cortex [6–15] to two-object images are signifi-
cantly attenuated in the presence of nonpreferred objects
within the receptive field (see, however, [16, 17]). To quantify
the degree of suppression, let R1 (R2) indicate the response
to category 1 (category 2) alone and R12 indicate the response
to both categories. There was a correlation between R12

and max(R1,R2) even though R12 was consistently below
max(R1,R2) (Figure 1E, Figure S2A). R12 was also correlated
with max(R1,R2) at the population level (Figure 2D, Fig-
ure S2B). When considering individual exemplars, the mean
suppression index (SI, defined in Figure 2E) was 20.09 6
0.16 (24 electrodes, n = 80 exemplar pairs). When considering
categories, the mean SI was 20.02 6 0.09 (24 electrodes, n =
140 category pairs). We did not observe differences in SI
between those electrodes that preferred human faces versus
other categories (Figures 2D and 2E, Figures S2B and S2C).
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Figure 1. Example of Robustness to the Presence of a Second Object in IFP Recordings from Human Visual Cortex

Responses of an electrode in the left fusiform gyrus (Talairach coordinates = [241 243 224]; see inset) showing an enhanced response to the ‘‘human faces’’

category (‘‘preferred category,’’ blue) versus other categories (gray) (see more examples in Figures S1B–S1E). The stimulus was presented for 100 ms (gray

rectangle); responses are aligned to stimulus onset (t = 0). The number of repetitions is shown next to each curve. Error bars denote one standard error of the

mean (SEM; shown every 10 time points for clarity).

(A) Responses to one-object images (thin lines) or two objects from the same category (thick lines) averaged over different exemplars and positions.

(B) Responses to two objects from different categories (thick lines) compared to one-object images (thin lines) for images that contain the preferred category

(blue) or nonpreferred categories (gray). These curves show the responses averaged over different exemplars and positions; Figure S1A provides the

responses for all category pairs.

(C) Responses to one-object images separated by object position (positions ‘‘1’’ and ‘‘2’’; see inset and Experimental Procedures). Blue indicates the

preferred category and gray indicates the nonpreferred categories.

(D) Responses to two-object images (objects from different categories) separated by the position of the preferred category. ‘‘1’’: preferred category above

the fixation point; ‘‘2’’: preferred category below the fixation point. For the nonpreferred categories (gray line), we show the average over all positions (both

positions ‘‘1’’ and ‘‘2’’ contained nonpreferred-category objects).

(E) IFP response magnitude (max(IFP) 2 min(IFP) in [50;300] ms) to two-object images (r12) versus response to the preferred one-object image [max(r1,r2)].

Each point represents the responses to a pair of exemplars including the preferred category. The dashed line shows the identity line and the dotted line

shows the linear fit (r = Pearson correlation coefficient; m = slope).

(F) Distribution of IFP response magnitudes based on the data in (B) for the two-object images containing the preferred category (blue) or nonpreferred cate-

gories (gray). The dashed curves show a Gaussian fit (two parameters: mean and SD). The inset shows the receiver operating characteristic (ROC) curve

indicating the probability of correctly identifying the preferred category. Departure from the diagonal (dashed line) indicates increased correct detection

(PCD) for a given probability of false alarms (PFA).
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The SI values were also similar in the [50;200] ms interval and in
the target-present trials (Figure S2C). We considered several
typical models for estimating the response to object pairs
from the responses to the individual objects: maximum,
average, unscaled power, scaled linear, normalization, scaled
power, and generalized linear (Figure S2D–S2I). The best fits
were obtained with a two-parameter model: amax(R1,R2) +
bmin(R1,R2) (Figures S2F–S2H; see also [4, 27]). There was
a stronger contribution from the first term (max) compared to
the second term (min) (< a > = 0.74 6 0.18, < b > = 0.13 6
0.28, mean 6 SD, Figure S2G).

Single-Trial Decoding in Two-Object Images
We asked whether we could decode visual information in
single presentations of two-object images from the activity
of individual electrodes or electrode ensembles by using
a machine-learning approach [23, 24, 28]. Figures S3A–S3D
illustrate single-trial responses from the electrode in Figure 1.



Figure 2. Comparison of the Responses across Positions and Number of Objects in the Image

(A) Average normalized IFP responses to one-object images (thin lines) and two-object images (thick lines) for preferred categories (black) and nonpreferred

categories (gray). The responses were normalized by subtracting the baseline and dividing by the maximum response to the one-object images containing

the preferred category. The white horizontal bar shows the [50;300] ms interval used to define the IFP response magnitude. This figure only included visually

selective electrodes, images where the target category was absent and where we had at least 5 repetitions (24 electrodes, 35 categories, Experimental

Procedures).

(B) The position tolerance index was defined as jRpos1 2 Rpos2j=maxðRpos1;Rpos2Þ where Rposi is the response magnitude for the preferred category at posi-

tion i (i = 1,2). Distribution of the position tolerance index for one-object images (thin line) and two-object images (thick line) is shown. Bin size = 0.025. The

dashed line indicates the mean and the arrows denote the examples in Figure 1 and Figure S1 (for the two-object images).

(C) Comparison of the response magnitudes when the preferred category was in the top position versus the bottom position for one-object images (thin

circles) and two-object images (thick circles). The dashed line is the diagonal line and the dotted line is the linear fit.

(D) Comparison of the responses to two-object images (R12) against the maximum of the response to the two corresponding one-object images

[max(R1,R2)]. To compare the responses across electrodes, we subtracted the minimum response in each electrode. The dashed line shows the diagonal

line and the dotted line is the linear fit. Blue circles indicate cases where the preferred category was a human face.

(E) Distribution of the response suppression index, defined as SI = R12 2 maxðR1;R2Þ=maxðR1;R2Þ. Negative (positive) values of SI indicate response

suppression (enhancement) with respect to the preferred category alone. Gray bars include all selective electrodes; the blue curve includes those electrodes

that showed enhanced responses to human faces, and the gray curve includes electrodes with other preferences. The arrows denote the mean of the distri-

butions (offset vertically for clarity). We indicate the position of the example electrodes from Figure 1 and Figure S1. Bin size = 0.05.
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We extracted three parameters from the single-trial responses
([50;300] ms): the minimum voltage time, the maximum voltage
time, and the response magnitude (Figure S3). We used the
responses to one-object images to train a binary support
vector machine classifier (SVM) with a linear kernel to indicate
the presence or absence of the preferred category. The classi-
fication performance (CP) was evaluated with the responses
to two-object images (CP = 50% indicates chance levels
whereas CP = 100% indicates perfect performance; see also
Figure S5F). In Figure S3, the classification performance was
71% 6 1% (mean 6 SD). To assess the statistical significance
of the CP values, we computed the distribution of CP values
in 100 iterations where we randomly shuffled the object
labels. The CP values ranged from 51% to 77% (60% 6 7%;
mean 6 SD, n = 24 electrodes; Figure 3A). Of the 24 visually
selective electrodes (based on one-object images), 21 elec-
trodes (88%) showed a significant CP in the two-object condi-
tion (training on single objects and testing on two-object
images; singleCP2-object).

We previously examined single-trial responses to one-
object images [23, 24] by training a classifier with a fraction
of the repetitions (70%) and evaluating CP with the remain-
ing repetitions (‘‘CPselectivity’’). CPselectivity was correlated with

singleCP2-object (Figure S4B). The points in Figure S4B were
below the diagonal, indicating a drop in CP when extrapolating
from one-object images to two-object images. Of the 18



Figure 3. Decoding Visual Information in Single Presentations of Two-Object Images

(A) Distribution of single-electrode classification performance values to decode category information in two-object images for all the electrodes that showed

visually selective responses (n = 24). The classifier was trained with one-object images and CP was evaluated with two-object images. The vertical dashed

line indicates chance performance (50%) and the vertical dotted line indicates the significance criterion threshold based on shuffling object labels (Exper-

imental Procedures). The arrows point to the examples from Figure 1 and Figure S1. The downward arrow shows the mean (60 6 7%). Bin size = 2.5%.

(B) Classification performance for each category with a pseudopopulation containing 45 electrodes. Error bars denote 1 SD over 20 iterations with random

choices of units and repetitions for training the classifier (Experimental Procedures). The dashed line indicates chance levels and the dotted line shows the

significance threshold. Gray circles show the mean CP for the shuffled labels condition.

(C) Comparison of the CP obtained upon training the classifier with one-object images and evaluating CP with the responses to two-object images

(‘‘singleCP2-object,’’ y axis) versus training the classifier with the responses to two-object images and evaluating CP with different repetitions of two-object

images (‘‘allCP2-object,’’ x axis; see also Figure S5). We only included visually selective electrodes and selective categories. Error bars denote 1 SEM

(20 randomizations of the repetitions used for training). The dashed line is the identity line and the dotted line is the linear fit to the data (35 categories,

n = 24 electrodes, r = 0.96). To compare singleCP2-object against allCP2-object independently of the number of training points, we randomly downsampled

the examples with two-object images to match the examples with one-object images.

(D–G) For each location with R 10 electrodes (Table S1), we built a pseudopopulation based on the entire data set. The responses of up to 45 electrodes in

each location were concatenated. The format is the same as in Figure 3B. The classifier was trained with one-object images and CP was evaluated with two-

object images. Error bars indicate 1 SEM. The dashed line indicates chance levels (50%) and the dotted line indicates the statistical significance threshold.

The gray squares indicate the average CP obtained from 100 random shuffles of the object labels. Table S1 describes the electrode locations and location

abbreviations.
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Figure 4. Response Latencies and Temporal Evolution of the Response Suppression in Two-Object Images

We compared two possible definitions for the latency. Def1 = first time point where the response to the preferred category exceeded by > 20% the response

to the nonpreferred categories during at least 75 ms. Def2 = first time point where a one-way ANOVA across object categories yielded p < 0.01 for 15 consec-

utive time points. In both cases, the number of repetitions was randomly subsampled so that the number of one-object repetitions was the same as the

number of two-object repetitions.

(A) Mean response latencies (bars = Def1; squares = Def2) for the visually selective electrodes. Error bars represent one standard deviation (Def1). There

was no significant difference between the response latencies to one-object images (black bar) compared to two-object images (light bar) (two-tailed

t test, p > 0.3).

(B) There was a weak but significant correlation between the response latencies for one-object images (x axis) and two-object images (y axis). Circles = Def1;

Squares = Def2. The dotted line indicates a linear fit to the data for Def1.

(C) Mean response suppression as a function of time from stimulus onset. For each visually selective electrode, we computed the average IFP in bins of

25 ms and computed the SI in each bin as defined in Figure 2. Here we show the mean SI in each bin (error bars indicate SEM). The vertical dotted line

denotes the image offset time (t = 100 ms). The gray rectangle shows the mean 6 SD suppression index computed by considering the IFP response magni-

tude between 50 and 300 ms.
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locations with > 10 electrodes (Table S1), four locations
yielded significant CP in two-object images: the inferior
occipital cortex, the lateral fusiform gyrus, the parahippocam-
pal gyrus, and the inferior temporal cortex [29] (Figures S4C
and S4D). However, we note that our sampling is far from
exhaustive.

We extended the machine-learning approach by consid-
ering a ‘‘pseudopopulation’’ defined by combining electrodes
across the entire data set (e.g., [23, 24]). We concatenated the
responses from multiple electrodes (we did not consider inter-
actions among electrodes). Electrode selection for the pseu-
dopopulation was based on selectivity to one-object images
(Figure 3B) or electrode location (Figures 3D–3G). The perfor-
mance of a pseudopopulation consisting of 45 electrodes is
shown in Figure 3B. The ensemble of electrodes yielded a
stronger extrapolation to two-object images than the indi-
vidual electrodes (compare Figures 3A and 3B). The main loca-
tions that yielded significant classification performance were
the inferior occipital gyrus, the lateral fusiform gyrus, and the
inferior temporal cortex (Figures 3D–3G).

We also examined the performance of the classifier when it
was trained by using the responses to two-object images. In
Figure S5B–S5F we compare different ways of training and
testing the classifier’s performance. Overall, the CP values for
these different variations were similar (Figure 3C, Figure S5).
These results suggest that an algorithm that learns to recognize
object categories from the neural signals in human temporal
cortex can be trained in the presence or in the absence of
another object in the image.

Temporal Dynamics and Latencies

Physiological signals in the human temporal cortex show
a latency of w100–150 ms (e.g, [24]; see also similar latencies
in macaques [22, 23, 30] and human scalp signals [1, 31]). The
selectivity in the IFPs in two-object images was apparent from
the beginning of the evoked IFP signal (Figure 1B, Figures
S1B–S1E). We computed the latency of the responses to
two-object images (Figure 4A). If the selective responses
were due to attentional shifts or fast saccades to one of the
objects, we might expect that the responses to two-object
images would show a longer latency compared to one-object
images [32–34]. In contrast, we did not observe significant
differences between the response latencies to one-object
images (167 6 45 ms, mean 6 SD, n = 24) and two-object
images (157 6 37 ms, mean 6 SD, n = 24) (Figure 4A; two-tailed
t test, p > 0.3). Furthermore, there was a weak but significant
correlation between the latencies to one-object and two-
object images (r = 0.67; Figure 4B). To further examine the
temporal evolution of the IFP responses, we computed the
SI as a function of time in 25 ms bins. Overall, SI remained
close to 0 in the [50;300] ms interval (e.g., compare thin and
thick traces in Figures S1B3–S1E3) and there were no consis-
tent monotonic changes in SI over time (Figure 4C).

Discussion

We can rapidly recognize objects within 100–200 ms of
seeing a complex scene [1–3, 25]. Object recognition in multi-
object images poses a challenging problem because of the
difficulties in segmentation, increased processing time, and
response attenuation [4–15]. Given these challenges, what
are the neural mechanisms that underlie rapid recognition in
multiobject images? Attention may help filter out ‘‘irrelevant’’
information enhancing certain locations, features, or objects.
Although attention plays an important role in crowded images
[19–21], it remains difficult to explain the high performance
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during brief presentation of a novel image by serial atten-
tional shifts [1–3, 14, 25]. Alternatively, the first sweep of
information through the ventral stream may contain sufficient
information to account for recognition in multiobject images.
We evaluated this possibility by quantifying how well we can
decode information from IFP recordings in human visual
cortex in response to two-object images. We report that the
representation in inferior occipital gyrus, fusiform gyrus, and
inferior temporal cortex can support object recognition even
in the presence of a second object in the image. The rapid
onset of the selective responses suggests that recognition in
two-object images may not require additional computational
steps.

The degree of response suppression reported here is lower
than in previous studies [4–15] (see, however, [16, 17, 35]).
Several nonexclusive factors may account for these differ-
ences, including the species (macaques versus humans),
brain areas (it remains difficult to establish one-to-one homol-
ogies between macaques and humans), recording techniques
(field potentials versus action potentials), tasks, and stimulus
characteristics (particularly distance between objects and
whether the two objects appear in the same hemifield [10,
13, 16]). The biophysical nature underlying the IFPs remains
only poorly understood. IFPs may reflect synaptic potentials
averaged over many neurons [36]. We speculate that the
IFPs may provide a ‘‘population view’’ that shows enhanced
robustness to two-object images compared to individual
neurons.

A possible mechanism to account for robustness to two-
object images would be rapid attentional shifts and/or
saccades to the electrode’s preferred category. Although
this possibility cannot be entirely ruled out here, it seems to
be an unlikely account of our observations. (1) Subjects could
not predict where to saccade before image onset (positions
were randomized). Additionally, the response distributions
were unimodal (Figure S1) and behavioral performance was
indistinguishable across positions. These observations render
it unlikely that the results could be accounted by preonset fixa-
tion or spatial attention to one location. (2) Adding saccade
times of 200–300 ms [37, 38] and latencies of 100–150 ms
[24] to the 100 ms stimulus flash, physiological responses eli-
cited by saccades would take place after w300 ms. (3) In one
subject where we monitored eye position, we did not observe
any differences in the responses or SI that could be explained
by eye movements. (4) We observed similar SI when the anal-
ysis interval was restricted to [50;200] ms (Figure S2C). (5)
Similar SIs were observed for electrodes that preferred faces
or other categories (Figures 2D and 2E, Figures S2B and
S2C). Furthermore, in some cases, there were different elec-
trodes in the same subject that preferred different categories;
a category-specific attentional account would necessarily fail
to explain the responses in some electrodes (e.g., Figures
S1B and S1C). (6) The SIs during the initial 300 ms were unaf-
fected by target presence (Figure S2C). (7) The latencies to
one-object images and two-object images were similar
(Figure 4). Taken together, observations 1–7 do not rule out
an attentional account of our findings but delimit the possible
roles of attention. The physiological characterization of the
spatial summation properties (Figures 2 and 3, Figure S2),
category preferences (Figure 3, Figures S4 and S5), task
demands (Figure S2C), and timing (Figure 4) places strong
constraints on how attentional shifts should be incorporated
into biophysically plausible computational circuits for visual
recognition (e.g., [25]).
We used two relatively large objects surrounded by a gray
background. Visual recognition becomes more challenging
and reveals serial attentional shifts upon increases in the
amount of ‘‘clutter’’ in the image. Therefore, we do not claim
that the initial physiological signals in temporal cortex can
account for visual recognition under all possible visual condi-
tions. Our work does suggest, however, that the presence
of two objects and modest response suppression do not
completely disrupt visual recognition by the initial sweep of
visually selective signals.

Experimental Procedures

Subjects

Subjects were nine patients (10–47 years old, six right-handed, three male)

with epilepsy admitted into either Children’s Hospital Boston (CHB) or Brig-

ham and Women’s Hospital (BWH) to localize the seizure foci for potential

surgical resection [39, 40]. The tests were approved by the IRBs at both

hospitals and were performed under the subjects’ written consent.

Recordings

Subjects were implanted with 64 to 88 intracranial subdural grid (64%)

or strip (36%) electrodes (8 subjects) or intracortical depth electrodes

(1 subject) as part of the surgical approach to treat epilepsy. The grid and

strip electrodes were 2 mm in diameter, with 1 cm separation and imped-

ances below 1 kU (Ad-Tech, Racine, WI). The signal from each electrode

was amplified (25003), filtered between 0.1 and 100 Hz, and sampled at

256 Hz at CHB (XLTEK, Oakville, ON) and 500 Hz at BWH (Bio-Logic,

Knoxville, TN). A notch filter was applied at 60 Hz to remove line noise

artifacts (5-th order bandstop Butterworth filter between 58 and 62 Hz

implemented in MATLAB’s butter function). We refer to the voltage signal

as intracranial field potential. Subjects stayed in the hospital 6 to 9 days.

The number and location of the electrodes were determined by clinical

criteria (Table S1). In one subject, we monitored eye movements with

a noninvasive system from ISCAN (DTL-300, Woburn, MA) that provides

a spatial resolution of w1 degree and a temporal scanning frequency of

60 Hz. We excluded from the analyses those electrodes that were consid-

ered to be part of the epileptogenic focus according to clinical criteria.

Stimulus Presentation and Task

Subjects were presented with grayscale images containing one or two

objects. Objects belonged to one of five possible categories: animals,

chairs, human faces, cars, and houses. There were five exemplar objects

per category and each exemplar object was contrast normalized. Images

were presented for 100 ms, with a 1000 ms gray screen in between images.

Images included one object (30%) or two objects (70%). The two objects

were presented either above and below the fixation point (50%) or to the

left and right of the fixation point (50%). In the one-object images, the object

was randomly presented at one of the possible locations (above/below or

left/right with respect to the fixation point) at the same size and eccentricity

as in the two-object images. In the first three subjects, there were four

possible positions (above, below, right, left of the fixation point). In the

remaining six subjects, the task was restricted to two positions (above/

below) to increase the number of repetitions at each position. Objects sub-

tended w3.4 degrees of visual angle and were presented with their center

w3.8 degrees from the fixation point. Subjects were asked to fixate on the

fixation point. Object order and positions were randomized. The duration

of each session (and therefore the number of repetitions) depended on clin-

ical constraints and subject fatigue (minimum duration = 6 min, maximum

duration = 29 min, mean = 14.8 6 8.0 min). In many cases, we ran several

sessions per subject (minimum = 1 session, maximum = 4 sessions,

mean = 2.9 6 1.1 sessions). The first two presentations within each block

were not considered for analyses to avoid potential nonstationary effects.

Data from all sessions for a given subject were pooled together for analyses.

On average, the total number of presentations was 1156 6 451. There were

338 6 131 one-object images (67 6 13 per category) and 650 6 242 images

with two objects from different categories (64 6 66 per category pair). At the

onset of each block (50 images per block), a target category was announced

by a written word presented on the screen. Subjects had to indicate by

pressing designated ‘‘yes’’ and ‘‘no’’ keys whether or not each image

included an object from the target category. The overall performance

was 92% 6 12% correct (range = 75%–100% correct; one-object images
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92% 6 10%; two-object images: 91% 6 13%). The average reaction time

was 630 6 90 ms (one-object images: 625 6 103 ms; two-object images:

640 6 96 ms).
Data Analyses

Electrode Localization

To localize the electrodes, we integrated anatomical information from

preoperatively acquired magnetic resonance imaging (MRI) and spatial

information of electrode positions provided by postoperatively acquired

computed tomography (CT). For each subject, the 3D brain surface was

reconstructed and an automatic parcellation was performed with Freesurfer

[24]. CT images were first registered to the MRI by using a 3D affine trans-

form based on multiple fiducial marks. After the coregistration, electrodes

were projected onto the nearest brain surface (Table S1). Electrodes were

superimposed on the reconstructed brain surface for visualization purposes

in the figures. Talairach coordinates and brain renderings for all 672 elec-

trodes are available upon request.

IFP Response Definition

We focused on the initial part of the IFP response (50 to 300 ms after stim-

ulus onset) because (1) it is more strongly correlated with the visual stimuli;

(2) it is less affected by potential effects of eye movements or attentional

shifts [37]; (3) we can directly compare the responses against the same

intervals used in macaque studies (e.g., [15, 23]); and (4) we can more readily

compare the initial sweep of the response with feed-forward models of

object recognition [25]. We have previously characterized IFP signals based

on different response definitions [24]. We define the IFP response magni-

tude, R, as the voltage range [max(V) 2 min(V)] in the [50;300] ms time

interval. An electrode was defined to show visual selectivity if a one-way

analysis of variance (ANOVA) across object categories based on the IFP

response magnitude to the one-object images yielded p < 0.01 [24]. Visually

selective electrodes responded to an average of 1.45 categories (ranging

from 1 to 3 categories). Unless stated otherwise (Figure S2C), the analyses

focus on those trials where the target category was absent to remove the

possible influence of the target on the spatial summation properties. The

initial IFP response magnitude was not significantly affected by the pres-

ence or absence of the target category (Figure S2C). Many electrodes did

show significant differences between target and nontarget trials beyond

300 ms after stimulus onset. However, the physiological responses after

300 ms are beyond the scope of the manuscript.

Spatial Summation Properties

We compared the responses to one-object images against two-object

images (e.g., Figure 2, Figure S2). We also considered several biophysically

plausible simple models [4] to explain the response to two-object images

based on the responses to the constituent single objects (Figure S2).

When fitting these models, we used the function nlinfit in MATLAB.

Classifier Analysis

We used a machine-learning approach [23, 28] to read out visual information

from the IFP responses in single trials. We considered the [50;300] ms

interval and defined three features of the IFP signal: the minimum voltage

time (tmin), the maximum voltage time (tmax), and the response magnitude

R (Figures S3A–S3D). For each electrode i, we constructed a response

vector: ½ti
min; t

i
max;R

i �. Several other ways of defining the response vector

for each electrode were described previously [24]. This response vector is

defined for each individual trial (there is no averaging of responses across

trials). The classifier approach allows us to consider each electrode inde-

pendently or to examine the encoding of information by an ensemble of

multiple electrodes. When considering a set of N electrodes, we assumed

independence across electrodes and concatenated the responses to build

the ensemble response vector: ½t1
min; t

1
max;R

1;.; tN
min; t

N
max;R

N �. The results

shown throughout the manuscript correspond to binary classification

between a given category and the other categories (see Figure S5F for multi-

class classification). In a binary classifier, chance corresponds to 50%

(horizontal dashed line in the plots). We used a support vector machine

(SVM) classifier with a linear kernel to learn the map between the ensemble

response vectors and the object categories. In all cases, the data were

divided into two nonoverlapping sets, a training set and a test set. We

examined different ways of separating the data into a training set and a

test set (Figure S5). Throughout the text, we report the proportion of

test repetitions correctly labeled as ‘‘classification performance’’ (CP). To

assess the statistical significance of the classification performance values,

we compared the results against those obtained after performing 100 itera-

tions where we randomly shuffled the object labels. We considered CP to be

significant if performance was more than 3 standard deviations above the

null hypothesis.
Latency

We used two different definitions to compute the response latency as

described in Figure 4.

Supplemental Information

Supplemental Information includes five figures and one table and can be

found with this article online at doi:10.1016/j.cub.2010.03.050.
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