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Abstract—Neural oscillations are important features in a work-
ing central nervous system, facilitating efficient communication
across large networks of neurons. They are implicated in a
diverse range of processes such as synchronization and synaptic
plasticity, and can be seen in a variety of cognitive processes.
For example, hippocampal theta oscillations are thought to be a
crucial component of memory encoding and retrieval. To better
study the role of these oscillations in various cognitive processes,
and to be able to build clinical applications around them,
accurate and precise estimations of the instantaneous frequency
and phase are required. Here, we present methodology based
on autoregressive modeling to accomplish this in real time. This
allows the targeting of stimulation to a specific phase of a detected
oscillation. We first assess performance of the algorithm on two
signals where the exact phase and frequency are known. Then,
using intracranial EEG recorded from two patients performing a
Sternberg memory task, we characterize our algorithm’s phase-
locking performance on physiologic theta oscillations: optimizing
algorithm parameters on the first patient using a genetic algo-
rithm, we carried out cross-validation procedures on subsequent
trials and electrodes within the same patient, as well as on data
recorded from the second patient.

Index Terms—intracranial EEG, neural oscillations, theta
rhythm, closed-loop stimulation, phase-locking, real time, autore-
gressive model, genetic algorithm.

I. INTRODUCTION

Neural oscillations are fundamental to the normal func-
tioning of a working central nervous system. They can be
observed in single neurons as rhythmic changes of either
the subthreshold membrane potential or in cellular spiking
behavior. Large populations of such neurons can give rise to
synchronous activity, which may correspond to rhythmic oscil-
lations in the local field potential (LFP). These oscillations can
in turn modulate the excitability of other individual neurons.
Therefore, a key function of these oscillations is to facilitate
efficient communication across large neuronal networks, as
the synchronous excitation of groups of neurons allow them

L. L. Chen, R. Madhavan, and W. S. Anderson* are with the Department
of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115 USA *email: wanderso68@gmail.com.

B. I. Rapoport is with the Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge, MA
02139 USA.

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

to form functional networks [1]. Additionally, network os-
cillations bias input selection, temporally link neurons into
assemblies, and facilitate synaptic plasticity, mechanisms that
all support the long-term consolidation of information [2].

There are distinct oscillators in various brain regions that
are governed by different physiological mechanisms. We are
only beginning to uncover the various roles these oscillators
play in different aspects of cognition. Numerous EEG, MEG,
ECoG, and single unit recording studies have shown that
oscillations at certain frequencies can be elicited or modulated
by specific task demands, and that their amplitude or power
have correlations to the outcome of those tasks [3], [4]. For
example, prominent oscillations in the theta frequency range
can be detected in the hippocampus and entorhinal cortex of
rats during locomotion, orienting, conditioning, or while they
are performing learning or memory tasks [5], as well as in
humans performing various memory and spatial navigation
tasks [6], [7], [8], [9], [10], [11], [12], [13], [14]. Because
of the role of hippocampal theta oscillations in modulating
long-term potentiation (LTP), they are thought to be an im-
portant component of memory encoding [15], [16], [17], [18],
[19], [20]. Synchronization and coherence of theta oscillations
between the hippocampus and other brain regions such as the
prefrontal cortex have also been shown to be an important
factor in successful learning and memory [21], [22], [23], [24].

The phase of these neural oscillations can possibly be used
to store and carry information [25], [2], as well as to modulate
physiological activity such as LTP. For example, stimulation
applied to the perforant pathway at the peak of hippocampal
theta rhythms induced LTP while stimulation applied at the
trough induced long-term depression [17]. Theta also serves
to temporally organize the firing activity of single neurons
involved in memory encoding [26], [27], such that the degree
to which single spikes are phase-locked to the theta-frequency
field oscillations is predictive of how well the corresponding
memory item is transferred to long-term memory [14]. Such
temporal patterns of neural activity are potentially important
considerations in the design of future neural interface systems.

Phase relationships are typically characterized through post
hoc analysis in most studies, as accurate measures of fre-
quency and phase and their complex relationships with other
phenomena require analysis in the time-frequency domain.
Real-time systems that could potentially utilize oscillation
phase information, for example brain-computer interfaces [28],
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or responsive closed-loop stimulator devices that combine
neural ensemble decoding with simultaneous electrical stim-
ulation feedback [29], [30], [31], would require precise and
accurate measurements of the instantaneous phase. Phase-
specific stimulation could also aid in experimental research
on the temporal patterns of neural ensemble activity and
their correlations with cognitive processes and behavior. A
few studies have performed such phase-specific electrical
stimulation on animals. Pavlides et al. [15] and Hölscher et al.
[16] built analog circuits that triggered stimulation pulses at
the peak, zero-crossing, and troughs of the hippocampal LFP
signal. This approach assumes a sufficiently narrow bandwidth
such that the peak, zero-crossing, and troughs of the input
signal approximates these values of the actual underlying
oscillation. Hyman et al. used a dual-window discrimination
method for peak detection, whereby two windows of variable-
time widths and heights were manually created to fit each
individual animals typical theta frequency and amplitude, and
the stimulator set to be delay-triggered if the input waveform
successfully passed through both windows [17]. Because this
approach requires manual calibration to a specific setting, real-
time operation in the face of dynamic amplitude or frequency
changes would not be possible. These systems would not
be sufficient for neural interfaces operating in real time or
experiments requiring higher-resolution phase detection. As
such, an alternative approach is needed.

Here, we present methods to accurately estimate the instan-
taneous frequency and phase of an intracranial EEG oscillation
signal in real time. At the core of our methodology is an
autoregressive model of the EEG signal, which we use to
both optimize the bandwidth of the narrow-band signal using
estimations of the power spectral density, as well as to
perform time-series forward-predictions. These two steps in
conjunction allows us to make precise and accurate estimates
of the instantaneous frequency and phase of an oscillation,
which we then use to target output stimulation pulses to a
specific phase of the oscillation.

II. METHODS

A. Algorithm Overview

The ultimate goal of our algorithm is to be able to calculate
the instantaneous frequency and phase of a neurophysiolog-
ical signal at a specific point in time with the necessary
accuracy and precision to be able to deliver phase-locked
stimulation pulses in real time. The algorithm is comprised
of several sequential steps: 1. Frequency band optimization
within a predefined frequency band (for theta, we use 4-
9 Hz), utilizing autoregressive spectral estimation, 2. Zero-
phase bandpass filtering, based on the results of the frequency
band optimization procedure, 3. Estimating the future signal
by autoregressive time-series prediction, 4. Calculating the
instantaneous frequency and phase via the Hilbert-transform
analytic signal, and 5. Calculating the time lag until the
desired phase for the output stimulation pulse. A graphical
representation of these steps is depicted in Fig. 1. It must
be noted, however, that there are several parameters used by
the algorithm that are optimized offline prior to its online
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Fig. 1: Overview of algorithm. (a) Raw iEEG signal, where
t0 represents the current time in a real-time acquisition
process. (b) Analyze the last 1-second segment of iEEG
signal. (c) Use autoregressive spectral estimation to calculate
the power spectral density in the 1-second segment. The
frequency band optimization procedure is carried out. (d) The
1-second segment is bandpass filtered in both the forward
and backward directions, based on the optimized passband.
(e) Using the bandpass-filtered signal from tstart to tstop,
time-series forward predictions (shown in red) are made using
the autoregressive model. (f) The instantaneous phase and
frequency of this forward-predicted segment are calculated. (g)
Using the instantaneous phase and frequency of the forward-
predicted segment at t0, a time delay from t0 is calculated.
Output stimulation is triggered after this time delay (shown
in red). Overlaid is the raw iEEG signal from (b) plus some
additional time.

operation. The procedure for the offline optimization of these
parameters using a genetic algorithm is discussed in section
2I.

B. Autoregressive Model

Autoregressive (AR) modeling has been successfully ap-
plied to EEG signal analysis for diverse applications such as
data compression, segmentation, classification, sharp transient
detection, and rejection or canceling of artifacts [32], [33].
Although the processes underlying EEG signals may be non-
linear, traditional linear AR modeling has been shown to be as
good as, or even slightly better than, non-linear models in at
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least one study [34], in terms of the correlation coefficient
between forecasted and real time series. It was found that
processes with spectra limited to certain frequencies plus white
noise can be well described by an AR model, while processes
with power spectra characterized by multiple very narrow
peaks are described poorly by an AR model. Therefore, for
brain oscillation detection, AR modeling is a natural choice.
Furthermore, parameters can be updated in an adaptive manner
using the Kalman filtering algorithm or chosen to give the best
fit to a segment of data samples, using either the Levinson-
Durbin algorithm or the Burg algorithm [33]. Particularly with
strong, coherent oscillations, small segments of the EEG are
presumed to be locally-stationary, and thus a non-adaptive
model is suitable. Autoregressive modeling provides a robust
method of estimating the power spectrum for short (1–2 s)
EEG segments, and is less susceptible to spurious results [33].

An autoregressive model AR(p) of order p is a random
process defined as:

Xt = c+

p∑
k=1

αkXt−k + εt, (1)

where α1, ..., αp are the parameters of the model, c is a
constant, and εt is white noise. If a is the vector of model
parameters, for a given time-series sequence x(t) and model
output x̂(t, a), the forward prediction error is given by:

e(t, a) = x(t)− x̂(t, a), (2)

where a is found by minimizing the mean squared error

E(a) =
1

N

N∑
t=1

e2(t, a), (3)

where N is the segment length of x(t). The autoregressive
model can be constructed using one of several algorithms to
calculate model coefficients. They include the least-squares
approach, which minimizes the prediction error in the least
squares sense (either forward prediction error or both forward
and backward prediction errors), the Burg lattice method,
which solves the lattice filter equations using the mean (either
harmonic or geometric) of forward and backward squared
prediction errors, and the Yule-Walker method, which solves
the Yule-Walker equations formed from sample covariances,
minimizing the forward prediction error. The Burg and Yule-
Walker methods always produce stable models, but because
we are only interested in forward prediction, we use the Yule-
Walker method here.

One issue that is of critical importance in the successful
application of AR modeling is the selection of the model order
[33], [32], [35], [36], [37], [38]. There have been many criteria
formulated over the years for determining the optimal model
order. The most well-known of these is Akaike’s Information
Criterion (AIC) [39]. Other criteria that have been developed,
such as the Bayesian Information Criterion, Final Prediction
Error, Minimal Description Length differ essentially in the
degree of the penalty applied to higher orders [40]. These
are useful guides that can serve as useful starting points, but
because estimated optimal order varies by the criterion, the
sampling rate, and the characteristics of the input data, order

selection ultimately depends upon the resulting performance
of the system [36], [37]. Thus, it is empirically determined.

C. Frequency Band Optimization

An AR model can also be formulated in the frequency
domain as a spectral matching problem. For EEG applications,
AR spectral estimation has been demonstrated to be superior to
traditional nonparametric methods such as the periodogram–
due to the clear, higher-resolution spectra that it generates
[41], [33]. The estimated AR spectrum of a data sequence
is a continuous function of frequency and can be evaluated
at any given frequency. This is why AR spectral estimation
is much more powerful in discriminating narrow-band peaks,
such as those produced by brain oscillations. Here, the AR
model order becomes important in that a low model order
will give an overly smoothed spectrum while an overly high
order will result in spurious peaks. Two poles are needed to
resolve each sinusoidal peak, and thus 2 is the minimum model
order required [33]. Depending on the spectral band of interest,
much higher orders may be necessary, as greater power is
concentrated in the lower frequencies. The power spectrum is
estimated by the following equation [42]:

SAR(f) =
σ2

|1 +
∑p
k=1 αke

−j2πfk|2
, (4)

where σ2 is the noise variance and αk are AR the model
coefficients. The coefficients αk are the same as the time-
domain parameters in Equation 1.

To isolate a particular brain oscillation and accurately de-
termine its instantaneous phase, we must perform bandpass
filtering around its central frequency. Instantaneous phase only
becomes accurate and meaningful if the filter bandwidth is
sufficiently narrow [43]. Using predetermined cutoff frequen-
cies may lead to either an insufficiently narrow band, where
noise and extraneous signals will interfere with the brain os-
cillation signal, or an overly narrow band, in which frequency
components of the brain oscillation are lost due to crossing
over the range of the passband. Therefore, we developed an
adaptive method that optimizes the cutoff frequencies using the
AR power spectrum estimate, where the power contained in
the optimized band does not fall below a specified threshold
level. First, for the raw EEG signal, we calculate the total
power contained in a particular frequency band of interest:

P (fL, fH) =

∫ fH

fL

SAR(f) df. (5)

We then iteratively increase fL or decrease fH by a specified
step-size δf until

P (f̂L, f̂H) ≤ λP (fL, fH), (6)

where f̂L and f̂H are the optimized passband cutoff frequen-
cies, and λ is a fractional multiplier. For every iteration:

(f̂L, f̂H) =

{
(fL + δf , fH) if SAR(fL) < SAR(fH)
(fL, fH − δf ) if SAR(fL) ≥ SAR(fH)

.

(7)
The selection of a value for λ defines the tradeoff between an
insufficiently narrow band (λ close to 1) and an overly narrow
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band (λ close to 0). Here, we set λ to be greater than 0.5, with
the justification that we are ensuring the majority of the power
contained within the frequency band of interest is contained
within the bounds of f̂L and f̂H . It is important to note that the
optimal value of λ may be context-dependent. We are using
the assumption that for a particular brain oscillation, there is a
certain characteristic frequency, and some amount of variance
about that central frequency, rather than the assumption that
the oscillation is comprised of many component frequencies.
Using this relative measure λ, we are able to ensure that the
filter passband is locally optimized within each time segment.
A bandpass filter with cutoff bands f̂L and f̂H is then applied
to the original EEG segment. To prevent phase distortion, we
use a zero-phase digital filter that processes input signals in
both the forward and reverse directions.

D. Time-Series Forward Prediction

Once we have filtered a signal through the optimized
bandpass filter, we can calculate the instantaneous frequency
and phase. However, when operating in real time, the relevant
f(t) and φ(t) are its values at the current time, which we
will define as t0. Using a zero-phase filter, distortions will
occur near t0 as only the signal in the reverse direction is
available. To make more accurate estimates of f(t0) and φ(t0),
we make use of an autoregressive model. The autoregressive
model as formulated in equation 1 provides a basis for linear
forward prediction. For a given EEG segment, we use the
bandpass filtered signal from Xtstart

to Xtstop to predict a
signal of length 2(t0−tstop) from tstop (see Fig. 1). Therefore,
the midpoint of this predicted signal corresponds to t0. We
predict a signal of length 2(t0 − tstop) to ensure a smooth
and continuous instantaneous phase function at t0, so that
the calculation of the instantaneous frequency and phase at
t0 will not be affected by the edge effects of the Hilbert
transform. The Hilbert transform will be used to calculate
the instantaneous phase and frequency (see section 2E). An
example of its edge effect can be seen in the ripples in Fig.
1e.

Because filter distortions occur at both ends of the signal
segment, we set the length from tstart to tstop symmetric about
the signal segment midpoint, such that tstart = (t0−T )+(t0−
tstop), where T is the length of the original signal segment
(here, T is 1 second). If the length between tstart and tstop
is set too small, then the amount of data used as the basis for
the AR model will be insufficient, whereas if tstop is set too
close to t0, then too much distortion will remain present in the
predicted signal. In our genetic algorithm for optimizing the
algorithm parameters offline (see section 2I), we have set the
bounds of t0 − tstop to be between 0.05 and 0.45 seconds. In
other words, the fraction of the signal segment used as input
to the autoregressive model can range from the middle 0.1 to
0.9 seconds. An additional point of consideration is that both
the filter type and filter order will influence the amount of
distortion in the filtered signal, and thus it will be necessary
to optimize the filter in relation to both t0−tstop and the input
data.

E. Instantaneous Phase and Frequency

The instantaneous phase is calculated by first constructing
the analytic signal, a combination of the original data and its
Hilbert transform [44]. For the real signal x(t), the complex
analytic signal zx(t) can be formulated as:

zx(t) = x(t) + jH{x(t)}, (8)

where H{x(t)} is the Hilbert transform of x(t), and is defined
as:

H{x(t)} =
1

π
p.v.

∫ ∞
−∞

x(τ)

t− τ
dτ, (9)

where p.v. denotes Cauchy’s principal value.
The instantaneous phase of x(t) can be calculated from the

complex analytic signal zx(t) as:

φx(t) = arg zx(t)

=


arctan H{x(t)}

x(t) x(t) ≥ 0

arctan H{x(t)}
x(t) + π x(t) < 0, H{x(t)} ≥ 0

arctan H{x(t)}
x(t) − π x(t) < 0, H{x(t)} < 0

.

The instantaneous frequency fx(t) can then be calculated in
terms of the instantaneous phase:

fx(t) =
1

2π

d

dt
φuw
x (t), (10)

where φuw
x (t) is the unwrapped instantaneous phase. Because

the domain of φx(t) is (−π, π], discontinuities are present in
the form of 2πn jumps, where n is an integer. The unwrapping
procedure chooses the appropriate n at each discontinuity such
that φx(t) becomes continuous.

In our algorithm, the two steps that are based on autoregres-
sive modeling, frequency band optimization and time-series
forward prediction, are strategies to attempt to maximize the
accuracy of instantaneous phase and frequency estimations.

F. Implementation

Our algorithm was implemented in the LabView 9.0 en-
vironment (National Instruments, Austin, TX) as well as in
MATLAB 7.11 (MathWorks, Natick, MA). The LabView im-
plementation is used for real-time operation and the MATLAB
implementation is used for offline analysis. The analyses
carried out in this paper were performed in MATLAB with
simulated input data.

The maximum signal segment analysis rate (which trans-
lates to the maximum stimulation rate) for the determination
of stimulation timing should be greater than the frequency
of the oscillation of interest. However, if this frequency is
set too high, then spurious outputs will be generated. For
theta oscillations, we have set this frequency to be 10 Hz,
corresponding to a time window shift every 100 ms. For every
period of this analysis cycle, f(t0) and φ(t0) are calculated,
and the time delay until the output stimulation is delivered is
calculated by the following formula:

tdelay =
1

f(t0)

(ϕ− φ(t0) + 2π) mod 2π

2π
, (11)

where ϕ is the desired phase of the output stimulation (ϕ = 0
corresponds to the waveform peak, while ϕ = π corresponds
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to the trough). Note that 2π is added as the output of φ lies
in the interval (−π, π].

G. Patients and Data

For the first part of our performance studies, we used signals
where the exact phase and frequency are known–first, a simple
6 Hz cosine waveform and second, a 10-second intracranial
EEG signal recorded from a single subdural contact electrode
over the parahippocampal gyrus of a patient with temporal
lobe epilepsy exhibiting epileptiform theta discharges.

For the second part of our performance studies, we assessed
phase-locking accuracy on physiologic theta oscillations from
two epilepsy patients performing a memory task, who had been
surgically implanted with subdural electrodes. The clinical
team determined the placement of these electrodes to best
localize epileptogenic regions. All subjects had normal-range
intelligence and were able to perform the task within normal
limits. Our research protocol was approved by the institu-
tional review board at the Brigham and Women’s Hospital.
Informed consent was obtained from the subjects prior to
the surgical implantation. Subject 1 had electrodes covering
the frontal, parietal and subtemporal areas (73 channels).
Subject 2 had electrodes covering the middle, inferior and
subtemporal regions (38 channels). The experimental protocol
was a version of the Sternberg task adapted from [10]. Four list
items (consonant letters) were presented sequentially on the
computer screen. Each item was presented for 1.2–2 seconds,
with 0.2–1 second intervals between items. The termination of
the last item in the list was followed by a 2–4 second delay and
the presentation of a probe, a single consonant that may or may
not have been in the list. The subject was instructed to press
the ’y’ key on the keyboard if the probe item was in the list and
’n’ key if the item was not. After each response, the subject
was given feedback on accuracy, and another trial could be
initiated by key press. After this key press, a subsequent trial
began in 1–2 seconds. TTL pulses marked the presentation of
the four items and the probe item in the iEEG recordings.
We obtained 40 trials from subject 1 and 11 trials from
subject 2. Both the correct and incorrect trials were pooled for
this analysis. Intracranial (iEEG) signals were recorded from
grids and strips electrode arrays containing multiple platinum
electrodes (3 mm diameter), with an inter-electrode spacing
of 1 cm. The locations of the electrodes were determined by
post-operative co-registered computed tomography (CT) scans.
The signal was amplified, sampled at 500 Hz, and bandpass
filtered between 0.1 and 70 Hz.

For the cosine waveform and the epileptiform theta dis-
charges waveform, we optimized the algorithm parameters
on the data and ran simulations with these parameters on
the same data. For the Sternberg task patient datasets, we
optimized the algorithm parameters on the first trial for subject
1 with the single electrode with the largest average theta
power. We then used these parameters to perform simulation
runs on all electrode channels in subject 1 for all subsequent
trials (trials 2–40). Phase-locking performance was assessed
at each electrode channel (1–73) collectively over trials 2–
40. These same parameters were then tested on subject 2 at

each electrode channel (1–38) and assessed collectively over
all trials (1–11).

H. Assessment of Phase-Locking Performance

We are interested in two measures of phase-locking accu-
racy. The first is the difference between the mean stimulation
phase φ̄ and the desired phase ϕ. The second is the variance
of stimulation phases. Perfect accuracy would be a value of
0 for both measures. We calculated the spread of φ several
ways, including the circular variance:

σ2
circ = 1−

∥∥∥∥∥ 1

N

N∑
i=1

(
cosφi
sinφi

)∥∥∥∥∥ , (12)

which ranges from 0 to 1 [45]. We also calculated the 95%
confidence interval of the mean phase φ̄ and applied Rayleigh’s
test for circular non-uniformity.

Not every channel may provide a suitable input signal,
perhaps due to the properties of the underlying physiological
processes. Therefore, we looked at phase-locking performance
in the context of the electrode channel’s theta power level
and theta temporal coherence. The temporal coherence τc
is calculated by determining the length of time it takes for
the amplitude of the autocorrelation function of the theta-
bandpassed signal to decrease to half the maximal value at
t = 0. As an example, for a 1-second truncated sine wave
segment, τc = 0.5 seconds. We placed electrode channels
into four bins: high theta power/high theta coherence, high
theta power/low theta coherence, low theta power/high theta
coherence, and low theta power/low theta coherence. Electrode
channels that did not produce stimulation output were dis-
carded. High theta power was defined as being greater than the
median theta power across all remaining electrodes, whereas
high theta coherence was defined as being greater than the
midpoint of the range of τc values. The theta power for each
electrode was averaged over trials 2–40 for subject 1 and trials
1–11 for subject 2.

I. Optimizing Parameters Using a Genetic Algorithm

There are multiple parameters in our algorithm that require
selection and optimization. Because these variables interact
in non-obvious ways, depending on, most of all, the charac-
teristics of the input data, we sought to optimize these pa-
rameters simultaneously through a multi-dimensional search.
However, the search space is extremely large and complex.
An exhaustive search is a practical impossibility. Therefore,
we used a genetic algorithm to arrive at an optimal parameter
combination for a particular input signal. A genetic algorithm
is a stochastic global search and optimization method that
mimics biological evolution through its natural selection of
a population of potential solutions according to some measure
of fitness. The population undergoes selection, crossover, and
mutation to simultaneously generate diversity while converg-
ing towards an optimal solution. Though it is possible that the
solution arrived at is only a local optimum for any given run,
we are constrained by computational resources and time.

The five parameters to be optimized include the AR order
p, λ for frequency band optimization, the bandpass filter
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TABLE I: Genetic Algorithm Search Space

Parameter Values
AR order (p) 2–100
λ 0.5–1
Filter order 1-5
Filter type 1-5
t0 − tstop 0.05–0.45

The filter type corresponds to: 1=Butterworth, 2=Chebyshev (0.1 dB of
peak-to-peak ripple in the passband), 3=Inverse Chebyshev (stopband
attenuation of 60 dB), 4=Elliptic (1 dB of ripple in the passband, and a
stopband 60 dB down from the peak value in the passband), 5=Bessel.

order and type, and the length t0 − tstop for time-series
forward prediction. The ranges of acceptable values for these
parameters are listed in Table II. Phase-locking performance
is characterized by both accuracy (stimulation phases should
be close to the target phase) and precision (stimulation phases
should be within a narrow range). In addition, similar to the
basis for Akaike’s Information Criterion and similar order
estimation methods, we want to find the minimum AR order
that yields good performance. The fitness function we use is
a sum of terms reflecting these three objectives:

y =
|ϕ− φ̄|
π

+
|φ̄upper 95% − φ̄lower 95%|

π
+

p

100
. (13)

The first term captures the difference between the mean stim-
ulation phase and the target phase. The second term captures
the spread of the stimulation phases. One could also use
the circular variance for this term, but unlike the confidence
interval, the circular variance does not take into account the
number of stimulation pulses. The third and last term is the
AR model order. The weighting of these terms is to ensure
that each term has a range of 0 to 1 so that each term has
roughly an equal contribution to the overall fitness.

We implemented the genetic algorithm in MATLAB 7.11
with the Global Optimization Toolbox 3.1 (Mathworks, Nat-
ick, MA). We used a population size of 200, an elite count of
20, crossover fraction of 0.7, the heuristic crossover function,
the roulette selection function, and the adaptive feasible muta-
tion function. The initial population was generated randomly
within the bounds listed in Table I. We set the stopping
criterion to be a cumulative change in fitness of less than
0.0001 between generations.

III. RESULTS

A. Cosine Waveform

For the simple cosine function, it is reassuring that the
phase-locking performance is excellent, as shown in Fig.
2. The parameters used are listed in Table II. While these
parameters were optimized using the genetic algorithm, in
reality many more parameter combinations yield similarly
excellent results. The same parameters were also used to target
stimulation at the trough of the waveform. The measures of
phase-locking accuracy are also listed in Table III.

B. Epileptiform Theta Discharges

As illustrated in Fig. 3a, the advantage of using an AR
model comes from its ability to accurately discern single
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Fig. 2: Results for 6 Hz cosine function. (a) Stimulation at the
peak. (b) Rose plot of phases at which stimulation occurred,
targeting the peak. (c) Stimulation at the trough. (d) Rose plot
of phases at which stimulation occurred, targeting the trough.

peaks. Fig. 3 shows the results for the epileptiform theta
discharges data. The parameters used–optimized based on
targeting the peak–are listed in Table II. The same parameters
were then used to test the algorithm for stimulation targeting
the trough. For stimulation targeting the peak, the mean
resulting phase φ̄ was -2.49o degrees (95% confidence interval:
-17.64o–12.65o, circular variance: 0.2651). For stimulation
targeting the trough, the mean resulting phase φ̄ was -178.42o

(95% confidence interval: -162.64o–165.79o, circular variance:
0.2867).

C. Sternberg Task

For subject 1, in the first trial, electrode 45 had the largest
average theta power (2300 µV2), and thus the algorithm pa-
rameters were optimized on this data. The resulting optimized
parameters are listed in Table II. Results of simulation runs
on trials 2–40 are shown in Fig. 4a. Not all electrode channels
had equal phase-locking performance. Channels with both high
theta power and high theta temporal coherence resulted in the
best performance. The median theta power averaged across
trials 2–40 was 570 µV2, and the theta temporal coherence
τc averaged across trials 2–40 ranged from 0.0812 to 0.1308
seconds. A rose plot of stimulation phases for the electrode
with the overall best performance is shown in Fig. 5a, and the
performance measures are listed in Table III. For this channel
(68), the theta power averaged across the trials was 1576
µV2 and the theta coherence averaged across the trials, τ̄c,
was 0.1205 seconds. Results for the channel with the highest
theta power, channel 45, are shown in Fig. 5c. The average
theta power was 2533 µV2 and the average theta temporal
coherence τ̄c for this channel was 0.0907 seconds. Results
for the channel with the highest theta temporal coherence as
well as the highest combined metric (both high theta power



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

1
5

9

2
5

9
0

0.02

0.04

0.06

 

t (s)f (Hz)
 

po
w

er
 (

m
V

2 /H
z)

2 4 6 8
0

0.02

0.04

0.06

0.08

t (s)

θ 
po

w
er

 (
m

V
2 )

2 4 6 8
3.5

4

4.5

5

5.5

6

6.5

t (s)

f (
H

z)

2 4 6 8
t (s)

  5

  n=10

0

  5

  n=10

0

0.01 0.02 0.03 0.04

6 6.5 7
−0.5

0

0.5

t (s)

am
pl

itu
de

 (
m

V
)

a

c

b

f g

d

e

Fig. 3: Results for epileptiform theta discharges data (data
is 10-second iEEG signal recorded from a single subdu-
ral contact electrode over the parahippocampal gyrus of a
patient with temporal lobe epilepsy exhibiting epileptiform
theta discharges). (a) Power spectral density over time, using
autoregressive estimation. The model order here is 13. (b)
Total power in the theta (4-9 Hz) frequency band over time
(top curve), and power within the optimized frequency band
(bottom curve). (c) The optimized frequency band limits f̂L
(bottom curve) and f̂H (top curve) over time. Note that as
the theta power increases due to the appearance of a theta
oscillation, the optimized frequency band becomes narrower.
(d) Times at which stimulation output were generated, over
the entire 10-second segment. (e) Signal during 6–7 seconds,
bandpass filtered between 4 and 5 Hz using a first-order
Butterworth filter. Overlaid are times at which stimulation
output were generated from 6–7 seconds. (f) Rose plot of
stimulation phases, where target phase was 0 degrees, or at
the peak. (g) Rose plot of stimulation phases, where target
phase was 180 degrees, or at the trough.

and theta temporal coherence), channel 57, are shown in Fig.
5e and Fig. 5g. The average theta power was 1610 µV2 and
the average theta temporal coherence τ̄c for this channel was
0.1308 seconds.

The same parameters from subject 1 were tested on subject
2. Out of 38 electrodes, 26 generated output stimulation, and
for these electrodes, the median theta power averaged across
trials 1–11 was 1500 µV2 and the theta coherence averaged
across trials 1–11 ranged from 0.0690 to 0.1087 seconds.
Results are shown in Fig. 4b. Here, electrode channels with
both high theta power and high theta temporal coherence
resulted in the best performance. Furthermore, it appears that
high theta temporal coherence is more important than high
theta power. A rose plot of stimulation phases for the electrode
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Fig. 4: Phase-locking performance on signals recorded during
the Sternberg task (φ̄, error bars represent the 95% confidence
interval for φ̄). Electrodes are sorted by high theta power/high
theta coherence (blue squares), high theta power/low theta
coherence (red triangles), low theta power/high theta coher-
ence (green circles), and low theta power/low theta coherence
(yellow crosses). (a) For subject 1, signals from 73 out of
73 electrodes generated output stimulation cumulatively over
39 trials (2–40). (b) For subject 2, signals from 26 out of 38
electrodes generated output stimulation cumulatively over 11
trials (1-11).

with the overall best performance in subject 2 is shown in Fig.
5b, and the performance measures are listed in Table III. For
this channel (20), the theta power averaged across the trials
was 1508 µV2 and the theta coherence averaged across the
trials, τ̄c, was 0.1087 seconds. Results for the channel with
the highest theta power, channel 18, are shown in Fig. 5d.
The average theta power was 5740 µV2 and the average theta
temporal coherence τ̄c for this channel was 0.0806 seconds.
Channel 20, the best-performing channel, happened to also
have the highest theta temporal coherence (Fig. 5f). Channel
6 had the highest combined metric (both high theta power
and theta temporal coherence), and results for this channel are
shown in Fig. 5h. The average theta power for this channel
was 2117 µV2 and the average theta temporal coherence τ̄c
was 0.0959 seconds.

These results show that while both high theta power and
high theta temporal coherence are important in determining
performance, high theta temporal coherence is the more im-
portant factor. For example, while channel 18 in subject 2
exhibited very large theta power (5740 µV2), it exhibited
relatively low theta temporal coherence (0.0806 seconds), and
thus performed very poorly (Fig. 5d). On the other hand,
channel 20 exhibited lower theta power (1508 µV2), but
had higher theta temporal coherence (0.1087 seconds), which
explains its better performance (Fig. 5f)
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Fig. 5: Rose plots for (a) the best performing electrode channel
in subject 1 (68), (b) the best performing electrode channel in
subject 2 (20), (c) the channel with the highest theta power in
subject 1 (45), (d) the channel with the highest theta power in
subject 2 (18), (e) the channel with the highest theta temporal
coherence in subject 1 (57), (f) the channel with the highest
theta temporal coherence in subject 2 (20), (g) the channel
with the highest combined metric (both theta power and theta
temporal coherence) in subject 1 (57), and (h) the channel
with the highest combined metric (both theta power and theta
temporal coherence) in subject 2 (6).

TABLE II: Optimal Parameters Found By Genetic Algorithm

Dataset AR λ Filter Filter t0 − tstop
Order Order Type

Cosine 6 0.89 2 Elliptic 0.14
Seizure 13 0.50 1 Butterworth 0.10

Subject 1 22 0.79 2 Chebyshev 0.05

For each case, the number of trials performed was 5, the desired phase of
the stimulation output was set to the input waveform peak, or 0◦, and the
AR model order p was set to 9. The unit of φ is degrees.

TABLE III: Performance for Each Dataset

Dataset
φ̄ φ̄lower 95% φ̄upper 95%

Circular Rayleigh
Variance p-value

Cosine -0.53 -2.06 0.99 0.0016 9.65 x 10-14

Seizure -2.49 -17.64 12.65 0.2651 2.00 x 10-11

Sub. 1 (45) -0.91 -7.60 5.77 0.5611 2.27 x 10-59

Sub. 1 (57) 1.60 -2.59 5.79 0.4490 2.02 x 10-145

Sub. 1 (68) -0.56 -3.49 2.37 0.4848 9.19 x 10-299

Sub. 2 (6) -11.36 -17.59 -5.14 0.6449 1.81 x 10-69

Sub. 2 (18) -61.45 -89.21 -33.70 0.7404 1.60 x 10-4

Sub. 2 (20) -0.19 -8.10 7.72 0.5894 5.79 x 10-43

In each case, the target phase of stimulation was the peak of the input
waveform, or 0◦. The unit of φ here is in degrees. For subject 1, channel 68
was the best-performing, channel 45 had the highest theta power, and
channel 57 had both the highest theta temporal coherence and highest
combined metric (theta power and theta temporal coherence). For subject 2,
channel 20 was the best-performing, channel 18 had the highest theta power,
channel 20 had the highest theta temporal coherence, and channel 6 had the
highest combined metric (theta power and theta temporal coherence).

IV. DISCUSSION

We have presented here a system for brain oscillation detec-
tion and phase-locked stimulation. Though we have tested our
system only on theta oscillations, this system can conceivably
be used to also study oscillations in other frequency bands.
Autoregressive modeling provides an excellent method to
estimate the instantaneous frequency and phase, from which
we can accurately deliver phase-locked stimulation in real
time.

Optimal selection of the AR model order and other algo-
rithm parameters are important considerations. Because these
parameters interact with each other and the input data, we
used a genetic algorithm method to optimize these parameters
simultaneously. This optimization procedure requires intensive
computational resources, and thus cannot be done in real time.
It must be manually performed on a separate experimental
trial (or set of trials) before the algorithm can be deployed.
Here, in subject 1 performing the Sternberg task, we performed
this optimization on the first trial and used the parameters
derived from this optimization on subsequent trials. In subject
2, we used the parameters that were optimized on subject
1. In reality, it may be more appropriate to optimize the
parameters on a patient-by-patient basis, as there will be
subtle differences in the physiology between patients, such
as in the dominant theta frequencies, timing, and spatial
characteristics. For example, hippocampi will differ between
patients, especially in the presence of underlying pathology
such as mesial temporal sclerosis. In addition, our system may
further be improved upon in the future by adopting an online
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adaptive strategy in selecting algorithm parameters, rather than
performing an offline optimization procedure prior to online
operation.

Our approach for accurately estimating instantaneous phase
and frequency relies on optimizing the narrow passband.
Alternate methods have been proposed for estimating the
instantaneous phase, such as using wavelet ridge extraction
[46]. One advantage of this method is that it is robust even
when multiple oscillatory regimes are simultaneously present
and are highly variable in time. However, such a time-
frequency based method may be too computationally intensive
to implement in real time. Another method that has been
proposed for oscillation detection is to use an adaptive filter
that dynamically tracks the central frequency of the oscillation
by adjusting its transfer function coefficients [47]. While this
method allows for accurate frequency tracking, the bandwidth
of the adaptive filter must still be set manually, and thus
remains susceptible to suboptimal bandwidth selection. In
these methods, real-time operation would also be limited by
edge effects, as only data in the reverse direction is available.
We believe our modeling strategy of including an AR forward
prediction step is useful in minimizing these edge effects,
but another modeling technique may work as well or better,
depending on the magnitude of these effects. Importantly, we
have now provided a benchmark for comparison.

How accurate and precise in phase-locking to an oscillation
does one have to be for neurostimulation applications such as
memory augmentation? While our method performs relatively
well, it remains to be seen if meaningful clinical effects can be
elicited by the phase-locking performance demonstrated here.
An important consideration is that while we demonstrated
our algorithm on subdural electrodes located over widely-
distributed spatial areas, in reality our algorithm would be
applied to depth electrodes targeting deep mesial temporal lobe
structures. Continuous theta oscillations have been recorded
from within the hippocampus in humans performing a memory
task [14], exhibiting what appears to be a high degree of
theta temporal coherence. Because our results show that the
performance of our algorithm is correlated with the temporal
coherence of detected oscillations, it is reasonable to assume
that our algorithm will result in even better performance on
depth electrodes targeting the hippocampus directly.

In our implementation of the system, stimulation can be
triggered to occur within specified time intervals, for example
in synchrony with novel external stimuli or memory task items,
or it can be triggered to occur when oscillations above a certain
power threshold are detected. The former setup may be useful
for experimental paradigms, and the latter setup may be useful
in a therapeutic setting. In the future, it may be worthwhile to
consider further extensions to multi-electrode arrays. Because
the phase of an underlying brain oscillation may vary across
time and anatomical space, more advanced algorithms may be
needed to phase-lock to a specific traveling oscillation [48],
or a superposition of oscillations from multiple sources. Even
with a single channel, the system described here will provide
a useful tool for studying the properties of brain oscillation
and their interactions with cognitive processes, as well as
allow the development of future therapeutic devices that utilize

phase-specific information. However, as demonstrated here,
the relative success of phase-locked stimulation is a function of
both the power and the coherence of the underlying oscillation.
Oscillations generated by neural ensembles may be inherently
transient in nature [49], and thus future improvements would
need to take this into account.
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