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Summary

We provide here a brief overview of the neuroanatomy and neurophysiology of the 
primate visual system. We first describe the physical path through the brain that visual 
information takes as it is undergoing a transformation from an almost pixel-based 
format to a more abstract representation of behaviorally relevant information. We 
then describe what is known about the responses of neurons in specific brain areas 
to different visual stimuli. These responses are researchers’ best window into the 
circuits involved in information transformation. Finally, we describe several compu-
tational models of the visual system. Throughout, we mostly focus on the ventral parts 
of the primate (monkey and human) visual cortex and its role in object recognition.

Introduction

Primates and other species use vision constantly in order to detect motion, estimate 
distances to objects, and recognize objects. A large part of the primate brain is 
involved in processing visual information, and it is presumed that visual processing 
must have been under strong selective pressure to develop a system capable of 
achieving strong selectivity, robustness to object transformations, high capacity, and 
high processing speed (Connor, Brincat, and Pasupathy, 2007; Logothetis and Shein-
berg, 1996; Serre et al., 2007; Wandell, 1995). The brain must transform incoming 
visual signals from their very specific (almost pixel-based) form arriving at the eyes 
to a much more abstract form that is useful for quickly extracting behaviorally 
relevant information.

Our aim in this chapter is to provide a succinct overview of the architecture and 
function of the primate visual system. While writing, we have in mind a quantitative 
student (of math, engineering, physics, computer science, or the like) who first 
encounters the bewildering and fascinating complexity of visual cortex. The goal of 
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this chapter is not to provide an exhaustive account of the visual system, but rather 
to describe some of the basic insights that are important to understand other chap-
ters in this book and to introduce researchers to the architecture, function, and 
computational modeling of the visual system. At the same time, we hope that the 
curious reader will be eager to learn more, and we encourage further reading (of, 
e.g., Biederman, 1987; Blumberg and Kreiman 2010; Carandini et al., 2005; Connor, 
Brincat, and Pasupathy, 2007; Dayan and Abbott, 2001; Deco and Rolls, 2004b;  
Felleman and Van Essen, 1991; Gabbiani and Cox 2010; Gross, 1994; Humphreys 
and Riddoch, 1993; Koch, 2005; Kreiman, 2004, 2007; Logothetis and Sheinberg, 
1996; Riesenhuber and Poggio, 1999; Rolls, 1991; Tanaka, 1996; Ullman, 1996; Wandell, 
1995; Wu, David, and Gallant, 2006; as well as other references in this chapter).

Neuroanatomy 

It was recognized early on that lesions in the back of the brain tend to produce 
visual impairments and that the exact nature of the deficit varies with the exact 
position of the lesion. Subsequent studies identified multiple parts of cortex that are 
involved in processing visual information. A classic study by Felleman and Van 
Essen (1991) summarized knowledge about connectivity in the primate visual 
cortex, organizing visual cortex into an approximate hierarchical system. A subset 
of that hierarchy, ventral visual cortex, seems most important for visual object rec-
ognition. A highly schematic representation of the connectivity in some of the main 
parts of visual cortex is shown in figure 17.1. Much more is known about the con-
nectivity and anatomy of the nonhuman primate visual cortex than about the human 
visual cortex; the discussion in this section focuses on the nonhuman primate. Here, 
we walk through a simplified version of the path that information takes as it makes 
its way from the eye through the visual cortex.

Early Vision: Retina to Cortex

Information enters the visual system when light reaches the eye. The light is focused 
by the lens to land on the retina, a collection of cells at the back of the eyeball. 
There, the light excites photoreceptor neurons: the rods, which are specialized for 
dim light, and the cones, which are specialized for fine detail and color vision. The 
very center of the retina, the fovea, contains only cones and provides higher resolu-
tion than the periphery. The signal from the photoreceptors is passed through 
intermediate types of cells, horizontal, bipolar, and amacrine neurons, before arriv-
ing at retinal ganglion cells, which are located at the front of the retina. In chapter 
2, Sheila Nirenberg describes state-of-the-art methods to quantitatively elucidate 
how retinal ganglion cells encode visual information.
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Figure 17.1
A highly oversimplified schematic of the primate visual system. The arrows denote the direction of 
information flow (see text for details; see also Felleman and Van Essen 1991).
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The visual signals pass down the axons of the ganglion cells, which come together 
in a bundle called the optic nerve and travel out of the eye and back to the rest of 
the brain. About 90 percent of the retinal ganglion cell axons terminate in the lateral 
geniculate nucleus (LGN), a structure in the thalamus, in the center of the brain. 
Every cell in the LGN receives input from several retinal ganglion cells.LGN 
neurons, in turn, have axons that come together in a bundle called the optic radia-
tion. From the thalamus, this bundle transmits the visual signals to the first of the 
visual areas in cortex: primary visual cortex, which is at the very back of the brain. 
For further reading about early vision, see Wandell (1995).

Primary Visual Cortex

Primary visual cortex (V1, also referred to as “striate cortex” and “area 17” in cats) 
is located at the posterior poles of the left and right occipital cortices. In human 
adults, the V1 region of each hemisphere is 2mm thick and occupies an area of 
around 2300 mm2, or roughly two-thirds the size of a credit card. (In the smaller 
brain of the macaque monkey, V1 has approximately half the area and a quarter 
the thickness.) V1 contains around 140 million neurons in each hemisphere; these 
can be largely classified into two main types: pyramidal cells and interneurons. The 
neurons are arranged in six layers that differ in connectivity and function. Primary 
visual cortex has an additional, columnar organization: the columns are perpendicu-
lar to the layer structure, and neurons within a column typically share similar visual 
preferences (Douglas and Martin, 2004; Nassi and Callaway, 2009). There has been 
more research investigating area V1 than any other part of visual cortex. Chapter 
3, 8, 21, and 22 illustrate the neurophysiological properties of V1 neurons. 

The Ventral Stream: V2-ITC

From V1, the visual signal is split into two roughly separate channels, or “streams” 
(figure 17.1) (Haxby et al., 1991; Mishkin, 1982). The ventral stream passes into 
secondary visual cortex (V2), then through area V4 and into inferotemporal cortex 
(IT). The ventral stream is primarily involved in object recognition, and is sometimes 
called the “what” stream. The dorsal stream projects from V1 to V2 and V3 and also 
to “middle temporal cortex” (MT or V5). The dorsal stream processes spatial loca-
tions, stereopsis, and object motion and is known as the “where” or “action” stream. 
This chapter focuses on the properties of the ventral stream. For a recent overview 
of the properties of the dorsal stream, see Born and Bradley (2005).

Secondary visual cortex is located just to the front of V1, from which it receives 
strong feedforward input. Secondary visual cortex has a layered structure and 
columnar organization similar to that of V1; indeed, these features may be common 
to all neocortical visual areas. The next area in the ventral stream is area V4, located 
anterior to V2. The last purely visual cortical area along the ventral stream is Inferior 
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Temporal Cortex (ITC). Several investigators have in turn divided ITC into multiple 
subparts such as posterior ITC, central ITC, and anterior ITC. Another nomencla-
ture that is widely used refers to area TEO (roughly corresponding to posterior ITC 
and central ITC) and area TE (roughly corresponding to anterior ITC). Chapter 7 
describes how contour shapes are represented in areas V4 and ITC and chapter 10 
describes ultrafast encoding of visual information revealed by decoding the activity 
of a population of ITC neurons.

Many interareal connections exist beyond those in the feedforward path just 
described; figure 17.1 is a major oversimplification. There are connections between 
the dorsal and ventral streams (Felleman and Van Essen, 1991), horizontal connec-
tions within each area, “bypass” connections (e.g., LGN projections to extrastriate 
visual areas beyond V1, V1 projections to V4) and abundant back-projection con-
nections. Indeed, semiquantitative anatomical studies reveal that back-projections 
are significantly more abundant than feedforward connections (e.g., Binzegger, 
Douglas, and Martin, 2004; Callaway, 2004; Douglas and Martin, 2004)!

Of course, another important simplification is that each of the boxes in figure 17.1 
encompasses millions of neurons. Is it possible to obtain a more detailed picture of 
the individual connections between neurons? Characterizing neuroanatomical con-
nections at high resolution has traditionally been a daunting task and typically 
required laborious analysis of the projections of individual neurons (Douglas and 
Martin, 2004; Rockland and Pandya, 1979; Salin and Bullier, 1995). There has been 
rapid progress over the last five years in the field of “connectomics,” which aims to 
provide high-resolution connectivity information (at the electron microscopy level) 
for large neuronal circuits. Yet, it seems that we are still far from obtaining detailed 
connectivity in neocortex. The availability of such data will eventually enable 
researchers to move from qualitative description of some connections across areas to 
a systematic characterization of the key principles governing connectivity in cortex.

Neurophysiological Responses in the Visual System

It is difficult to deduce function exclusively from anatomy, and the presence of con-
nections does not indicate the strength (or sign) of those connections. To describe 
the function of neuronal circuits during vision, it is necessary to examine the activity 
of individual neurons and their responses to visual stimuli. The gold standard for 
measuring the activity of neurons is the use of microwire electrodes to record the 
action potentials of single neurons at millisecond temporal resolution. In the typical 
experimental situation, researchers present the subject with a visual stimulus while 
monitoring the subject’s eye movements and recording the evoked response of one 
or more neurons, as well as behavioral responses in awake experiments (see, e.g., 
chapters 2, 3, 7, 8, 10, 21, and 22). These experiments have been most frequently 

8404_017.indd   481 5/27/2011   7:40:37 PM



Q

Kriegeskorte—Transformations of Lamarckism

482	 Kendra S. Burbank and Gabriel Kreiman

performed in cats and nonhuman primates such as the macaque monkey. There have 
also been some efforts to examine field potentials and unit activity in the human 
cortex (Allison et al., 1999; Engel et al., 2005; Kreiman, 2007; Liu et al., 2009). 
Recently, there has also been an increased and promising resurgence of interest in 
the rodent visual cortex.

Neurophysiology of the Early Visual System

Significant processing of visual information occurs within the retina itself. The firing 
of each retinal ganglion cell is affected by light impinging upon a small region of 
the visual field—this region is termed the cell’s receptive field. The light can cause 
either an increase or a decrease in a ganglion cell’s firing, depending on exactly 
where it arrives within the cell’s receptive field. For cells called on-center cells, light 
arriving in the center of the receptive field will increase the firing rate, while light 
arriving in the periphery will instead suppress firing. For off-center cells, the opposite 
pattern is seen. Both cases are examples of center-surround receptive field architec-
tures. LGN neurons have receptive fields approximately similar to those of ganglion 
cells—they also display a center-surround organization.

An important implication of the center-surround architecture is that light imping-
ing upon both the center and the periphery of the receptive field will cause only 
weak firing. Instead, retinal ganglion cells respond most strongly when illumination 
is not constant across the receptive field. The necessary nonuniformity could come 
from the presence of a high-contrast visual feature or from a temporally changing 
stimulus, such as a dot of light moving through the receptive field. The full response 
is characterized by spatiotemporal receptive fields that are often described by a 
difference-of-Gaussians model (Dayan and Abbott, 2001; Wandell, 1995; Gabbiani 
and Cox, 2010). For an on-center cell with a receptive field centered at x = y = 0, 
the structure of the receptive field can be characterized by the filter F(x,y):

F x y
x By

center center surround

( , ) exp exp= −



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−
+1

2 2 22

2 2

2 2πσ σ σ
−−





+x y

surround

2 2

22σ
	 (17.1)

where σcenter and σsurround control the size of the center and surround regions respec-
tively and B indicates the relative weight of center and surround responses. In 
addition to the just-described spatial aspects of the receptive field, the responses of 
ganglion cells and LGN neurons evolve over time; more elaborate models include 
this temporal dependency when describing the receptive field properties (Dayan 
and Abbott, 2001).

Neurophysiology in V1

The first systematic description of V1 neurons’ responses to visual stimuli was given 
by Hubel and Wiesel (1959, 1962). Neurons in primary visual cortex have small 
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receptive fields near the center of the visual field. On average, the receptive fields 
in V1 comprise less than 1° of visual angle. The neurons in V1 are arranged so that 
their receptive fields tile visual space in a retinotopic map. That is, nearby neurons 
in primary visual cortex represent nearby locations in the visual field. This tiling is 
most dense for visual input coming from the foveal region. The cortical magnifica-
tion factor describes the nonlinear representation of the visual field in cortex.

To a first approximation, V1 pyramidal neurons fall into two general classes. 
Simple cells have elongated receptive fields that contain specific excitatory and 
inhibitory regions. Simple cell responses are well modeled by linear summation of 
the stimulus present in excitatory and inhibitory regions of their receptive field. An 
effective stimulus for a simple cell might be an oriented bar, exactly positioned so 
that its edge matches the border between the excitatory and inhibitory regions in 
the cell’s receptive field. A slight shift in the stimulus location can greatly decrease, 
or even eliminate, the simple cell’s response. The spatial structure of the responses 
of a V1 simple cell with a receptive field centered at x = y = 0 can often be well 
described by a Gabor function (product of a Gaussian and cosine):

F x y kxexp
x y

x y x y

( , ) cos( )= −






−−
1

2 2 22 2πσ σ σ σ
φ ,	 (17.2)

where σx and σy determine the spatial extent in x and y, k is the preferred spatial 
frequency, and ϕ indicates the preferred spatial phase. If the spatial and temporal 
aspects of the receptive field are separable, an additional multiplicative term is 
added to characterize the temporal dynamics of the responses (for a discussion of 
the separability of spatial and temporal aspects of V1 responses, see Dayan and 
Abbott, 2001; Ringach, Hawken, and Shapley, 1997).

A second class of V1 pyramidal cells, complex cells, have receptive fields that do 
not show simply defined excitatory and inhibitory regions. Instead, complex cells 
respond to particular features—generally oriented bars—with considerable toler-
ance of the stimulus’ position within the receptive field. Other properties have been 
described in V1 responses. Particularly important are end-stopped cells, cells that 
respond best when the oriented bar ends within the receptive field.

Hubel and Wiesel proposed a simple and elegant model of how orientation tuning 
at the level of V1 could arise from the combination of LGN center-surround units 
with receptive fields aligned according to the orientation preference of the V1 unit. 
Several other models have been proposed to describe the origin of V1 receptive 
fields (for a recent overview and discussion, see Carandini et al., 2005).

Although only stimuli within a neuron’s receptive field can directly drive its activ-
ity, the neuron’s activity can be enhanced or suppressed depending on context in 
nearby regions. One common type of contextual modulation is surround suppres-
sion (Allman, Miezin, and McGuinness, 1985; Angelucci and Bressloff, 2006), where 
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the presence of a parallel oriented bar just outside of a neuron’s receptive field can 
suppress the response of that neuron to an oriented bar within the receptive field. 
The mechanisms for contextual modulation are a matter of current research; they 
may arise from feedforward connections, from lateral connections within a brain 
area, or from feedback from higher areas. There is also evidence that V1 neuron 
responses can be modulated by attention (Desimone and Duncan, 1995; for a recent 
review, see Reynolds and Chelazzi, 2004). Chapter 3 shows recent evidence that 
illustrates how the activity of neuronal populations in V1 can be influenced by task 
demands and attention. While there has been significant progress toward describing 
the responses of V1 neurons, much remains to be done to fully and quantitatively 
characterize the V1 neuronal circuitry (Carandini et al., 2005).

Neurophysiology beyond V1

Beyond primary visual cortex, in spite of a large body of work by multiple talented 
investigators, what neurons “prefer” remains largely terra incognita. Part of the 
challenge is the large multidimensional space in which possible visual inputs reside 
combined with the relatively short recording times. In typical neurophysiological 
experiments, it is possible to sample only a small fraction of the conceivable set of 
visual stimuli. It is therefore very difficult to estimate the joint probability distribu-
tion of visual stimuli and neuronal responses. To make matters even more compli-
cated, neurons’ responses are modulated by context from outside the receptive field; 
an exhaustive response characterization would require also varying the contextual 
conditions. Such an approach is clearly unfeasible with current techniques. Instead, 
researchers make educated guesses about which stimulus characteristics are likely 
to be important to the neurons’ responses, and they vary only these characteristics. 
This approach has been quite successful in early brain areas such as V1, where a 
few simple characteristics such as orientation and contrast can be shown to deter-
mine much of a neuron’s response (see, however, Carandini et al., 2005). However, 
in extrastriate visual areas (those outside V1), the complex selectivities that neurons 
display makes it difficult to determine a set of simplified stimulus characteristics to 
sample. Indeed, it is entirely possible that even if the subset of important stimulus 
characteristics were known, the resulting space of possible stimuli would still be too 
large to sample experimentally. Although there have been multiple studies examin-
ing the responses of neurons along the ventral visual stream from V2 to ITC, we 
lack a clear quantitative understanding of feature preferences, let alone the mecha-
nisms by which these feature preferences originate. A promising line of research 
involves using algorithms that aim to iteratively refine the stimuli presented to 
neurons to converge on the preferred features (e.g., Connor, Brincat, and Pasupathy, 
2007; see also chapter 7). This is an area of active research, and the field will benefit 
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from the systematic interplay of theoretical predictions and neurophysiological 
recordings.

In the following paragraphs, we provide an overview of several studies that illus-
trate the type of responses encountered in extrastriate visual cortex to different 
types of stimuli, but we emphasize that a systematic, quantitative, and theory-based 
understanding of neurophysiological responses remains an important open question 
in the field.

The receptive fields of V2 neurons form a retinotopic map, like that in V1, but 
are roughly 2–3 times larger (Burkhalter and Van Essen, 1986; Gattass, Gross, and 
Sandell, 1981). Neurons in V2 can be excited by simple stimuli, in a similar fashion 
to V1 neurons. But at least some V2 neurons appear to be specialized for detecting 
more complex features. Some authors have proposed that V2 neurons detect cur-
vature or angles (Hegde and Van Essen, 2003; Ito and Komatsu, 2004). The responses 
of V2 neurons can be modulated by abstract features of the stimulus—even features 
present outside the neurons’ receptive fields. Such modulatory influences include 
the presence of illusory contours (Peterhans and von der Heydt, 1991; von der Heydt, 
Friedman, and Zhou, 1999) and spatial attention (Desimone and Duncan, 1995). 
Although such modulation is also seen partly in area V1, the effects are stronger 
and more frequent in V2 (von der Heydt, Peterhans, and Baumgartner, 1984).

V4 neurons have receptive fields around 4–7 times as large as V1 neurons (Desim-
one and Schein, 1987) The tuning properties of V4 neurons are more complex than 
those of V2 neurons, with some appearing to be tuned for simple geometric shapes 
(Cadieu et al., 2007; David, Hayden, and Gallant, 2006; Desimone and Schein, 1987; 
Pasupathy and Connor, 2001). V4 is more strongly affected by attentional modula-
tion than areas V1 and V2 (Moran and Desimone, 1985). Neuronal activity in area 
V4 plays an important role in analyzing color (Zeki, 1983).

Finally, neurons in ITC have significantly larger receptive fields than those in 
earlier areas, but reports vary widely in terms of their exact magnitudes from 
neurons with receptive fields of a few degrees (DiCarlo and Maunsell, 2004) all the 
way to neurons with receptive fields spanning several tens of degrees (Rolls, 1991; 
Tanaka, 1996). Neurons respond preferentially to complex shapes. A large variety 
of visual stimuli have been shown to elicit enhanced responses in ITC neurons 
including faces, objects (including shapes such as paperclips), natural images, but 
also artificial shapes and fractal patterns (Desimone et al., 1984; Hung et al., 2005; 
Logothetis and Sheinberg, 1996; Tanaka, 1996). The most parsimonious explanation 
of this apparently bewildering complexity in neuronal preferences seems to be that 
neurons may be tuned to complex parametric shape features that are present in 
many of these shapes but are not defined by the arbitrary choices made by the 
investigators. We illustrate this possibility in figure 17.2 by comparing neuronal 
responses recorded in monkey ITC with the responses of a simulated neuron that 
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Figure 17.2
Responses of a simulated neuron, artificially tuned to prefer images similar to a photograph of a Henry 
Moore sculpture, show similar variability to the multiunit activity recorded in monkey area inferior 
temporal cortex in response to the same images. (A) Four of the 77 grayscale images presented to the 
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was tuned to prefer one particular complex and arbitrary shape, that of a sculpture 
by English artist Henry Moore. In this toy example, the variability across different 
images in the actual neuronal responses from ITC is comparable to the correspond-
ing variability for the artificial sculpture-tuned unit.

A particularly interesting aspect of the ITC responses is that these neurons are 
often somewhat tolerant to perturbations of the stimuli: a neuron responding to a 
face, for instance, could respond similarly if the face is presented at different scales 
or positions (Hung et al., 2005; Ito et al., 1995). Investigators have examined the 
degree of tolerance in ITC responses to changes in scale, position, rotation, illumina-
tion, clutter, occlusion, color, and many other transformations (Logothetis and 
Sheinberg, 1996; Tanaka, 1996). Maintaining selectivity in the presence of object 
transformations is arguably one of the key challenges that the progression of com-
putations along ventral visual cortex needs to solve. The responses of ITC neurons 
are strongly affected by contextual influences, including task demands and 
attention.

Models of Neurons and Networks of Neurons

A fundamental goal of science is to be able to formulate quantitative and predictive 
theories that explain the observed phenomena. The accumulation of empirical 
observations about neuroanatomical connectivity and neurophysiology beg for a 
theoretical formulation to account for the selective, robust, and rapid aspects of 
visual recognition. Quantitative models force us to formalize the assumptions and 
the hypothesis in the experiments. They can also provide quantitative bounds and 
constraints that can change the interpretation of the problem. Good models can 
integrate and summarize observations across different experiments, across different 
spatial and temporal resolutions, across different laboratories. Additionally, a good 
model can lead to nonintuitive experimental predictions. The models need to be 
guided and constrained by experimental findings and they can also inspire new 
experiments and novel ways of thinking about old problems. The model can also 
point to important missing data or critical information. Finally, quantitative models 
implemented through simulations can be useful from an engineering viewpoint. A 
machine that could solve visual recognition at human performance levels would find 

monkey (Hung et al., 2005) and to the simulated neuron. (B) The photograph used as the “preferred 
stimulus” for the simulated neuron. The simulated neuron’s response to each image was chosen to be 
A dexp /−( )2 2σ , where d was the pixel-by-pixel Euclidian distance between the presented image and 
the sculpture photograph. σ and A were chosen to set the response strengths in the correct range. (C) 
Average multiunit activity recorded from a single electrode in inferior temporal cortex in response to 
each of the 77 images, counting spikes from 100 to 300 ms after stimulus presentation (black squares) 
and response of the simulated neuron to the same images (gray circles).

Figure 17.2 (continued)
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nearly infinite uses. Here we provide a succinct overview of some of the theoretical 
efforts to explain visual recognition and some of the computational models that 
have been implemented based on these theories.

One of the first questions to consider when developing a computational model 
pertains to the level of abstraction to represent neurons or the basic units in the 
model. From the extremely large to the very small, one could start by considering 
“boxes” that represent the average activity over seconds and over millions of 
neurons (see, for example, chapter 16). This type of box model matches the poor 
spatial and temporal resolution of current noninvasive neuroimaging techniques. At 
the other end of the spectrum, some computational efforts aim to consider the 
detailed biophysics of individual neurons (Markram, 2006). Detailed biophysical 
models have provided fundamental insights about the computations performed by 
individual neurons. However, it is not easy to scale up to large networks, a process 
that requires the use of supercomputers, many free parameters, and extensive simu-
lations. Moreover, it is not clear what aspects of neuronal biophysics are central to 
understand a complex cognitive process such as object recognition (Anderson and 
Kreiman, 2011). Do we need to incorporate the detailed 3D geometry of every 
neuron? Do models need to consider the distribution of synapses along each den-
drite? Do models need to incorporate the wide variety of different types of inter-
neurons? How about the 3D shape of every protein within the neurons?

Single Neuron Models

In between “box models” and highly realistic simulations, several investigators have 
developed different models of single neurons (Koch, 1999; Gabbiani and Cox 2010). 
Filter models assume that each neuron is performing a filter operation on its input 
and typically provide a scalar output that is often interpreted as a firing rate. Moving 
up in complexity, a simple and widely used model of single neurons that incorporates 
dynamics and produces spike outputs is the integrate-and-fire model. The simplest 
instantiation of this model is equivalent to an RC circuit. The model contains a 
capacitor (C) and a leak resistance (R). The circuit integrates the incoming input 
current (I(t)). Whenever the voltage (V(t)) reaches a threshold, a spike is generated 
and the voltage is reset to 0. The subthreshold voltage dynamics are governed by:

C
dV
dt

V t
R

I t= − +
( )

( ) 	 (17.3)

This model has been extensively studied and there are several variations including 
adding a refractory period and variable thresholds. Still more detailed is the 
Hodgkin-Huxley model (Hodgkin and Huxley, 1952). This model describes voltage-
dependent ion currents into and out of the neuron and how these lead to action 
potentials. Hodgkin and Huxley provided a nice example of the integration of pow-
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erful empirical measurements and quantitative work. Their models continue to be 
extensively used. The most detailed models of individual neurons incorporate the 
idea of multiple compartments and typically separate the axon, soma, and dendrites 
(even more detailed models can have multiple compartments and try to incorporate 
more realistic geometries). Simpler models are faster and, in some cases, have ana-
lytical solutions. More complex models quickly run into regimes that require simula-
tions and increasing computational costs.

Models of Individual Brain Areas

One of the tests of a theory of visual recognition involves asking how well we can 
predict neuronal responses throughout the visual system. Eventually, we would like 
to be able to take an arbitrary visual stimulus and predict the elicited response of 
neurons at every level of the visual system. How close are we to being able to predict 
neuronal responses through modeling? Phenomenological models have been pro-
posed to fairly accurately predict the responses of certain types of retinal ganglion 
cells as well as LGN cells. We have models that can predict the responses of some 
V1 cells (e.g., Keat et al., 2001), but even here there are many aspects of the 
responses that are not well understood (Carandini et al., 2005). When we character-
ize the responses of V1 neurons to simple stimuli, those results do not generalize 
well to allow us to predict the responses to complex natural stimuli. In particular, 
the role of lateral connections and feedback from other visual areas is poorly under-
stood. As emphasized earlier, at levels V2 and higher, we suspect that cells’ preferred 
stimuli become ever more complex, but we lack a way to systematically probe these 
preferred stimuli (see chapter 7 for an example of prediction of neuronal responses 
outside V1).

Computational Models of the Visual System

Researchers in the field of machine learning have been working for half a century 
to build computer programs that are capable of performing visual tasks such as 
object recognition. The difficulties they have encountered, and the strategies they 
have developed to overcome these difficulties, are of interest to neuroscientists 
because the brain itself must solve some of the same problems. Conversely, biophysi-
cally inspired models of visual cortex can also inspire and help develop machines 
that can generalize and perform complex visual recognition tasks.

One of the early approaches to machine object recognition was to implement a 
“brute force” template matching approach. Imagine that our task is to recognize a 
handwritten letter on a piece of paper. We do not know the exact position, size, or 
shape of the letter. We can try a template-matching approach where we sequentially 
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examine each letter from A to Z (uppercase and lowercase, and perhaps even in 
different fonts). Because we do not know the position, we can scan the entire paper 
by shifting the template. Because we do not know the exact scale, we can try differ-
ent scales (for each font, letter, and position). Given 26 letters, 4 possible fonts, a 
600 × 800 pixel position matrix scanned every 5 pixels, and 10 possible scales, we 
have to make about 20 million comparisons. This does not include many of the pos-
sible sources of variation for each letter. This approach requires a large storage 
space for each object, there is no extrapolation and no intelligent learning, and we 
need to learn about each object in each possible rendering. Consider recognizing a 
face under different possible sizes, positions, colors, illuminations, rotations, gestures, 
makeup, beard, and so on. The problem is that any object can cast an infinite number 
of projections on the retina.

Several strategies have been proposed to overcome the challenges in the “brute 
force” approach to vision. The different models can be generically described as 
neural networks consisting of layers of artificial “neurons,” with connections between 
neurons in adjacent layers. Inputs to the networks are in the form of patterns of 
activation of the neurons in the first layer. In a network for visual recognition, the 
activity of each first-layer neuron might represent the value of a single pixel in an 
image to be identified or categorized. The activity of each second-layer neuron is 
then determined by the joint activity of all the first-layer neurons to which it is con-
nected, and in this way an input pattern propagates through the network. Addition-
ally, there could be back-projections as well as recurrent connections within each 
layer. The strengths of the individual neuronal connections determine the computa-
tions performed by the overall network. For example, in neural networks for visual 
categorization, the goal is to transform input patterns so that those belonging to 
different categories can be more easily separated. Typically, this involves a series of 
nonlinear calculations that eventually enable the transformed patterns to be sepa-
rated by a simple linear classifier. As one of the first examples of work in the field 
of neural networks, the perceptron is a type of artificial neural network proposed in 
1958 (Bishop, 1995). It is composed of two layers of binary artificial neurons with 
unidirectional connections between the layers. The perceptron could be trained to 
perform classification tasks, but it worked only in the simplest cases, where the 
inputs were already linearly separable. However, two later modifications allowed 
the perceptrons to perform nonlinear classification. First, the network was expanded 
to more than two layers. Second, the artificial neurons were made to respond as a 
nonlinear function of their inputs. Frequently, the effect of the nonlinear calculations 
is to make important discriminative features become more explicit in the trans-
formed patterns (for reviews on computational models of visual recognition, see 
Bishop, 1995; Deco and Rolls, 2004a; Riesenhuber and Poggio, 2000; Serre et al., 
2007).
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The “neocognitron” was proposed in 1980 by Fukushima (1980). Like models that 
had come before, it consists of a multilayered hierarchical neural network designed 
for visual pattern recognition. The neocognitron’s key innovation was its explicit 
incorporation of alternating layers that were designed to produce invariance to 
small translations in the input stimulus. The architecture of the network was inspired 
by the neurophysiological studies of Hubel and Wiesel. In parallel to the “simple” 
and “complex” cells described in primary visual cortex, the model consisted of “S” 
and “C” units. The “C” units perform an “OR” operation over a local set of “S” units 
with identical tuning to provide increased robustness to position changes. Extending 
the neurophysiology in V1, the model alternated “S” and “C” units throughout a 
multilayered hierarchy. The neocognitron was able to classify simple digits and 
characters even when the inputs were slightly distorted.

The neocognitron was but the first example of the class of neural network models 
called “convolutional networks.” These networks share three architectural concepts 
that make them ideal for visual pattern recognition. First, cells in convolutional 
networks have “local receptive fields,” which means that their responses are deter-
mined only by stimulus features in some small and connected region of space. 
Second, cells in convolutional networks have “shared weights”: the network is 
trained so that each cell in a specific position has many counterpart cells in different 
positions that all respond identically to identical but spatially translated stimuli. A 
set of cells that all share the same stimulus selectivities forms a “feature map.” Third, 
convolutional networks include spatial or temporal subsampling. This subsampling 
allows the network to combine closely related inputs to produce invariance, as with 
the complex cell layers in the neocognitron. Not all multilayer feedforward net-
works for visual recognition can be characterized as convolutional: some have 
feature extractors that are not describable in terms of a convolution kernel. For 
instance, some networks calculate histogram type features, which are useful for 
texture representation (LeCun et al., 1998).

The use of neural networks for pattern recognition exploded after the advent of 
a network training method called backpropagation. Backpropagation is a general 
algorithm that trains multilayer networks so as to minimize an error function such 
as pattern classification error. Convolutional networks trained with backpropaga-
tion have been quite successful in visual recognition. However, several models of 
the visual system have used methods other than backpropagation to train the net-
works. For instance, models designed to explore properties of more biologically 
realistic systems frequently hard-wire the early layers of a network so that their 
responses resemble those of the early visual system, typically by using Gabor filters. 
Higher layers may also be set manually: for instance, Serre et al. (2007) chose the 
feature maps for their higher layers by choosing portions of images seen during 
training to use as templates for a convolutional filter. A machine learning classifier 
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(e.g., Bishop, 1995; Vapnik, 1995) can be used as a final classification layer acting on 
the output of the hierarchical network (see chapters 18 and 19 for more information 
about machine learning). Interestingly, the performance of this biologically inspired 
architecture is comparable to the performance of computer vision approaches that 
are not guided or constrained by neurobiological principles.

All of the models described so far are purely feedforward: information flows in 
a single direction from input to output (see also the discussion in chapter 1). 
However, a number of authors have proposed visual system models that incorporate 
feedback. With a feedback model, information from higher layers can influence the 
activity of neurons at lower layers. This higher-layer information might include 
preliminary classifications or prior expectations, each of which could help with the 
interpretation of ambiguous low-level signals (Mumford, 1992; Rao, 2005a). Indeed, 
image recognition can be viewed as a Bayesian inference problem, and networks 
have been designed that probabilistically combine feedforward and feedback infor-
mation to compute the most probable interpretation of the data (Lee and Mumford, 
2003; Rao, 2005b; Chikkerur et al 2009).

Computational models today can perform very well on relatively simple tasks 
such as character recognition. On one popular test dataset of handwritten digits, 
networks can correctly identify more than 99 percent of the characters. However, 
recognition of natural images is considerably more difficult; for example, state-of-
the-art performance on the CALTECH 101 database is only around 80 percent 
correct (Mutch and Lowe, 2006). Current models can also require a very large 
number of examples during training. Their performance also degrades rapidly in the 
presence of clutter or occlusion. No current models begin to approach the abilities 
of the human visual system yet!

As we begin to apply computational models of pattern recognition to the biologi-
cal visual system, we need to evaluate them using different criteria. Are the mecha-
nisms they describe biologically plausible? Do the models make falsifiable 
predictions? Biology offers tight constraints, and understanding these may help us 
exclude certain types of models. On the other hand, the primate visual system is the 
product of millions of years of evolution. It is conceivable that the type of solution 
to the visual recognition problem implemented by the ventral visual cortex is a 
highly efficient and accurate one. Computer vision algorithms may benefit also from 
an understanding of the neuronal circuitry involved in biological vision.

Perhaps the most difficult constraint is that of speed: multiple experimental  
protocols show that visual recognition occurs incredibly quickly, within 100–150ms 
after presentation of a visual stimulus. After this short period, scalp EEG signals in 
human cortex can correlate with recognition in a complex task (Thorpe et al., 1996) 
and neural activity in IT is selective for complex shapes (Hung et al., 2005; Liu  
et al., 2009). Such fast processing allows us to process a large amount of visual input 
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very quickly. These times sharply constrain the number of computational steps that 
the brain could be using for initial recognition (Oram and Perrett, 1992; Serre et al., 
2007; Thorpe, Fize, and Marlot, 1996). Of course, the initial “fast” recognition is not 
the entire story. With more processing time, human performance at recognizing 
images is much improved. This is unsurprising because, given many seconds, people 
can move their eyes, shift attention, recall information, and compare different parts 
of an image. Much research to date has attempted to reduce the influence of these 
complicating factors by focusing on the fast initial stages of recognition.

A Final Word

As emphasized at the beginning, this chapter does not pretend to provide a com-
prehensive account of the visual system (how could it anyway?). Studying the visual 
system is a highly active area of research that involves multidisciplinary approaches 
including computational and theoretical modeling, neurophysiological recordings, 
functional neuroimaging, cognitive psychology, neurology, and neuroanatomy, 
among many others. We hope that aficionados in this field will forgive the highly 
succinct nature of this chapter and the multiple omissions of large fields of research. 
At the same time, we naively hope that newcomers will share our enthusiasm and 
we encourage them to read further and, eventually, to contribute to the field.
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