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Bansal AK, Singer JM, Anderson WS, Golby A, Madsen JR,
Kreiman G. Temporal stability of visually selective responses in
intracranial field potentials recorded from human occipital and tem-
poral lobes. J Neurophysiol 108: 3073–3086, 2012. First published
September 5, 2012; doi:10.1152/jn.00458.2012.—The cerebral cortex
needs to maintain information for long time periods while at the same
time being capable of learning and adapting to changes. The degree of
stability of physiological signals in the human brain in response to
external stimuli over temporal scales spanning hours to days remains
unclear. Here, we quantitatively assessed the stability across sessions
of visually selective intracranial field potentials (IFPs) elicited by
brief flashes of visual stimuli presented to 27 subjects. The interval
between sessions ranged from hours to multiple days. We considered
electrodes that showed robust visual selectivity to different shapes;
these electrodes were typically located in the inferior occipital gyrus,
the inferior temporal cortex, and the fusiform gyrus. We found that
IFP responses showed a strong degree of stability across sessions.
This stability was evident in averaged responses as well as single-trial
decoding analyses, at the image exemplar level as well as at the
category level, across different parts of visual cortex, and for three
different visual recognition tasks. These results establish a quantita-
tive evaluation of the degree of stationarity of visually selective IFP
responses within and across sessions and provide a baseline for
studies of cortical plasticity and for the development of brain-machine
interfaces.

prosthetic applications; temporal stability; visual cortex; visual object
recognition; field potentials

OUR BRAINS PROVIDE A SUBSTRATE for learning and adaptation
while at the same time maintaining a stable representation of
information over long time periods. The neurophysiological
signals underlying this representation can be studied at multi-
ple spatial scales and multiple temporal scales (from millisec-
onds to years). Partly due to technical limitations, our under-
standing of neurophysiological signals and changes over long
periods is rather limited. Most single-neuron and local field
potential studies have focused on the “instantaneous” neuronal
preferences examined over periods of seconds to minutes to
hours.

Several investigators have begun to use chronic multi-elec-
trode arrays to record action potentials over periods spanning
days or, in some cases, even months (e.g., Nicolelis et al. 2003;
Porada et al. 2000). These chronic recordings give rise to the

possibility of evaluating the extent to which neuronal prefer-
ences change over long periods. Some studies recording either
action potentials or field potentials in the monkey’s motor and
visual system have described stable neuronal signals over the
course of several weeks (Bondar et al. 2009; Chao et al. 2010;
Nicolelis et al. 2003; Suner et al. 2005; Tolias et al. 2007). In
the visual system, single units from monkey primary visual
cortex followed over several days maintained their orientation
tuning preferences (Tolias et al. 2007). A recent study at the
other end of the visual cortical hierarchy showed that neurons
in macaque areas TE and superior temporal sulcus (STS)
maintain their visual selectivity over at least a couple of weeks
(Bondar et al. 2009). These results suggest that visual functions
such as object recognition could rely on stable neuronal rep-
resentations despite inherent neuronal variability and plasticity
in the neocortical circuitry.

Little is known about the temporal stability of neurophysi-
ological preferences in response to visual stimuli along the
human ventral visual stream at a spatial scale of ensembles of
neurons. Here, we set out to examine the feature and tuning
stability of visually selective intracranial field potential (IFP)
signals recorded from the human neocortex in subjects im-
planted with electrodes for clinical reasons (Engel et al. 2005;
Kreiman 2007). We studied IFP responses to brief flashes of
visual stimuli while subjects performed three object discrimi-
nation tasks (Agam et al. 2010; Liu et al. 2009) in multiple
recording sessions spanning 2 h to over 200 h. Despite minor
variations across sessions, we found a remarkable degree of
stability in visual IFP responses over multiple days. The
quantification presented here provides a rigorous comparison
for future studies of plasticity and also for the training and
development of decoding algorithms used in brain-machine
interfaces.

METHODS

Subjects

Subjects were 27 patients (13 females, 23 right handed, ages
8.5–46.5 yr) with pharmacologically intractable epilepsy. The sub-
jects were admitted to Boston Children’s Hospital or Brigham and
Women’s Hospital to localize their seizure foci for potential surgical
resection. All the experiments described in this report were approved
by the respective Institution Review Boards at each hospital and were
carried out with each subject’s informed consent. Data from 15 of
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these patients have been reported previously in other studies (Agam et
al. 2010; Liu et al. 2009). For this study, we only analyzed data from
subjects who performed the same task in at least two sessions
separated by at least 1 h.

IFP Recordings

The recording procedures were as described previously (Agam et
al. 2010; Liu et al. 2009). Briefly, subjects were implanted with
intracranial electrodes (Ad-Tech, Racine, WI; 2.3-mm diameter, 1-cm
separation between electrode centers, impedance !!1 k") to localize
the seizure foci. Electrode contacts were arranged in grids or strips
containing between 4 and 64 contacts. The total number of recording
sites per subject ranged from 34 to 126 (80 # 23, mean # SD). The
signal from each recording site was amplified ($2,500) and sampled
at 256, 500, or 2,000 Hz (XLTEK, Oakville, ON, Canada; Bio-Logic,
Knoxville, TN). A notch filter was applied at 60 Hz, along with a
bandpass filter from 0.1 to 100 Hz. Throughout the text, we refer to
the recorded signal as IFP. The time interval between two consecutive
sessions was between 1.03 and 202.25 h (20.5 # 29.8 h, mean # SD).
The time interval between the first and last recorded session was
between 2.58 and 247.87 h (41.1 # 47.6 h, mean # SD). Electrode
localization was performed by aligning each subject’s MRI into
Talairach space, coregistering computed tomography (CT) and mag-
netic resonance (MR) images, and assigning each electrode to 1 of 74
different regions with FreeSurfer software (Dale et al. 1999) based on
the 2009 atlas (Destrieux et al. 2010). In 1 of 27 subjects, the
coregistration was not performed due to incomplete data. By coreg-
istering the preoperative structural MR with the CT images showing
the electrodes, we find out each electrode’s locations. We report
anatomic regions for all electrode locations in Table 4. As reported
previously (e.g., Liu et al. 2009), only a subset of all the electrode
locations yielded visually selective responses as defined below (num-
bers presented below).

Stimulus Presentation and Tasks

We considered three different tasks (Table 1). In all cases, an image
was presented on a laptop computer and subjects were asked to
perform a recognition task dependent on the image. The stimulus
presentation times, sizes and behavioral responses varied with the task
and are described below and in Table 1. In all cases, images were
contrast normalized and the presentation order was pseudorandom-
ized. Here, we only consider those cases where we repeated the same
task in at least two recording sessions separated by at least 1 h.
Separate recording sessions included the same stimuli and tasks (the
presentation order was different across sessions). We recorded IFP
responses from all implanted electrodes during the tasks.

Task 1: single object presentation. The data from this task were
described in Liu et al. (2009). Nine of the 11 subjects in the original
study were considered in this study (in the other subjects, there was only
1 session). Subjects were presented with 25 objects (5 categories $ 5
exemplars); each object was presented for 200 ms, and there was a

600-ms blank in between images. Subjects performed a one-back
matching task indicating whether or not an object was repeated. The
mean behavioral performance was 86 # 7%.

Task 2: object pairs. The data from this task were described in
Agam et al. (2010). Six of the nine subjects in the original study were
considered in this study (in the other subjects, there was only 1
session). Subjects were presented with 25 objects (5 categories $ 5
exemplars). Here, we analyzed only those trials that included either a
single object or two objects from the same category. In exemplar-level
analyses (see Figs. 2 and 3), we only analyzed single-object presen-
tation trials. Subjects performed a target identification task indicating
whether the image contained an object belonging to a prespecified
target category (target category changed in blocks of 50 trials). The
mean behavioral performance was 92 # 12%.

Task 3: asynchronous object presentation. Twelve subjects were
presented with five exemplars. Subjects were asked to indicate with a
button press whether a test image matched whole images or image
halves presented in the middle of flickering noise. Each trial started
with a 500-ms fixation period. After fixation, phase-scrambled flick-
ering noise was presented at 10–30 Hz (depending on the subject).
After 500 ms, a whole image or an image half was presented in place
of one noise image (33–100 ms), followed by more flickering noise.
In those trials where an image half was presented, the complementary
image half was presented after another 33–300 ms. Five hundred
milliseconds after the onset of the final piece of image content, the
flickering noise disappeared and the test image appeared. Subjects
reported whether or not the test image matched the previously shown
image content. The test image remained visible until the subject
responded, at which point a high-contrast mask was flashed, followed
by the fixation point for the next trial. Here, we considered only the
IFP responses to the test images. Because there were only five
exemplars, the analyses shown in Figs. 2 and 3 do not include data
from this task. Performance was 70 # 9% (75 # 14% for the easiest
condition with whole images presented at 0-ms asynchrony).

Data Analyses

Responsiveness. We first evaluated whether each electrode showed
a significant deviation in IFP elicited by the visual stimulus onset
irrespective of the stimulus identity. For each electrode and in each
recording session, we compared the IFP response amplitude [max(IFP) %
min(IFP)] in the baseline period (defined from 100 ms before stimulus
onset until 50 ms after stimulus onset) against the IFP response
amplitude [max(IFP) % min(IFP)] from 100 to 250 ms after stimulus
onset. To avoid potential artifacts due to movement or interictal
discharges, trials in which the visual response amplitude was more
than four standard deviations greater than the mean response ampli-
tude across all trials were discarded as potential outliers. On average,
2.2 # 2.5 trials (0.44 # 0.41%) were discarded on the basis of this
criterion. An electrode was considered visually “responsive” if the
stimulus and baseline amplitudes were significantly different (2-sided
t-test, P ! 0.01) in at least one session. No information about the
identity of the visual stimulus was used to define responsiveness.

Table 1. Summary of experimental parameters for each of the three tasks

Task 1 Task 2 Task 3

Task name Single objects Object pairs Asynchronous objects
No. of subjects 9 6 12
No. of stimuli 5 categories $ 5 exemplars 5 categories $ 5 exemplars 5 exemplars
Stimulus presentation time, ms 200 100 1,024.6 # 256
Stimulus size, deg visual angle &1.5–6 &3.4 &3.8–10.8
Blank time, ms 600 1,000 500 (flickering Fourier noise)
Subject response One-back match Target identification Image match

Data for single objects were described in Liu et al. (2009), and data for object pairs were described in Agam et al. (2010). The presentation time is variable
(mean # SD) in task 3 because the stimulus was presented until the subject responded.
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Selectivity. An electrode was considered to be visually “selective”
if it satisfied all the following conditions in at least one session: 1) the
mean IFP response amplitude to the preferred category between 50
and 300 ms after stimulus onset was '50 !V; 2) the across-category
IFP amplitude response variance was significantly greater than the
within-category IFP amplitude response variance (1-way ANOVA,
P ! 0.01, df ( 4, N ( 473 # 317 trials per electrode per session); and
3) decoding performance was significant (P ! 0.01; see below for
details on decoding algorithm). These analyses were independent of
the ones described above to determine whether an electrode was
visually responsive or not.

Single-trial decoding analyses. For each trial, the IFP waveform
between 50 and 300 ms after image presentation was extracted.
Principal components analysis (PCA) was performed to reduce the
dimensionality of the waveforms across all trials. Briefly, eigenvector
decomposition was performed for the waveforms extracted from all
trials. The waveforms were then projected onto the top n eigenvectors,
where n was the number of eigenvectors that explained 95% of the
variance in the data. On average, n ( 8.6 # 3.3 eigenvectors were
used. We used a linear discriminant analysis (LDA) classifier to
determine the image content on the basis of physiological responses
on single trials. We followed a cross-validation procedure whereby
the classifier was trained on 70% of the data, and the decoding
performance results shown throughout were evaluated using the test
data in the remaining 30% of the data. Depending on the question,
different sessions and data sets were used for training and testing (see
Figs. 6 and 7).

Decoding performance (defined as the fraction of correctly classi-
fied trials) was separately analyzed for each channel and category. In
task 3, instead of category level decoding, we examined exemplar-
level decoding (since 5 objects, instead of 5 objects per category, were
used). In the analysis shown in Fig. 6, A–G, we used a binary classifier
where chance performance was 0.5. For each binary classifier, we
randomly subsampled the data to use an equal number of trials from
the category to be decoded (50%) and the four other categories (50%).
To ensure that potential changes in decoding performance across
sessions were not merely due to different numbers of training trials
across sessions, we randomly subsampled the data to use the same
numbers of trials across sessions. To compute the mean decoding
performance, 50 cross-validation iterations were run for each classi-
fier. In each iteration, a subsample of trials was selected to evaluate
decoding performance as described above. Data were randomly as-
signed to the training set or the test set. There was no overlap between
the training data and the test data to avoid overfitting.

To determine whether the decoding performance values were signif-
icantly different from chance levels, we performed the same procedure
described above after randomly shuffling the labels in the training
data. We computed the distribution of decoding performance values
after shuffling using 1,000 iterations. If the empirical probability of
observing a mean decoding performance greater than the actual mean
decoding performance in those 1,000 iterations was !0.01, then the
electrode was considered to have significant decoding performance
for that category. The mean and standard deviation of the decoding
performance values with the shuffled labels were 0.500 and 0.023,
respectively.

In addition to considering the principal components of the wave-
forms, we also evaluated decoding performance in single trials using
other features of the data, including different frequency bands. A
three-pole Butterworth filter was used for each of the following
frequency bands: !4, 4–8, 8–12, 12–35, 35–50, and 70–100 Hz. The
feature plots in Fig. 4 show the average log power (power evaluated
as the squared amplitude of the corresponding filtered signal) in the
50- to 300-ms window for the preferred category (as determined using
PCA–LDA-based decoding). For Fig. 4, G–I, the average log power in
the corresponding frequency band during a baseline period from 100
to 0 ms before stimulus onset for each trial was subtracted. For the
decoding procedure using each frequency band, we used 5 features

comprising the average log power in 5 nonoverlapping bins of 50 ms
each from 50 to 300 ms after image onset.

The best decoding performance values were typically obtained
using PCA on the IFP waveform (see Fig. 6A). This is not surprising
given that the identity of the electrodes that passed the selectivity
criteria depended on PCA-based decoding. Nevertheless, for this
study the key analysis is not the absolute performance of the classifier,
but rather the degree of stationarity in decoding performance across
sessions once a criterion for selectivity is defined.

In Fig. 6H, we also considered a multiclass classifier where the task
was to determine in each trial which of the five different object
categories was presented (Hung et al. 2005, Liu et al. 2009). For
multiclass classifiers, we randomly sampled from all five categories
(20% each); hence, chance decoding performance is 0.20. We used the
same number of trials across sessions to ensure that potential changes
in decoding performance across sessions were not merely due to
different numbers of training trials. To compute the mean decoding
performance, 50 cross-validation iterations were run for each classi-
fier. In each iteration, we performed cross-validation by selecting a
subsample of trials to evaluate decoding performance as described
above. Data were randomly assigned to the training set or the test set.
There was no overlap between the training data and the test data to
avoid overfitting. The chance level performance was determined with
1,000 iterations of the above procedure but with shuffled labels
(0.20 # 0.014).

Stationarity. An electrode was defined as “stationary” if it satisfied
the criteria for selectivity in two or more sessions. It was defined as
“nonstationary” if it satisfied the criteria for selectivity in only one
session. If an electrode showed a selective response to more than one
category according to the above criteria, then the category that yielded
the maximum decoding performance in the first selective session was
considered for analyzing stationarity. Therefore, in all the analyses,
we are comparing the responses to the same exemplars or categories
across sessions, and we do not consider an electrode to be stationary
if it responded only to one exemplar/category in one session and only
to a different exemplar/category in another session.

We also analyzed stationarity at the exemplar level. This analysis
was run on task 1 and task 2 data (see Figs. 2 and 3) where we used
a degree of overlap measure to quantify stationarity. “Overlap” was
defined as the number of exemplars in the top 5 (of 25) IFP responses
in each session that were common across 2 consecutive sessions:
Overlap1,2 ( #{5S1 ! 5S2}/5, where 5S1 and 5S2 indicate the set of top
5 exemplars in recording session 1 and recording session 2, respec-
tively. Overlap1,2 takes a value of 1 if the top 5 exemplars are the
same in both sessions and a value of 0 if the top exemplars in session
1 are completely different from those in session 2. The expected
degree of overlap by chance is 0.2.

RESULTS

We recorded IFP responses from 2,195 electrodes recorded
from 27 subjects in 3 different visual recognition tasks. In all
three tasks, a contrast normalized grayscale visual stimulus
was briefly presented on the screen and subjects were asked to
make a behavioral response depending on the identity of the
stimulus. The stimuli, presentation times, visual angles, and
behavioral responses varied across the different tasks and are
described in METHODS and summarized in Table 1. Here, we
analyzed recordings where the same task was performed in two
or more recording sessions (3.0 # 1.1 sessions, mean # SD;
mode 2, range 2–6 sessions). The interval between sessions
ranged from 1.0 to 202.3 h (20.5 # 29.8 h, mean # SD;
median 14.4 h). There were 1,650 # 847 trials per electrode
summing across sessions. The stimulus order was pseudoran-
domized and was therefore different in each recording session.
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To evaluate the degree of temporal stability in the stimulus-
evoked responses, we considered those electrodes that showed
strong visually selective responses, that is, those electrodes that
discriminated among the different images. Other electrodes
showed either no response or stimulus-evoked responses that
were not selective or only weakly selective (Agam et al. 2010;
Liu et al. 2009). The majority (1,877 of 2,195) of the electrodes
were not visually responsive (see METHODS for definition of
responsiveness). The temporal stability for these electrodes is
hard to define in the context of visual responses (e.g., most
electrodes were located in nonvisual areas and yielded consis-
tent flat responses across sessions). Considering the electrodes
that showed a visually evoked response (n ( 318; see METHODS),
there was a strong correlation in the IFP waveforms across
sessions: 0.62 # 0.02 (mean # SE). The most stringent and
interesting test of stability is based on evaluating whether
selective responses are maintained over time. The degree of
stability in the responses of electrodes showing marginal se-
lectivity can be strongly influenced by signal-to-noise ratios
and is more difficult to interpret. Therefore, we used strict
criteria for visual selectivity (defined in METHODS) and focused
on 91 electrodes that could discriminate among the different
stimuli. Eighty-six of these 91 electrodes (94.5%) also satisfied
the criteria for selectivity when a multiclass classifier instead of
a binary classifier was used for decoding (see METHODS). Im-
portantly, selectivity was analyzed separately in each session,
and therefore the degree of stability or lack of stability was not
a criterion used to select the electrodes for analyses. The use of
different criteria to determine visual selectivity yielded quali-
tatively similar results. The number of electrodes showing
visual selectivity for each task is shown in Table 2. The most

common locations for the electrodes showing visual selectivity
were inferior occipital gyrus and sulcus, fusiform gyrus, infe-
rior temporal gyrus, occipital pole, parahippocampal gyrus,
and middle occipital gyrus (Table 3).

Examples of three visually selective responses are shown in
Fig. 1 (A and B, task 1; C, task 2). In Fig. 1A, we illustrate the
selective responses of an electrode located in the left temporal
pole. The two subplots show the responses recorded in two
sessions that were 21 h apart. To analyze the visual responses,
we considered the interval between 50 and 300 ms after
stimulus onset (Hung et al. 2005; Liu et al. 2009). The overall
response properties were consistent across the two sessions.
The preferred category was the same in the two sessions
(indicated by the cyan color) and the average amplitude to the
preferred category was 408 # 109 !V (mean # SD; n ( 48)
in the first session and 391 # 87 !V (n ( 78) in the second
session. The times of the response peaks in the 50- to 300-ms
interval for the preferred category were 244 # 56 and 226 #
65 ms in sessions 1 and 2, respectively. The times of the
response minima in the same interval for the preferred category
were 166 # 84 and 143 # 75 ms in sessions 1 and 2,
respectively. The responses were not identical: for example,
the red curve shows a distinct trough in the second session,
particularly after 300 ms. Figure 1B shows an example from
the same task (task 1) for an electrode in a different location
(right fusiform gyrus) and with different stimulus preferences.
An example from task 2 is shown in Fig. 1C. The insets in
Fig. 1 show responses from adjacent or nearby electrodes
(within 1 or 2 cm). Although the biophysical origin of the
IFP signals is not clearly understood, the distinct IFPs from
those nearby electrodes suggest that the responses are rela-
tively local and do not reflect changes in large volumes of
cortex (see also Vidal et al. 2012). Figure 1 shows responses
averaged over all the stimuli belonging to a given category.
In Fig. 2, we show the responses from the same electrodes
in Fig. 1, A and B, to each of the 25 different exemplar
objects in each category. Although in some cases there were
clear differences across sessions (see e.g., responses to the 1st
exemplar in the 4th row in Fig. 2A), overall, the responses during
the two sessions were quite consistent (see e.g., responses to all
exemplars in the 3rd row in Fig. 2B). These examples suggest
a strong overall degree of stability in the visually selective
responses.

To begin to quantify the degree of stability in the responses
across sessions, we asked whether there was any overlap between
the top five exemplar images that elicited the strongest responses

Table 2. Number of total electrodes, visually selective electrodes,
and stationary and nonstationary electrodes

Task 1 Task 2 Task 3 Total

Total no. of electrodes 760 448 987 2,195
Total no. of selective electrodes 33 18 40 91

No. of stationary electrodes 30 15 36 81
No. of nonstationary electrodes 3 3 4 10

An electrode was considered visually selective if a 1-way ANOVA test
across categories yielded P ! 0.01, decoding performance using a statistical
classifier yielded P ! 0.01, and the response amplitude was '50 !V. Further
details about the criteria used to place an electrode in each category are
described in METHODS. In Figs. 4–6, but not in this table, when there were more
than 2 sessions for an electrode that was selective in at least 1 session, each pair
of consecutive sessions contributed 1 point.

Table 3. Electrode locations

Locations With "4 Selective Electrodes
Total No. of
Electrodes

Total No. of Selective
Electrodes

No. of Stationary
Electrodes

No. of Nonstationary
Electrodes

Inferior occipital gyrus and sulcus 26 18 17 1
Fusiform gyrus 64 17 17 0
Inferior temporal gyrus 194 14 12 2
Occipital pole 27 9 9 0
Parahippocampal gyrus 39 8 7 1
Middle occipital gyrus 40 6 6 0
Total 390 72 68 4
Other locations (!4 selective electrodes) 1,805 19 13 6

Data are only reported for those locations with "4 visually selective electrodes to avoid reporting a percentage for locations with a very small number of
electrodes. The locations reported encompass 79% (72/91) of the visually selective electrodes and 84% (68/81) of the stationary electrodes. Table 4 reports the
locations of all recorded electrodes (see METHODS).
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(METHODS). For this purpose, we considered the amplitude of the
IFP signals between 50 and 300 ms. For the example electrode
shown in Figs. 1A and 2A, four of the top five exemplars were the
same between the two sessions (overlap ( 0.8; Fig. 3A), whereas
for the example electrode in Figs. 1B and 2B, all five top
exemplars were the same across the two sessions (overlap ( 1.0;
Fig. 3B). The distribution of the degree of overlap across sessions
for all the visually selective electrodes is shown in Fig. 3, C (task
1) and D (task 2). In task 3, there were only five exemplars, and
therefore we did not perform this analysis. These distributions
were significantly different from the distribution expected by
chance (chi-squared goodness of fit test: P ! 10%6). The mean
degree of overlap was 0.49 # 0.29 (task 1) and 0.43 # 0.23
(task 2). Selecting the top 3 exemplars or the top 10 exemplars
also yielded a degree of overlap that was significantly above
chance levels. To put these values in perspective, we consid-
ered the degree of short-term stability due to fluctuations
within a session. Trial-to-trial variability within a session
constrains the amount of stability that can be expected over
long time scales. We focused on task 1 (there were not enough
trials for this analysis in task 2) and computed the degree of
short-term stability by comparing the top five exemplars from
the first half of each session with those in the second half. The
mean degree of overlap was 0.49 # 0.26. These results suggest
that the stability in exemplar preferences across sessions was as
strong as the stability within a session.

To further quantify the stability of the IFP response wave-
forms across sessions, we considered 9 different features ex-
tracted from the 50- to 300-ms interval. These features were

the IFP amplitude [max(IFP) % min(IFP)], time of maximum
IFP, time of minimum IFP, and the log power (see METHODS) in
6 different frequency bands: !4, 4–8, 8–12, 12–35, 35–50,
and 70–100 Hz. In Fig. 4, we compare these features between
consecutive sessions. We evaluated the degree of stability for
each feature by computing the coefficient of determination (R2)
across consecutive sessions. Most of these features yielded
strong R2 values ranging from 0.69 to 0.93, except for the 35-
to 50-Hz frequency band (R2 ( 0.44). The slopes ranged from
0.79 to 0.93 (except 0.53 for the 35- to 50-Hz frequency band).
A slope of 1 would indicate identical features across sessions.
We compared these values with the within-session short-term
stability to estimate the upper limit in the R2 and slope values
imposed by trial-to-trial variability. When comparing the fea-
ture values from the first half of each session with those in the
second half (data not plotted in Fig. 4), the R2 values ranged
from 0.65 to 0.96, except for the 35- to 50-Hz frequency band
(R2 ( 0.41). The corresponding slopes ranged from 0.8 to 0.99,
except for the 35- to 50-Hz frequency band (slope ( 0.7). The
degree of stability as evaluated by the R2 values and the slopes
for each of these features were comparable for the three
different tasks (compare the 3 different colors in Fig. 4).

We analyzed the responses as a function of the time elapsed
between recording sessions. There was no clear increase in the
fraction of nonstationary recordings over time (Fig. 5A). In
fact, Fig. 5A reveals a small decrease in the fraction of
nonstationary session pairs; we assume that this decrease
reflects random variation given the small number of nonsta-
tionary electrodes (n ( 10; Table 2). We also analyzed whether

Table 4. Location of all electrodes analyzed in this study conveying the range of sampled locations

Area n Area n

Middle temporal gyrus 230 Transverse frontopolar gyri and sulci 10
Inferior temporal gyrus 194 Superior temporal sulcus 9
Lateral aspect of superior temporal gyrus 169 Parieto-occipital sulcus 8
Temporal pole 128 Posterior-dorsal part of the cingulate gyrus 6
Supramarginal gyrus 97 Posterior-ventral part of the cingulate gyrus 6
Middle frontal gyrus 96 Temporal plane of the superior temporal gyrus 6
Orbital gyri 81 Central sulcus 6
Precentral gyrus 77 Anterior part of the cingulate gyrus and sulcus 5
Angular gyrus 77 Planum polare of the superior temporal gyrus 5
Superior frontal gyrus 70 Posterior transverse collateral sulcus 4
Subcentral gyrus (central operculum) and sulci 69 Middle-anterior part of the cingulate gyrus and sulcus 4
Fusiform gyrus 64 Calcarine sulcus 4
Triangular part of the inferior frontal gyrus 58 Inferior part of the precentral sulcus 4
Lingual gyrus 57 Inferior temporal sulcus 4
Opercular part of the inferior frontal gyrus 56 Paracentral lobule and sulcus 3
Postcentral gyrus 55 Short insular gyri 3
Middle occipital gyrus 40 Middle frontal sulcus 2
Parahippocampal gyrus 39 Superior frontal sulcus 2
Occipital pole 27 Sulcus intermedius primus (of Jensen) 2
Inferior occipital gyrus and sulcus 26 Lateral orbital sulcus 2
Superior parietal gyrus 24 Subparietal sulcus 2
Precuneus 23 Middle-posterior part of the cingulate gyrus and sulcus 1
Orbital part of the inferior frontal gyrus 17 Anterior transverse temporal gyrus (of Heschl) 1
Orbital sulci 17 Middle occipital sulcus and lunatus sulcus 1
Fronto-marginal gyrus (of Wernicke) and sulcus 16 Anterior occipital sulcus 1
Cuneus 13 Lateral occipito-temporal sulcus 1
Inferior frontal sulcus 13 Medial occipito-temporal sulcus 1
Gyrus rectus 12 Postcentral sulcus 1
Anterior transverse collateral sulcus 12 Remaining 223
Superior occipital gyrus 11 Total 2,195

Further details about each of these locations and the corresponding anatomical landmarks can be found in Destrieux et al. (2010). Average Talairach
coordinates for the electrodes in task 1 were reported in Liu et al. (2009).
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there was any overall trend when plotting each of the IFP
response features as a function of the time elapsed between
sessions (Fig. 5, B–J). For this purpose, we fitted a line to each
of these plots (dashed lines in Fig. 5, B–J), and the slopes of
these lines were typically close to 0 (Fig. 5, see legend). There
was a weak but significant (P ! 0.01) attenuation with time in
the IFP amplitude (slope ( %0.044/h; Fig. 5B) and power in
the !4-Hz (slope ( %0.226/h; Fig. 5E), 4- to 8-Hz (slope (
%0.116/h; Fig. 5F), and 8- to 12-Hz bands (slope ( %0.133/h;
Fig. 5F) as well as in the 35- to 50-Hz bands (slope (
%0.102/h; Fig. 5H). For the other frequency bands, the slope
was not significantly different from 0. Overall, these results
show that several different features of the IFP responses for
visually selective electrodes remain stable over periods of 1 to
200 h. To a good first approximation, this stability did not
depend on the specifics of the task.

Neural signals elicited by a visual stimulus during a given
trial need to be read out by target brain regions. If the neural
signals representing visual information change over time, then

the decoding process also needs to adapt to those transforma-
tions. Following up on previous efforts (see reviews and
discussions in Kriegeskorte and Kreiman 2011), we built a
machine learning classifier to decode the IFP signals from each
electrode in individual trials. We considered multiple different
features of the IFP waveform, including principal components
or power in different frequency bands (Fig. 6). We used a
linear discriminant analysis classifier to decode the presence or
absence of the preferred category (or preferred exemplar in task 3)
for each selective electrode in single trials (see METHODS). A
decoding performance of 0.5 corresponds to chance levels and
a decoding performance of 1.0 would indicate perfect classi-
fication in each single trial. We first asked whether the perfor-
mance of such a classifier would be consistent in multiple
recording sessions. We determined the within-session decod-
ing performance for each session (using subsampling for cross-
validation to avoid overfitting; see METHODS). To evaluate the
statistical significance of the decoding performance values
that we obtained, we compared the actual performance with
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Fig. 1. Examples of visual category selectiv-
ity across sessions for 3 electrodes. Each row
indicates a separate electrode from a different
subject; the examples in A and B were from
task 1, and the example in C was from task 2
(METHODS and Table 1). Each column indi-
cates a different session; the times between
sessions were 21 h (A), 70 h (B), and 46 and
24 h (C). Each curve shows the average
intracranial field potential (IFP) response to
all images from a given category (red, ani-
mals; green, chairs; blue, faces; cyan, fruits;
purple, vehicles; orange, houses). Error bars
indicate #SE, and the numbers of trials for
each category contributing to the mean wave-
form are indicated in each subplot. The gray
rectangle denotes the image presentation
time. Vertical dashed lines denote the time
period used for the analyses in the text (50 to
300 ms after stimulus onset). Each of these
electrodes showed a statistically significant
selective response (P ! 0.01, 1-way ANOVA;
see METHODS). The inset waveforms depict the
IFP responses of an adjacent (A and C) or
nearby electrode (B) that did not demonstrate
the same selectivity as seen in the featured
electrodes. The inset brain images depict the
electrode locations.
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Fig. 2. Responses to each exemplar for the electrodes in Fig. 1, A and B. Each subplot shows the mean IFP response (#SE) to a particular exemplar object during
the first (red) or second recording session (green). The number of trials averaged is shown in each subplot. The 5 subplots in each row correspond to the 5
exemplars that comprised a visual category. Other formats and conventions are similar to those of Fig. 1. Boxes highlight the category that elicited the strongest
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the distribution of decoding performance values obtained
after shuffling the image labels (METHODS). Figure 6A shows
the within-session decoding performance values using a set
of robust features consisting of the principal components
corresponding to the top eigenvalues that accounted for 95%
of the variance. The within-session decoding performance
values ranged from 0.44 to 0.91 and were similar in the three
different tasks (compare the different colors in Fig. 6). In
this analysis, the within-session decoding performance val-
ues were independently evaluated in each recording session.
We observed that there was a strong correlation in the within-
session decoding performance values between each recording
session and the subsequent recording session (Fig. 6A, R2 ( 0.55).

The second best within-session decoding performance values
were obtained using the total power in the gamma frequency
band, between 70 and 100 Hz (Fig. 6G, R2 ( 0.52). Other
frequency bands yielded weaker within-session decoding
performance values, but there was still a strong correlation
between sessions (Fig. 6, B–F; see Fig. 6 legend for R2 and
slope values). When using a multiclass classifier for decod-
ing instead of a binary classifier, we also observed a strong
correlation in the within-session decoding performance val-
ues between each recording session and its subsequent
session (Fig. 6H, R2 ( 0.61). In summary, the within-
session decoding performance values were consistent across
consecutive recording sessions.
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Fig. 3. Preferred exemplar objects for each electrode were consistent across sessions. A and B: IFP amplitude [max(IFP) % min(IFP) between 50 and 300 ms
after stimulus onset, mean # SE] for the 2 electrodes in Fig. 2, A and B, in response to each of the 25 exemplars during session 1 (top) or session 2 (bottom).
The color of each bar denotes the object category (shown only for comparison with Fig. 1; the category information is not used in the analyses depicted in this
figure). Arrows mark the 5 exemplars that elicited the largest IFP amplitude in each session. The degree of overlap was 0.8 (A) and 1.0 (B). C and D: we computed
the fraction of the top 5 exemplars that overlapped across 2 consecutive sessions (ranging from 0 to 1 in steps of 0.2.) Plots show the overlap across sessions
for task 1 (C) and task 2 (D). The mean overlap across sessions (black inverted triangle) was 0.49 (SD 0.29; C) and 0.43 (SD 0.23; D). The gray line shows
the expected distribution of overlap values in a shuffle control where 5 exemplars were picked randomly in each session (gray inverted triangle indicates the mean
for this shuffle condition). In both tasks, the observed distribution was significantly different from what would be expected by chance (chi-squared goodness-of-fit
test, P ! 10%6). We did not perform this analysis for task 3 because there were only 5 exemplar objects.
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In the analyses in Fig. 6, the classifier was trained indepen-
dently in each recording session. To begin to evaluate whether
target brain regions could decode information without chang-
ing the synaptic weights in each recording session, we com-
pared the within-session decoding performance with across-
session decoding performance values (Fig. 7). In the across-
session analyses, the classifier was trained with data from the
first recording session and the decoding performance was
evaluated by using the data from the second recording session.

Because classifier performance is often very sensitive to the
number of training examples, we randomly subsampled the data
to ensure that the number of training examples was the same for
within-session and across-session analyses (on average, 83.2 #
57.8 trials per electrode per category per session for training and
testing were used). As expected, the within-session decoding
performance was consistently above the across-session perfor-
mance (compare circles vs. triangles in Fig. 7). Yet, in most
cases, we obtained a significant across-session decoding
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performance, demonstrating that it is possible to read out
information without retraining the classifier. Furthermore,
there was a strong correlation between the within-session
decoding performance and the across-session decoding per-
formance for all three tasks (Fig. 7, solid black lines).

DISCUSSION

In this study we characterized the temporal stability of visually
selective intracranial field potentials elicited by presentation of
flashes of visual stimuli. We considered timescales of minutes
(short-term within-session comparisons) to hours to days. Our
study was based on a large data set of 2,195 electrodes recording
IFP activity from 27 subjects performing 3 different visual rec-
ognition tasks. We focused on those electrodes that revealed
strong visually selective responses, because this constitutes the
most rigorous assessment of stability. Overall, we found a strong
degree of stability in the visually elicited responses. This stability
was manifested in multiple different analyses including consider-
ation of the object preferences (Figs. 1–3), examination of various
features of the IFP waveform (Figs. 4 and 5), and decoding
performance in single trials (Figs. 6 and 7).

Field potential recordings can reflect contributions from
volume conduction (Kajikawa and Schroeder 2011). A recent
study argued that volume conduction as measured using IFP
electrodes is insignificant at distances '20 mm (Vidal et al.
2012). To minimize potential effects of volume conduction, we
subtracted the mean signals across all electrodes. In Fig. 1,
insets, we showed that the activity near the selective electrodes

(within &1–2 cm) was clearly distinct, suggesting that the
selective responses that we considered here do not spread over
more than &1–2 cm of cortex. The notion that the IFP signals
represent approximately local activity is also consistent with
receptive field mappings in early visual cortex with this same
type of electrode (Yoshor et al. 2007).

It should be noted that the biophysical origin of the IFP signals
studied here is not well understood. IFPs may comprise a
weighted average of excitatory and inhibitory postsynaptic poten-
tials across a large number of neurons (Buzsaki et al. 2012;
Helmchen et al. 1999; Mitzdorf 1987). The spatial scale of IFP
signals is larger than that of local field potentials (LFP) measured
with intracortical microwires, due to the 2.3-mm vs. &50-!m
electrode diameter and the low impedance of the IFP electrodes.
Several studies have shown that there is a significant correlation
between LFPs recorded from high-impedance microwires and
spiking activity in sensory and motor cortices (Bansal et al. 2011,
2012; Belitski et al. 2008; Burns et al. 2010; Katzner et al. 2009;
Liu and Newsome 2006; Nir et al. 2007; Rasch et al. 2008; Rasch
et al. 2009; Ray et al. 2008; Xing et al. 2009), but the two signals
are clearly distinct and LFPs do not directly reflect firing rates
(Belitski et al. 2008; Ekstrom et al. 2007; Kajikawa and Schroeder
2011; Kreiman et al. 2006; Logothetis 2003; Nielsen et al. 2006;
Norena and Eggermont 2002). It has been suggested that LFPs
represent a combination of local dendritic processing and afferent
input as opposed to the output spike rate (Logothetis 2003).
Relatively little is known about the relationship between IFPs and
spiking activity.
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Fig. 5. IFP responses were stable over several days. A: fraction of session pairs that were nonstationary as a function of time between sessions. Because of the
small number of nonstationary electrodes, we grouped the x-axis into 3 possible bins (the number of electrodes in each bin was 9, 2, and 1, respectively). The
fraction in the y-axis was computed with respect to the total number of session pairs that showed selective responses (149, 18, and 26, respectively). B–J: for
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as a function of the time between sessions (in log scale). Color and other conventions are as in Fig. 4. Dashed lines show the linear fit for all points not considered
outliers (outliers were points outside 4 SD of the mean ratio; the number of outliers was between 0 and 2 for each subplot). The slope, intercept, RMSE, and
number of outliers (where non-zero) for each subplot were as follows: B, slope ( %0.044/h (P ! 0.01 vs. 0/h), intercept ( 1.02, RMSE ( 0.12; C, slope (
%0.016/h, intercept ( 1.02, RMSE ( 0.10; D, slope ( 0.003/h, intercept ( 0.99, RMSE ( 0.10; E, slope ( %0.226/h (P ! 0.01 vs. 0/h), intercept ( 0.10,
RMSE ( 0.53; F, slope ( %0.116/h (P ! 0.01 vs. 0/h), intercept ( 0.04, RMSE ( 0.35; G, slope ( %0.133/h (P ! 0.01 vs. 0/h), intercept ( 0.10, RMSE (
0.32; H, slope ( %0.073/h, intercept ( 0.03, RMSE ( 0.25; I, slope ( %0.102/h (P ! 0.01 vs. 0/h), intercept ( 0.07, RMSE ( 0.24, outliers ( 1; J, slope (
%0.018/h, intercept ( 0.03, RMSE ( 0.19, outliers ( 2. Solid lines show the expected ratio assuming perfect stability.
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Given our incomplete knowledge about the relationship
between neuronal responses and IFPs, caution should be taken
in the interpretation of our results in terms of the temporal
stability of the underlying neuronal signals. IFP signals could
remain stable even if there are significant changes at the

neuronal level. For example, half the cells could increase their
firing rates, and the other half could decrease their firing rates
(e.g., Woloszyn and Sheinberg 2012) in such a way that might
not change the net IFP signal. Most single-neuron studies have
focused on neuronal preferences over short time scales of
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RMSE (0.069) and log power in 6 nonoverlapping frequency bands: !4 Hz (B; R2 ( 0.35, slope ( 0.63, RMSE ( 0.057), 4 – 8 Hz (C; R2 ( 0.46, slope (
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R2 ( 0.28, slope ( 0.50, RMSE ( 0.053), and 70 –100 Hz (G; R2)( 0.52, slope ( 0.65, RMSE ( 0.056). In H, we considered a multiclass classifier
using the top principal components accounting for 95% of the variance of the IFP response (R2 ( 0.61, slope ( 0.77, RMSE ( 0.045). Gray bars indicate
#SE along each axis. Dashed lines plot the best linear fit, and the dotted line shows the diagonal. Other colors, numbers, and conventions are as in Fig.
4. PCA, principal components analysis.
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minutes to a few hours partly due to technical limitations (e.g.,
neuronal recordings may become unstable, or it may not be
trivial to ensure that the same neuron is being monitored over
long periods of time). Several studies have examined the
properties of neuronal populations over longer time scales but
recording from different neurons each day (e.g., Freedman et
al. 2005; Woloszyn and Sheinberg 2012). Recently, a few
studies have examined the degree of stability of neuronal
recordings and/or neuronal preferences over several days
(Bondar et al. 2009; Nicolelis et al. 2003; Tolias et al. 2007).
Some of these studies point to a remarkable degree of stability
in feature preferences at the single-unit or multi-unit level. Our
study expands on these observations by providing evidence of
temporal stability at temporal scales of hours to days and at a
spatial “mesoscale” of several millimeters of cortex.

The degree of stationarity in the responses was approxi-
mately similar across the multiple frequency bands of the IFP
signals evaluated here (Figs. 4 and 6). The degree of station-
arity was weakest for the 35- to 50-Hz band (smallest slope in
Figs. 4 and 6). This result is consistent with reports from
Belitski et al. (2008) describing that in LFPs recorded from
primary visual cortex, visual information was represented
mostly in the low and high frequencies, whereas the middle
frequency bands were related to neuromodulatory inputs.

A small fraction of our recordings (!11%) did not fulfill our
stability criteria and were labeled “nonstationary” (Table 2).
Nonstationarity in IFP signals over scales of hours to days
could be due to several factors, including small electrode shifts,
changes in the underlying neural tissue, interictal discharges,
medication, global state changes such as varying levels of
attention or motivation, and also plasticity in the neural re-
sponses. Some chronic single-unit studies have distinguished
between the stability of the equipment and recordings and the
stability of the underlying neuronal representation (Bondar et
al. 2009; Nicolelis et al. 2003; Tolias et al. 2007). Given our
methodology and the observation that there were very few
nonstationary electrodes, it was difficult to distinguish among

these different putative changes over time. To a first approxi-
mation, the degree of temporal stability did not depend on the
task (compare different colors in Figs. 4–7) or the electrode
location (Table 3). The types of visual recognition tasks that
we considered here did not require any type of explicit visual
learning across sessions. The quantitative data presented here
provide a baseline for subsequent studies to examine long-term
plasticity, long-term adaptation, novelty detection, and other
forms of changes over time.

It is tempting to speculate that some brain regions may show
more stability, whereas other brain regions may be more plastic
or variable (Maimon and Assad 2009; Mandelblat-Cerf et al.
2009; Shinomoto et al. 2009). For example, responses at the
level of the retina could show long-term stability, whereas
higher areas of the temporal lobe such as anterior inferior
temporal cortex and perirhinal cortex could be more plastic
(Buffalo et al. 1998; Kourtzi and DiCarlo 2006; Tolias et al.
2007). Within our recordings, we did not find any clear
differences in long-term temporal stability among the different
areas of the ventral visual cortex to which we had access (Table
3). However, it should be noted that the tasks examined here
did not require any long-term learning. Furthermore, the num-
ber of electrodes as well as sampling of different parts of the
ventral visual cortex in our study is limited.

We decoded signals from single-trial responses (Figs. 6 and
7), but it should be noted that the brain does not directly
interpret IFPs as measured in our experiments for computation.
The decoding performance values reported here quantify the
information contained in single trials in the IFPs. Furthermore,
the stability in decoding performance is of interest regarding
the possibility of building brain-machine interfaces for pros-
thetic applications (Hochberg et al. 2006; Musallam et al.
2004; Shenoy et al. 2003; Waldert et al. 2009; Winter et al.
2007). Typically, a machine learning algorithm is trained to
read out the activity of ensembles of neurons or electrodes
recording field potential signals. For these applications, it is
important to establish if and when this type of device needs to
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Fig. 7. A machine learning classifier can extrapolate across sessions. Plots show comparisons between across-session decoding performance and within-session
decoding performance for stationary electrodes. The x-axis plots the decoding performance when data from session 1 are used for training and testing (using
different trials for cross-validation; see METHODS). On the y-axis, circles show the decoding performance when data from within session 2 are used for training
and testing (cross-validated, within-session decoding). Also on the y-axis, triangles show the decoding performance when data from session 1 are used for training
and data from session 2 are used for testing (across-session decoding). The number of trials used for training was the same for the connected circular and
triangular markers. Each subplot shows the results using data from a different task (A: task 1, n ( 49 comparisons, 30 electrodes; B: task 2, n ( 30 comparisons,
15 electrodes; C: task 3, n ( 87 comparisons, 36 electrodes). Only electrodes labeled stationary are plotted. The dotted line shows the diagonal. Thin gray lines
denote chance performance (0.50). The dashed line shows the linear fit for the circles (within-session 2 decoding performance vs. within-session 1 decoding
performance), and the solid line shows the linear fit for the triangles (across-session decoding performance vs. within-session 1 decoding performance).
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be retrained (Ganguly and Carmena 2009; Simeral et al. 2011).
The decoding performance analyses presented here quantify
how well such a device could extrapolate across sessions
spanning hours to days.

The brain needs to maintain information over long time
scales while at the same time adapting, learning, and acquiring
novel skills and information. The stationary neural signals that
we describe could reflect the stability of recognition perfor-
mance for familiar stimuli over long temporal scales. How
these signals relate to the stability of information at longer time
scales (e.g., months to years), at different spatial scales (e.g.,
neurons or brain regions), or to learning and perceptual
changes remains an important theme for future studies.
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