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Humans can recognize objects and scenes in a small
fraction of a second. The cascade of signals underlying
rapid recognition might be disrupted by temporally
jittering different parts of complex objects. Here we
investigated the time course over which shape
information can be integrated to allow for recognition of
complex objects. We presented fragments of object
images in an asynchronous fashion and behaviorally
evaluated categorization performance. We observed that
visual recognition was significantly disrupted by
asynchronies of approximately 30 ms, suggesting that
spatiotemporal integration begins to break down with
even small deviations from simultaneity. However,
moderate temporal asynchrony did not completely
obliterate recognition; in fact, integration of visual shape
information persisted even with an asynchrony of 100
ms. We describe the data with a concise model based on
the dynamic reduction of uncertainty about what image
was presented. These results emphasize the importance
of timing in visual processing and provide strong
constraints for the development of dynamical models of
visual shape recognition.

Introduction

Humans and other primates can recognize complex
objects and scenes in a glimpse. Psychophysics data
suggest rapid processing of visual information within
approximately 150 ms of stimulus presentation
(Kirchner & Thorpe, 2006; Potter & Levy, 1969). The
ability to recognize complex shapes is instantiated by
the cascade of processes along the ventral visual stream
(Connor, Brincat, & Pasupathy, 2007; Logothetis &
Sheinberg, 1996; Serre et al., 2007; Tanaka, 1996).
Consistent with the behavioral measures, single neuron

recordings in macaque inferior temporal cortex (Hung,
Kreiman, Poggio, & DiCarlo, 2005; Richmond, Opti-
can, & Spitzer, 1990; Rolls, 1991), electroencephalo-
graphic signals from the human scalp (Johnson &
Olshausen, 2003; Thorpe, Fize, & Marlot, 1996), and
intracranial field potentials from the human occipital
and inferior temporal cortex (Liu, Agam, Madsen, &
Kreiman, 2009) have revealed image-specific responses
as early as 100–150 ms after stimulus onset. While these
neurophysiological and behavioral observations sug-
gest that information can quickly propagate through
the visual system, it is not clear what proportion of
human performance this initial wave of activity can
account for; recognition in the natural world may
require significant temporal integration.

Given that there are at minimum approximately
eight synapses between photoreceptors in the retina and
high-level visual neurons in the inferior temporal
cortex, several investigators have argued that, to a first
approximation, rapid recognition can be reasonably
described by a mostly bottom-up hierarchy of trans-
formations along the ventral visual stream (Deco &
Rolls, 2004; DiCarlo, Zoccolan, & Rust, 2012; Fu-
kushima, 1980; Riesenhuber & Poggio, 2000; Rolls,
1991; Serre et al., 2007; vanRullen & Thorpe, 2002).
These so-called feed-forward architectures represent a
major simplification of the complex organization of
neocortex, which includes ubiquitous top-down signals
and horizontal connections in addition to bottom-up
synapses (Douglas & Martin, 2004; Felleman & Van
Essen, 1991). Independently of the relative contribu-
tions of bottom-up and top-down signals, the short
latencies observed in the human and macaque inferior
temporal cortex impose a maximum limit of 10 to 20
ms on the amount of processing that can take place at
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each stage before the first bits of information are passed
on to the next stage.

Despite the rapid progression of this initial wave of
information, response durations can extend from a few
tens of ms in V1 (Ringach, Hawken, & Shapley, 2003)
to approximately 70 ms in MT (Bair & Movshon, 2004)
to 100 ms or more in inferior temporal cortex (De
Baene, Premereur, & Vogels, 2007). Spatiotemporal
integration is critical for the definition of receptive
fields in early visual areas as well as for motion
detection signals along the dorsal stream. The contri-
butions of spatiotemporal integration along the ventral
stream in regions involved in high-level shape recogni-
tion such as inferior temporal cortex are less clearly
understood. The accumulation of visual shape infor-
mation over time may improve recognition perfor-
mance beyond what could be achieved by independent
processing of sequential ‘‘snapshots.’’

Psychophysics studies have shown that subjects can
hold a representation of basic visual information such
as letters (Sperling, 1960) or flashing arrays of squares
or dots (Brockmole, Wang, & Irwin, 2002; Hogben &
Di Lollo, 1974) in ‘‘iconic memory’’ for a short time
after presentation. The recognition of a whole object
can be facilitated when presented in close temporal
contiguity and spatial register with one of its parts
(Sanocki, 2001), demonstrating that varying the dy-
namics with which object information is presented can
influence perception. Prior studies of temporal inte-
gration in terms of interference between parts of
different faces (Anaki, Boyd, & Moscovitch, 2007;
Cheung, Richler, Phillips, & Gauthier, 2011; Singer &
Sheinberg, 2006), emotion recognition (Schyns, Petro,
& Smith, 2007), and extraction of low-level shape
features (Aspell, Wattam-Bell, & Braddick, 2006;
Clifford, Holcombe, & Pearson, 2004) have found
relevant time scales in the range of several tens to a few
hundred milliseconds. Longer integration windows, up
to several seconds, have been reported in studies of
motion discrimination (Burr & Santoro, 2001) and
biological motion discrimination (Neri, Morrone, &
Burr, 1998).

There is thus a range of temporal integration
windows that could play a role in recognition of
complex objects. Observations of rapid processing
suggest that even small disruptions to simultaneity
might carry large consequences, while observations of
long temporal receptive fields and integration or
persistence of low-level visual stimuli suggest that
object recognition might be robust to temporal
asynchrony. Here we used psychophysics experiments
in which images were broken into asynchronously
presented parts (Figure 1) to evaluate the time course
over which asynchronous information can be integrat-
ed together and lead to the recognition of complex
objects.

Methods

All procedures were carried out with subjects’
informed consent and in accordance with protocols
approved by the Boston Children’s Hospital Institu-
tional Review Board.

Apparatus

Stimuli were presented on a Sony Multiscan G520
21-in. cathode-ray tube monitor (Sony Corporation,
Tokyo, Japan), running at a 170 Hz refresh rate and
872 · 654 pixel resolution. The experiment was run on
an Apple MacBook Pro computer (Apple Computer,
Cupertino, CA) running MATLAB software (Math-
Works, Natick, MA) with the Psychophysics Toolbox
and Eyelink Toolbox extensions (Brainard, 1997;
Cornelissen, Peters, & Palmer, 2002; Pelli, 1997). For
37 of the 50 subjects across all experiments, we
obtained reliable measurements of subjects’ eye move-
ments using the EyeLink 1000 system (using infrared
corneal reflection and pupil location, with nine-point
calibration) running in remote mode (SR Research,
Mississauga, Ontario). Subjects were seated in a dimly
lit windowless room approximately 53 cm from the eye
tracking camera, and approximately 71 cm from the
display monitor. Subjects performed a four-alternative
forced choice task (described below) and indicated their
responses using a Logitech Cordless RumblePad 2
game controller (Logitech, Fremont, CA). Trials in
which the requested times for stimulus onset were
missed by more than one screen refresh (5.9 ms) were
discarded. In separate tests, we used a photodiode to
independently verify the accuracy of the image
presentation times.

Stimulus presentation, Experiment 1

Sixteen subjects participated in Experiment 1.
Images were drawn randomly with replacement from a
library of 428 grayscale silhouettes of animals, people,
plants, and vehicles, with each category equally
represented. These images were obtained from several
freely accessible sources on the Internet, resized to
occupy most of a 256 · 256 pixel square (which
sometimes involved clipping of object edges), super-
imposed on a noise background, and adjusted using
Photoshop (Adobe, San Jose, CA) to have flat intensity
histograms. The power spectrum of each image was
then calculated using a Fast Fourier Transform (FFT),
along with the average power spectrum across all
images. The final set of images was generated by, for
each image, taking the inverse FFT of the population
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average power spectrum with that image’s respective
unique phase spectrum. This resulted in a set of images
with consistent power at each spatial frequency, and
backgrounds filled with cloud-like noise. Example
images are shown in Figure 1B (the line drawings on
the second row were only used in Experiment 2); all the
images used in these experiments can be obtained from
http://klab.tch.harvard.edu/resources/singer_
asynchrony.html.

Each of 16 subjects (13 female, age 19–35, mean age
25) completed 50 blocks of 46 trials each. The sequence
of events in each trial is illustrated in Figure 1A. The
image selected for each trial was drawn with equal
probability from one of the four categories. Each trial
began with a 14-pixel (0.58) fixation cross presented for

500 ms. In those subjects for which eye tracking was
available (14 of 16 subjects), we required 500 ms of
fixation within 38 of the center of the cross. Following
fixation, a 256 · 256 pixel (9.38 · 9.38) square of
flickering (170 Hz) noise appeared in the center of the
screen. This noise was generated by randomizing the
phase of the mean power spectrum of the library of
images. The purpose of the noise was to eliminate the
possible effects of apparent motion between two
successive fragments (e.g., Cavanagh, Holcombe, &
Chou, 2008). We considered a 4 · 4 square tessellation
of each image; edge alpha masks for these squares were
blurred with a Gaussian blur of radius 4 pixels, using
Photoshop. We defined a ‘‘fragment’’ as 3 out of the 16
squares (not necessarily spatially contiguous) randomly

Figure 1. Schematic of the organization of the experiments. A. After 500 ms fixation, between one and four fragments, each consisting

of 3/16 of a source image (upper left), were briefly shown embedded in a stream of flickering 170 Hz phase-scrambled visual noise.

Fragments lasted 11.8 ms and were presented with a stimulus onset asynchrony (SOA, constant within a given trial) that took 1 of 10

possible values from 0 ms (synchronous presentation) to 294.1 ms (Methods). The source image, the number of fragments, and the

SOA value were randomly chosen in each trial. Noise continued for 500 ms after the onset of the final fragment, after which subjects

were presented with a four-alternative forced choice categorization task. B. Examples of other images used in the experiments.
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chosen in each trial. Depending on the configuration of
the three squares, each fragment spanned a minimum
of 4.78 and a maximum of 9.38. Spatial integration of all
of the information in four fragments required inte-
grating over 9.38. Each fragment was present for 11.8
ms (two monitor refreshes). Trials containing one,
three, or four fragments were randomly interleaved.
When more than one fragment was used in a trial, they
contained nonoverlapping parts of the source image.
Fragments were sequentially presented, with the first
fragment appearing 500 ms after the noise began.
Successive fragments were presented with a stimulus
onset asynchrony (SOA) selected at random from the
following list: 0 ms (synchronous presentation), 11.8 ms
(one fragment’s offset coincided with the subsequent
fragment’s onset), 17.7 ms, 29.4 ms, 47.1 ms, 70.6 ms,
100 ms, 147.1 ms, 205.9 ms, 294.1 ms. The SOA value
was constant within a trial and the different SOAs were
randomly interleaved across trials (Movie 1). We also
included randomly interleaved catch trials, in which 15/
16 of an image was shown for 58.8 ms. The catch trials
served to ensure that subjects were engaged in the task
and understood the instructions; subjects who scored
below 80% on catch trials, or below 1/3 overall, were
excluded (criteria established a priori, all subjects
passed in Experiment 1).

The flickering noise continued while the fragments
were displayed and for 500 ms after the last fragment
appeared, at which point it was replaced by a blank
gray screen containing the text ‘‘Please indicate which
kind of picture was hidden in the clouds:’’ and four
options were shown, corresponding to the four game-
pad buttons used, for ‘‘Animals,’’ ‘‘People,’’ ‘‘Vehicles,’’
and ‘‘Plants.’’ This choice screen remained until the
subject pressed a button. Performance is reported as
mean 6 SEM throughout the manuscript. A high-
contrast mask (one of the noise images, selected at
random, with its contrast maximized) then appeared
for one monitor refresh, followed by the fixation cross
for the next trial. Trials in which the subject looked
away from the stimulus or blinked were excluded from
analyses. No feedback was given, except between
blocks, when the overall performance for that block
was displayed.

Stimulus presentation, Experiment 2, variant A

Experiment 2A addressed two questions. First, can
the uncertainty reduction model accurately describe the
simplest possible asynchronous trials, containing only
two fragments? Second, while the performance curves
from Experiment 1 appeared to be near asymptote by
294.1 ms SOA, do the results hold at very long SOA?
Images were drawn from a library of 364 line drawings
and silhouettes, which partially overlapped with that

used in Experiment 1. Aside from the different image
set and the additional conditions, the experiment
parameters were identical to those in Experiment 1.
Twenty-one new subjects (13 female, age 19–51, mean
age 27) participated in this experiment. We excluded
from analyses one subject due to low performance on
catch trials (, 0.8 correct) and three subjects due to low
overall performance (, 1/3 correct); this exclusion did
not significantly change the overall results. In this
variant, we had eye tracking available for 10 of the 17
subjects whose performance exceeded threshold (the
eye tracker was unavailable for five subjects and
calibration was unreliable for two subjects). Catch
trials were included in six subjects. There were 36
blocks of 36 or 37 trials, depending on whether catch
trials were included.

Stimulus presentation, Experiment 2, variant B

In Experiment 1, longer SOAs and more fragments
both led to longer trials. These differences might have
influenced the observed results (e.g., forgetting infor-
mation over the course of a second or more may lead to
lower performance in longer trials). To control for this
possibility, we fixed the total trial duration in a second
variant experiment. Moreover, during the approxi-
mately 2-hr duration of each run of Experiment 1, each
1/16 of each image was presented an average of 3.4
times. To ensure that this repetition did not lead to rote
memorization or long-term learning effects, this second
variant also included a larger image library, so that

Figure 2. Mean performance across all 16 subjects in

Experiment 1, in trials with zero SOA. Error bars indicate

standard errors of the mean (SEM). All presentations lasted for

11.8 ms, except the catch trials, which lasted 58.8 ms. The

dashed line indicates chance performance.
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each 1/16 of each image was presented to each subject
an average of 0.5 times. There were 36 blocks of 34
trials. SOA values were drawn from the same list as in
Experiment 1. Two-fragment trials were also presented
but not included in the reported analyses to make the
results more directly comparable to those in Experi-
ment 1. Adding the data from the two-fragment trials
did not change the conclusions. One of the two key
differences in this variant is that the stream of flickering
noise in each trial lasted for 1882.4 ms (for all SOA
values and number of fragments)—long enough to
accommodate a trial with four fragments at the longest
asynchrony used (294.1 ms), followed by 500 ms of
noise. Trials with shorter asynchronies or fewer
fragments concluded with a longer period of uninfor-
mative noise. In this way the time interval between trial
onset and behavioral response was identical in all trials.
The second key difference in this variant is that images
were drawn at random from a library of 1,200 line
drawings and silhouettes, a superset of those used in
Experiments 1 and 2A. This means that each 1/16 of
each image had an approximately 50% chance of being
presented to a given subject. Eighteen new subjects (13
female, age 18–35, mean age 24) participated in
Experiment 2B; one subject was excluded from analyses
due to low performance on catch trials (, 0.8 correct).
We had reliable eye tracking in 13 of the 17 subjects
whose performance exceeded threshold.

Data analyses

Diagnostic image parts

Even though we took several precautions to make
images homogeneous in terms of basic low-level
properties (see above), some images were easier to
categorize than others and parts of some images were
more informative than others. If part of an image is
reliably diagnostic, subjects may be able to perform the
task based only on that part, regardless of any other
information presented. This would confound the study
of temporal integration; there might be no contribution
from the other fragments presented, and thus SOA
would be irrelevant. To mitigate this effect, we
investigated how informative each part of each image
was. Each square j (j ¼ 1, . . . , 16 for each image) was
assigned a ‘‘diagnosticity’’ score DSj defined as:

DSj ¼

X
t

cðtÞ � sðtÞ � pðtÞ
aðtÞ

X
t

sðtÞ � pðtÞ
aðtÞ

: ð1Þ

Here, t ranges over all trials, for all subjects and
across all experiments in which square j was present. If
the category reported in a given trial t was correct, c(t)

is 1; otherwise c(t) is 0. The overall performance of the
subject who performed trial t is p(t), and that subject’s
overall performance on trials with the same number of
fragments and the same asynchrony as trial t is given by
a(t). Finally, s(t) is the number of 1/16 squares of the
image present overall in trial t (that is, three times the
number of fragments in trial t). This score indicates
how reliably each particular 1/16 square led to correct
classification across all subjects. We excluded trials in
which any of the 1/16 squares shown had a diagnos-
ticity score greater than 0.8. This excluded an average
of 33.7% 6 0.3% of trials from Experiment 1 and
17.2% 6 0.3% and 23.1% 6 0.3% from Experiments
2A and 2B, respectively. Including these trials does not
change the conclusions reported here. The uncertainty
reduction model’s window of integration for individual
subjects (see below) when including all trials changed
by only 13% 6 3%. Including trials containing
diagnostic squares does however raise performance
disproportionally at longer asynchronies due to the
greater number of trials in which a single fragment is
sufficient for categorization. In decreasing the dynamic
range of performance, the variances of the model fits
are increased.

Probability summation

Assuming independent responses to each fragment,
one may predict performance in trials with multiple
fragments from the performance observed in single-
fragment trials, y1. We assume that the subject actually
knew the correct image category in some fraction i of
the trials, and guessed at chance in the rest, so that y1¼
i þ (1 – i)/4 (y1 ¼ 1/4 if i ¼ 0 and y1 ¼ 1 if i ¼ 1). The
chance that the subject fails to discern the category
from a trial with n fragments is (1 � i)n, and the final
performance predicted by probability summation is
then

1� ð1� iÞn þ ð1� iÞn

4
¼ 1� 3ð1� iÞn

4
: ð2Þ

Note that even for small values of i, this expression
can be appreciably higher than chance (0.25). For
example, a single fragment performance of y1¼ 0.30 is
obtained from i ¼ 0.0667 and this leads to an overall
performance of 0.43 when n¼ 4 fragments. We cannot
assume independence, however, because multiple frag-
ments from a single image contain correlated infor-
mation, and so this independent probability summation
prediction overestimates expected performance. Ob-
serving the opposite pattern, i.e., exceeding the
performance predicted by independent probability
summation, is thus a particularly strong indicator of
synergistic spatiotemporal integration of information
from multiple fragments.
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Results

We evaluated the sensitivity to temporal imprecision
during visual object recognition by quantifying cate-
gorization of asynchronously presented object frag-
ments (Methods, Figure 1).

Experiment 1

Overall performance in the task was above chance
(chance¼ 0.25) for all subjects, numbers of fragments,
and SOA values. Averaged across all SOA values and
numbers of fragments, performance ranged from 0.37
to 0.77 (0.60 6 0.03, mean 6 SEM). Performance
increased as the number of fragments shown increased
(Figure 2). All 16 subjects’ performance was better for
the four-fragment condition than the three-fragment
condition, significantly so for 13 subjects (chi-squared

test, p , 0.05, compare triangles versus squares in
Figure 3). Catch trial performance was essentially at
ceiling (0.97 6 0.01). Single-fragment performance was
slightly above chance levels (0.33 6 0.01). Overall
performance varied slightly but significantly by cate-
gory (chi-squared test, p , 10�8; animals: 0.59, people:
0.60, plants: 0.54, vehicles: 0.57). In sum, all subjects
were able to correctly perform the task in spite of the
rapid presentations and fragmented objects.

If subjects performed the task by independently
evaluating each fragment, the performance in single-
fragment trials would be predictive of overall perfor-
mance in trials with multiple fragments via independent
probability summation (Methods). Different fragments
from a given image contain redundant information,
which would bias an independent probability summa-
tion prediction towards higher values. Yet performance
at all SOAs was higher than that predicted by
probability summation, dropping at the longest SOA to
values consistent with probability summation (at SOA

Figure 3. Individual subjects’ performance in Experiment 1. Error bars indicate Clopper-Pearson 95% confidence intervals. The x axis

indicates SOA and the y axis indicates the average fraction correct performance for the three-fragment condition (triangles), four-

fragment condition (squares), and single fragment condition (*). Chance performance is 0.25 and the performance in catch trials was

0.97 6 0.01. The dashed lines show the fits from the uncertainty reduction model (Text). The mean value of the integration window

indicated by the uncertainty reduction mode is indicated by a vertical dotted line.
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¼ 294.1 ms: 0.46 6 0.03 observed versus 0.44 6 0.04
predicted, and 0.50 6 0.03 observed versus 0.49 6 0.04
predicted, for three- and four-fragment conditions,
respectively, Figure 4). Hence, independent probability
summation is not a good model to describe overall
performance in this task. That performance at all but
the longest asynchronies exceeded the independent
probability summation prediction despite the redun-
dancy of the fragments within each trial suggests visual
integration, which we quantify below.

Categorization performance showed a strong de-
crease with increasing values of SOA both for three-
fragment trials and four-fragment trials (Figures 3–4).
Performance declined with increasing temporal asyn-
chrony for all 16 subjects (Figure 3). This change in
performance was significant for 11 and 14 subjects in
three-fragment and four-fragment trials, respectively
(chi-squared test, p , 0.05). The performance decre-
ment between simultaneous presentations and asyn-
chronous trials first reached significance at an SOA of
29.4 ms (sign test, p¼ 0.05), with a difference of 2.3% 6

1.4% (Figure 4). While a slight improvement in
performance was apparent in the mean values at 11.8
ms SOA relative to simultaneous presentations, it was
not statistically significant (sign test, p ¼ 0.60). These
observations show that temporal imprecision of even 30
ms disrupts recognition performance.

To quantify performance (y) as a function of SOA
(denoted A below), we started by performing a least-
squares fit of an exponential curve to the data from
each subject for each number of fragments:

ŷðAÞ ¼ Bþ R � 2�A=s: ð3Þ
The three parameters were the time constant s, the

baseline value B¼ ŷ(‘), and the range in performance
R¼ ŷ(0)� ŷ(‘), where ŷ(0) represents the performance
at 0 ms SOA and ŷ(‘) denotes the asymptotic
performance at infinite SOA. We adjusted these three
parameters (B, R, s) to minimize the squared error
between ŷ(A) and the observed data y(A). The
exponential curves provided a reasonable fit to the data
(root-mean-squared error, RMSE, of 0.058 6 0.004
and 0.045 6 0.003, for three-fragment and four-
fragment data, respectively). As a measure of the
window of integration, we considered s, the SOA at
which the exponential curve achieved its half height.
The mean value of s across 16 subjects was 120 6 24
ms and 104 6 19 ms, in three-fragment and four-
fragment trials, respectively. Thus, shape integration at
spatial scales of at least approximately 58 remains
evident over a time scale on the order of 100 ms.

The exponential fits described the shapes of each of
the response curves and experimental parameters
separately. We sought a unifying model that could
capture all the different experimental conditions and
could be realized by the firing rates of neurons. As
discussed above, probability summation failed in
assuming that multiple fragments contribute to per-
ception independently. To include the interdependence
among different fragments and to account for the
increasing number of possible two-fragment interac-
tions as fragment count increases, we developed a
model based on the notion that pairs of fragments
interact to reduce uncertainty about the image as an
exponential function of their SOA. In this model, we
described a subject’s observed performance in terms of
an underlying uncertainty u, which is reduced by
interactions between presented fragments. As above,
we assume that the subject actually knew the correct
image category in some fraction i of the trials, and
guessed at chance in the rest, so that y(A)¼ iþ [(1 – i)/
4]. The empirical uncertainty is then 1–i, the chance
that the subject did not know the image category. We
assume that a second fragment reduces the underlying
uncertainty u by some factor f(A) that depends on the
asynchrony A with which it is presented relative to the
first. A third fragment reduces uncertainty by another
factor of f(A), and also by a factor of f(2A), because it is
presented A ms after the second fragment and 2A ms
after the first fragment. We assume independence, so
the total uncertainty with three fragments is u � f2(A)
f(2A). Similarly, the total uncertainty in a four-
fragment trial is u � f3(A) � f2(2A) � f(3A). If we denote
the total uncertainty with a particular number of
fragments as u’, the predicted performance is then 1�
u0 þ (u0/4). Note that u is conceptually related to
performance in single fragment trials but is not directly
mathematically relatable: The value of u also incorpo-

Figure 4. Summary of results from Experiment 1. Performance is

averaged across n¼ 16 subjects (individual performance shown

in Figure 3). Conventions are the same as in Figure 3; horizontal

dashed lines indicate the performance level predicted by

probability summation, based on single-fragment performance.

Error bars show SEM across subjects.
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rates the fact that different fragments from a single
image are not independent but that this dependency is
factored out in the consideration of pairs of fragments
via f(A).

For each subject, we used their empirical perfor-
mance to calculate the empirical uncertainty 1–i at each
SOA and each number of fragments. We then found
the least-squares best fits for the uncertainty reduction
function f(A) and the underlying uncertainty u that was
modified by f(A). We considered for f(A) exponential
functions of the form f(A)¼ B0 � R0�2�A/s0. Here B0 ¼
f(‘) is the asymptote, which determines what might be
called ‘‘cognitive’’ or ‘‘memory-based’’ integration, the
ability to combine information from multiple frag-
ments at an arbitrarily long SOA. R0¼ f(‘)� f(0) is the
range of uncertainty reduction spanned by f, which
describes the benefit of presenting visual information
simultaneously rather than with very large SOA.
Finally, s0 is the time constant, which describes the
SOA at the uncertainty reduction function’s half-
height. Given the exponential nature of this model,
there is some small amount of integration that persists
at arbitrarily long asynchronies, decreasing asymptot-
ically towards zero. Along with the underlying uncer-
tainty u, this makes four total parameters to describe a
subject’s performance across all SOAs.

The uncertainty reduction model fit the data quite
well: root-mean-square errors (RMSE) for the model
(0.061 6 0.004 and 0.046 6 0.002, for three-fragment
and four-fragment trials, respectively) were not signif-
icantly higher than the corresponding RMSE values for
exponential fits to the raw data discussed above (0.058
6 0.004 and 0.045 6 0.003, respectively; Wilcoxon
rank sum test comparing the two models, p¼ 0.42 and
0.61, respectively), even though the exponential fits to
the raw data have two more free parameters. Given
those extra parameters, the corrected Akaike Infor-
mation Criterion (Akaike, 1974; Burnham & Anderson,
2002) is lower for the uncertainty reduction model in 15
out of 16 subjects; on average, the likelihood of the
uncertainty reduction model is 3.74 6 0.51 times higher
than that of the exponential fits.

We described the window of integration with the
uncertainty reduction model exponential’s half height
parameter s0. When we fit the model to the data from
individual subjects, we obtained a mean s0of 97 6 9 ms
(Figure 3). In Figure 4, we also made use of the same
framework, considering all subjects within the experi-
ment together. Rather than fitting to each subject’s
performance separately, we fit one uncertainty reduc-
tion model to all subjects’ data. The values of the best
fit parameters for the uncertainty reduction model were
u¼ 0.43 6 0.02, B0¼ 0.99 6 0.01, R0¼ 0.15 6 0.02, and
s0 ¼ 109 ms. R2 values between the data and the
predictions for the population uncertainty reduction
model were 0.92 for three-fragment trials and 0.97 for

four-fragment trials. This model succinctly and accu-
rately described a subject’s performance across all
conditions based solely on the reduction of uncertainty
as a function of SOA. The model used fewer
parameters to explain a subject’s performance than the
set of exponential fits, it could generalize across
different numbers of fragments, and it suggested an
underlying psychological interpretation.

We further considered a model based on signal
detection theory, which assumes a probabilistic frame-
work to describe each subject’s performance in each
trial. Previous analyses of psychophysics data (Swets,
1961) have shown that high-threshold models like the
uncertainty reduction model just described sometimes
do not capture subjects’ behavior as well as models
based on signal detection theory (SDT). We therefore
constructed a SDT model to test whether it would give
different results from the uncertainty reduction model.
We used a Markov chain Monte Carlo (MCMC)
method for calculating d0 (a SDT measure of sensitivity
to stimulus identity) with bias in four-alternative forced
choice tasks (DeCarlo, 2012). Models were fit using
JAGS (http://sourceforge.net/projects/mcmc-jags/)
with 10,000 iterations of burn-in followed by 20,000
iterations to approximate d0 distributions. Having
calculated d0 for each subject, each asynchrony, and
each number of fragments, we proceeded to fit a four-
parameter model to each subject’s data. Let g be a
scaled base-two exponential function with parameter s 00

and scale factor R 00, g(A)¼R 00�2�A/s 00. Then g describes
the increase in sensitivity brought about by having two
fragments with an asynchrony of A. The third
parameter is v 00, the d0 value in single-fragment trials
(constrained to lie within the 95% confidence interval
estimated from the MCMC fit). Finally, we assumed
that adding additional fragments to a trial might not
aid sensitivity in a perfectly efficient fashion (because
fragments contain correlated information) and we
described this inefficiency with a multiplicative factor
c 00 that progressively reduced the contributions of
successive fragments. The model predicts d0 for n
fragments with asynchrony A as follows:

d0 ¼
Xn
i¼1

�
v 00 � c 00i�1 þ ði� 1Þ � g

�
A � ðn� iþ 1Þ

��
:

ð4Þ
We fit the four parameters of this model using a

least-squares procedure and compared the time con-
stant values (s 00) obtained with the SDT model against
those obtained from the uncertainty reduction model
(s0). The values of the best fits for the SDT model were
R 00 ¼ 0.21 6 0.02, v 00 ¼ 0.42 6 0.06, c 00 ¼ 0.47 6 0.09,
and a cross-subject mean s 00 of 101 6 8 ms. Given that
the SDT results were similar to those of the uncertainty
reduction model and the higher computational re-
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quirements for the SDT model, we used only the
uncertainty reduction model for the remainder of our
analyses.

As noted above, performance differed slightly
between categories. To evaluate whether such inho-
mogeneity contributed to the observed integration time
constants, we repeated the analyses after matching
performance across categories by random subsampling.
Under these performance-matched conditions, the
mean s0 was 95 6 9 ms, and the population s0 was 105
ms. We also analyzed each category and each subject
separately after matching performance. The mean s0 for
the four categories were 125 6 23 ms, 144 6 33 ms, 89
6 21 ms, and 131 6 26 ms, respectively, for animals,
people, plants, and vehicles. Note that these fits were
noisier due to having fewer data. While subjects could
use different features to recognize images belonging to
different categories, the results were similar across
categories.

Experiment 2

We extended the first experiment in two variants
aimed at evaluating two-fragment images and very long
SOAs (Experiment 2A) and constant trial lengths and
no fragment repetition (Experiment 2B). These exper-
iment variants are described under Methods.

In Experiment 2A, the window of integration, s0, was
101 6 14 ms when two-fragment trials were included in
the fit, and 91 6 13 ms when they were not included
(Figure 5A). The other model parameters were u¼ 0.33
6 0.02, B0 ¼ 0.990 6 0.003, and R0 ¼ 0.069 6 0.006.
These values were not significantly different from each
other or from the results in Experiment 1 (Wilcoxon
rank sum test, p¼ 0.55 comparing these two fits, p¼
0.99 and 0.68, respectively, comparing Experiment 1 to
these results with and without two-fragment trials).
Furthermore, the model fit using only three- and four-
fragment trials was a good fit for the two-fragment data
(RMSE of 0.091 6 0.006 using only three- and four-
fragment trials versus 0.081 6 0.004 using all trials;
Wilcoxon rank sum test, p¼ 0.20). This demonstrates
that the uncertainty reduction model was able to
generalize to fragment counts that were not used to fit
the model. While performance at 294.1 ms was slightly
better than performance at 705.9 ms (differing by 3.4%
6 1.7%), this difference was not significant (sign test, p
¼ 0.16). RMSE and s0 values were unaffected by
including the data from 705.9 ms trials (Wilcoxon rank
sum tests, p¼ 0.97 and 0.92, respectively). R2 values
were 0.30, 0.75, and 0.78 for two-, three-, and four-
fragment trials, respectively. The two-fragment R2

value was low because the plot of performance against
asynchrony was almost flat. The results of this
experimental variant suggest that performance at long

SOAs in Experiment 1 was close to asymptote and that
the uncertainty reduction model can extrapolate to
two-fragment trials.

The overall performance in Experiment 2B (as well
as in the previous variant) was lower than in
Experiment 1 (cf. Figure 5 vs. Figure 4) due to the
inclusion of more difficult line drawings in the image
sets (Figure 5B). Considering only the trials that
included the same types of images across experiments
(silhouette images) raised performance to levels com-
parable to the ones in Experiment 1 without signif-
icantly changing s0. R2 values for the uncertainty
reduction model were 0.64 and 0.81 for three- and four-
fragment trials, respectively. The integration window
from the uncertainty reduction model in Experiment 2B

Figure 5. Mean performance across all subjects in Experiment 2.

A. Variant A (n ¼ 17 subjects), which added a two-fragment

condition (circles) and data at 705.9 ms SOA. B. Variant B (n ¼
17 subjects), which controlled for influence of trial duration and

stimulus repetition (see Results and Methods). Conventions are

otherwise as in Figure 4.
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(s0 ¼ 123 6 20 ms) was indistinguishable from that
obtained in Experiment 1 (Wilcoxon rank sum test, p¼
0.79). The other model parameters were u¼ 0.30 6
0.02, B0 ¼ 0.990 6 0.003, and R0 ¼ 0.064 6 0.009. The
similar s0 values suggest that the results of Experiment
1 cannot be ascribed to differences in trial duration or
slight familiarity with the images shown.

Discussion

We measured the performance of 50 subjects in
different variants of an experiment to evaluate the
effect of presenting object fragments with varying
degrees of asynchrony. By applying this externally
induced temporal jitter, we characterized the impor-
tance of temporal precision for visual object recogni-
tion.

Subjects might in principle have made educated
guesses based on the content of individual fragments,
or combined such guesses independently across multi-
ple fragments. Instead, we found that performance was
significantly higher than predicted by independent
probability summation, indicating that information
from different fragments was synergistically integrated.
Recognition performance decreased with increasing
SOA and was well characterized by a simple model
based on the reduction of uncertainty as a function of
the temporal proximity of the presented image parts. In
principle, such a model could be realized by neurons
whose firing rate increases with the arrival of each new
burst of information and then relaxes more slowly
towards baseline. Neurons showing such firing rate
increases upon transient stimulus onset, and decay
dynamics over hundreds of milliseconds, have been
described in recordings in the lateral intraparietal
cortex during a motion discrimination task (Huk &
Shadlen, 2005).

While we focused on the uncertainty reduction
model, we also fit the data from Experiment 1 with a
model based on signal detection theory. These two
models reflect different paradigms of psychological
processing. In the former, each additional piece of
information (provided by each successive fragment)
multiplicatively reduces the subject’s uncertainty about
what was shown, increasing the probability of giving a
correct answer. In the latter, each additional fragment
adds to the distance between the actual category and
the other categories in an implicit psychological space,
again increasing the probability of discriminating the
true category from the others. There are important
differences between these paradigms (Swets, 1961),
though either could be realized via the integrative
neurons hypothesized above. The uncertainty reduction
model might be implemented by a set of downstream

neurons that act as thresholds on the evidence
accumulated by the integrative neurons; the first
downstream neuron to cross threshold could report the
identity of the viewed image. Support for one or
another image would manifest as increased firing rates
in integrative neurons feeding into the associated
downstream neurons, increasing its chance of being the
first to cross threshold. The signal detection theory
might instead reflect a set of downstream neurons
whose activity reflected which integrative neuron was
most active, in a winner-take-all fashion. The integra-
tive neurons would then essentially be counting votes.
Ultimately, given that the two models yielded indis-
tinguishable estimates of the window of temporal
integration, it is difficult to draw any conclusions about
which paradigm is more likely to be correct based on
the current data.

The results demonstrated that asynchronies of a few
tens of milliseconds disrupted categorization perfor-
mance. This disruption is consistent with a body of
neurophysiological observations and computational
models of object recognition that are based on a rapid
cascade of processing events along the ventral visual
stream (DiCarlo et al., 2012; Fukushima, 1980; Hung et
al., 2005; Johnson & Olshausen, 2003; Kirchner &
Thorpe, 2006; Liu et al., 2009; Potter & Levy, 1969;
Richmond et al., 1990; Riesenhuber & Poggio, 2000;
Rolls, 1991; Serre et al., 2007; Thorpe et al., 1996;
vanRullen & Thorpe, 2002). The response latencies
across the ventral stream consistently increase by about
10 to 20 ms at each stage from the retina to the
thalamus to a cascade of cortical areas from primary
visual cortex to inferior temporal cortex (Maunsell,
1987; Schmolesky et al., 1998). The rapidity with which
visual shape information progresses through the ventral
visual cortex and is converted into behavioral or
perceptual output is consistent with the current
observation that object recognition begins to suffer
impairment with even minor disruptions of stimulus
timing.

In addition to the impairment in shape recognition
through spatial integration due to temporal asynchro-
ny, timing judgments can be influenced by spatial cues.
Spatial grouping cues that encourage the binding
together of separate parts can interfere with simulta-
neity judgments, at a time scale similar to that reported
here (Cheadle et al., 2008). Spatial judgments are
influenced by temporal constraints and temporal
judgments are influenced by spatial constraints.

While temporal asynchrony disrupted recognition,
we observed that performance was well above asymp-
totic levels even at SOAs of approximately 100 ms.
Integration at these SOAs cannot be ascribed to trial
duration, eye movements, remembering the stimuli
from previous trials, or forgetting the fragments shown
within a trial (Figure 5). Performance values at SOAs
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of approximately 100 ms are consistent with the
extended durations of responses in inferior temporal
cortex (De Baene et al., 2007). These extended response
durations might instantiate a buffer, allowing the
integration of visual shape information over time. The
ability to integrate visual information over brief spans
could underlie many critical visual functions. For
example, percepts of camouflaged or partially occluded
objects could be assembled over time as the objects
moved relative to their background or occluders
(Nishida, 2004) and information could be integrated
across saccades (Irwin, Yantis, & Jonides, 1983;
Jonides, Irwin, & Yantis, 1982; O’Regan & Levy-
Schoen, 1983).

The observed integration of form information over
, 100 ms is unlikely to reflect working memory
processes, as the temporal scales involved in working
memory span several seconds (Vogel, Woodman, &
Luck, 2006). There is, however, sufficient time between
stimulus presentation and the response period that the
(integrated) image or category information could be
held in working memory. The window of temporal
integration reported here has been observed in other
domains and with other experimental paradigms
(Caudek, Domini, & Di Luca, 2002; Forget, Buiatti, &
Dehaene, 2009; Nishida, 2004). In particular, perfor-
mance that exceeds probability summation at short
SOAs is consistent with the temporal scales involved in
iconic memory (Coltheart, 1980; Di Lollo, 1977;
Eriksen & Collins, 1968; Hogben & Di Lollo, 1974;
Sperling, 1960). Prior work has shown that information
about arrays of letters (Sperling, 1960) or flashing
squares (Hogben & Di Lollo, 1974) remains accessible
for a short time after presentation. It is possible that the
integration we observed at short SOAs in the object
recognition system arises from mechanisms similar to
those underlying the previously reported persistence of
simple visual ‘‘icons,’’ though iconic memory has been
shown to be disrupted by masks (Di Lollo, Clark, &
Hogben, 1988). Visual persistence, as instantiated by
the dynamics of retinal cells, is generally terminated by
a mask; it is more likely that we are measuring neural
or informational persistence at a higher level of the
visual system (Coltheart, 1980). While the dynamic
noise in the stimulus sequence could partly mask visual
persistence, it certainly does not completely obliterate
it. Hence, the integration constants reported here
constitute an upper bound and it is conceivable that
visual information could decay even more rapidly than
reported here.

Two additional phenomena share similar character-
istics with the dynamic rate of decay reported here.
Integration masking, in which irrelevant information
presented immediately before or after the presentation
of a target inhibits perception of that target by adding
noise to it, exhibits a similar time scale to that described

here, and may reflect a similar process (Enns & Di
Lollo, 2000). Priming (in which a stimulus facilitates
the perception or naming of a later stimulus) might also
play a part in these observations. Priming would likely
increase performance at longer SOA; positive effects of
priming typically are small or nonexistent at SOA close
to zero and increase with increasing SOA (La Heij,
Dirkx, & Kramer, 1990; Scharlau & Neumann, 2003).

A series of elegant studies has shown that detect-
ability and perception can be influenced by the exact
time at which a stimulus is presented with respect to
ongoing endogenous oscillations (Rohenkohl & Nobre,
2011; Van Dijk, Schoffelen, Oostenveld, & Jensen,
2008). In the context of the task presented here, it is
conceivable that the initial dynamic noise could reset
such endogenous oscillations and that certain presen-
tation times and SOAs could lead to enhanced
recognition by virtue of their specific phase. The limited
number and uneven sampling of SOAs precludes a
systematic investigation of these effects here, but it will
be interesting in future studies to examine the
physiological signals underlying recognition of asyn-
chronously presented objects.

Several studies have shown interactions between
asynchronous parts of faces (Anaki et al., 2007; Cheung
et al., 2011; Singer & Sheinberg, 2006); those findings
are better described in terms of higher level phenomena
than object recognition. Complex images have also
been used in a study of subjective simultaneity (Loftus
& Hanna, 1989), in which subjects were asked to rate
how complete or integrated images appeared to be
when divided into two parts presented with varying
durations and asynchronies. Here we expand upon this
body of previous work by showing that complex shape
information can be combined across both space and
time to enable object recognition. Our results were
consistent across a battery of controls designed to
account for eye movements, stimulus familiarity, and
memory on longer time scales.

Conclusions

Integration across image fragments begins to break
down when as little as 30 ms separates the fragments
and decays with a time constant of approximately 100
ms. The current characterization of the time course
with which visual object recognition breaks down as a
function of temporal asynchrony provides information
critical to building computer vision systems that
operate beyond static snapshots, to modeling visual
object recognition, to designing experiments that probe
the performance over time of the human visual system,
and to the construction of theories of perception in a
dynamic world.
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