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A seductive hypothesis
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Mastering Atari with deep Q-learnin
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s This how humans learn@



s This how humans learn@

Key properties of human infelligence:
1. Rapid learning from few examples.
2. Flexible generalization.

These properties are not yet fully captured by
deep learning systems.
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The “Frostbite challenge”
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See Lake, Ullman, Tenenbaum & Gershman (2017). Building machines that
learn and think like people. Behavioral and Brain Sciences.



The “Frostbite challenge”

Stage 1:
Reaching basic human-level
performance.

Stage 2:

Can we reach human-level
performance as quickly as
people do?

Stage 3:

Can we perform new tasks or
goals with little or no
retraining?




The “Frostbite challenge”

Stage 1:
Reaching basic human-level
performance.
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Unfair comparison

* Deep neural networks (at least in the way
they're typically frained) must learn their
entire visual system from scratch.

« Humans have their entire childhoods plus
hundreds of thousands of years of evolution.

 Maybe deep neural networks learn like
humans, but their learning curve is just
shiffed.



Learning rate (log points per minute)
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From the very beginning of play, people see objects, agents, physics.
Actively explore possible object-relational goals, and soon come to
multistep plans that exploit what they have learned.

A How to play Frostbite: Initial setup B Visiting active, moving ice flows
i

Obstacles on later levels
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What drives such rapid learning?

One-shot (or few-shot) learning about harmful actions and
outcomes:
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What drives such rapid learning?

To what extent is rapid learning dependent on prior
knowledge about real-world objects, actions, and
consequences?
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What drives such rapid learning?

To what extent is rapid learning dependent on prior
knowledge about real-world objects, actions, and
consequences?
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What drives such rapid learning?

People can learn even faster if they combine their own
experience with just a little help from others:
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What drives such rapid learning?

People can learn even faster if they combine their own
experience with just a little help from others:
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FROSTBITE BASICS

The object of the game is to help Frostbite Bailey build
igloos by jumping on floating blocks of ice. Be careful to
avoid these deadly hazards: killer clams, snow geese,
Alaskan king crab, grizzly polar bears and the rapidly
dropping temperature.

To move Frostbite Bailey up, down, left or right, use the
arrow keys. To reverse the direction of the ice floe you are
standing on, press the spacebar. But remember, each time
you do, your igloo will lose a block, unless it is completely
built.

You begin the game with one active Frostbite Bailey and
three on reserve. With each increase of 5,000 points, a
bonus Frostbite is added to your reserves (up to a
maximum of nine).

Frostbite gets lost each time he falls into the Arctic Sea,
gets chased away by a Polar Grizzly or gets caught outside
when the temperature drops to zero.

The game ends when your reserves have been exhausted
and Frostbite is 'retired’ from the construction business.

IGLOO CONSTRUCTION

Building codes. Each time Frostbite Bailey jumps onto a
white ice floe, a "block" is added to the igloo. Once jumped
upon, the white ice turns blue. It can still be jumped on, but
won't add points to your score or blocks to your igloo.
When all four rows are blue, they will turn white again. The
igloo is complete when a door appears. Frostbite may then
jump into it.

Reserve Frostbites

Score Polar Grizzly
Igloo
Temperature
Killer Clams
Ice Blocks
Fish
Alaskan Snow Geese
King Crab

Work hazards. Avoid contact with Alaskan King Crabs,
snow geese, and Kkiller clams, as they will push Frostbite
Bailey into the fatal Arctic Sea. The Polar Grizzlies come
out of hibernation at level 4 and, upon contact, will chase
Frostbite right off-screen.

No Overtime Allowed. Frostbite always starts working
when it's 45 degrees outside. You'll notice this steadily
falling temperature at the upper left corner of the screen.
Frostbite must build and enter the igloo before the
temperature drops to 0 degrees, or else he'll turn into blue
ice!

SPECIAL FEATURES OF FROSTBITE

Fresh Fish swim by regularly. They are Frostbite Bailey's
only food and, as such, are also additives to your score.
Catch' em if you can.
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The “Frostbite challenge”

Stage 3:
Can we perform new tasks or

goals with little or no
retraining?



The flexibility of human goals

In Frostbite, or any video game, people can easily reuse their learned models for
an endless range of new tasks and goals:
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The flexibility of human goals

In Frostbite, or any video game, people can easily reuse their learned models for
an endless range of new tasks and goals:

Get the lowest possible score.
+ Get closest to 100, or 300, or 1000, or 3000, or any level, without going over.

- Beat your friend, who’s playing next to you, but just barely, not by too much, so
as not to embarrass them.

+ Go as long as you can without dying.
+ Die as quickly as you can.

« Pass each level at the last possible minute, right before the temperature timer
hits zero and you die (i.e., come as close as you can to dying from frostbite
without actually dying).

+ Get to the furthest unexplored level without regard for your score.
- See if you can discover secret Easter eggs.

+ Get as many fish as you can.

« Touch all the individual ice floes on screen once and only once.

« Teach your friend how to play as efficiently as possible.



Towards more human-like RL agents

Humans don't just do pattern recognition and function
approximation; they learn “theories” of the game.

These theories support rapid learning, efficient planning, and
flexible generalization.



Explore, Model, Plan agent (EMPA)

Perception /Symbolic description )

On (Agent, Ice) A
Collide (Agent,Crab) A

\= J

Theory induction

/T heory

Collide (Agent,Crab)=» Die
Collide (Agent, Fish)=> +1

= J

Planning and exploration )




Video game description language (VGDL)

w w
BasicGame wl W
SpriteSet w000 W
base > Immovable color=WHITE
avatar > FlakAvatar stype=sam weee W
missile > Missile w W
sam > orientation=UP color=BLUE singleton=True W W
bomb > orientation=DOWN color=RED speed=0.5 w w
alien > Bomber stype=bomb prob=0 cooldown=3 speed=0.75 w w
portal > SpawnPoint stype=alien cooldown=10 total=3 w 000 000000 000 w
. w 00000 00000000 00000 w
I w @ © 00 00 00000 w
1 > portal W A W
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
InteractionSet
avatar EOS > stepBack
alien EOS > turnAround
missile EOS > killSprite
missile base > killSprite
base missile > killSprite
base alien > killSprite
avatar alien > killSprite
avatar bomb > killSprite
alien sam > killSprite
TerminationSet
SpriteCounter stype=avatar limit=0 win=False

MultiSpriteCounter stypel=portal stype2=alien limit=0 win=True

Schaul (2013)



Early-stage
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Mid-stage




Late-stage
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Generalization




Relational structure: level 1

Agent wins by making all blue disappear,
by pushing blue into yellow.



Relational structure: level 2

Touching red turns red into yellow.



Relational structure: level 3

Pushing orange into purple makes orange
disappear and turns purple into yellow.



Relational structure: level 4

Touching pink turns pink into orange.



Relational structure: model




Relational structure: humans




Relational structure
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Hindering

Agent has to pick up all the pink boxes to win.
The Chaser (green) tries to pick up the yellow
box (a termination condition). Purple fence that
agent can go through and the yellow can be
pushed through, that the Chaser can’t pass.
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Comparison with humans on 90
challenging games
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Learning curves
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Object interactions
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Summary of experiments and modeling

A theory-based RL agent can play games in human-like ways
(not just asymptotically the same performance).

Object-oriented, relational representation is key, combined
with a theory induction algorithm for sample-efficient learning.



What is the “model” in model-based RL?

Most research in psychology and neuroscience has made
fairly simplistic (e.g., tabular) assumptions about model-
based RL in the brain.

We argue that human model-based RL uses structured,
object-oriented programs that are learned from experience.
Structure reduces both sample complexity and planning
complexity.



What about deep learning?

Perception, theory induction and planning are all
computationally expensive. Deep learning can make these
more efficient.

« Learning fast pixel-to-symbol mappings.
* Finding good theories quickly using neural program search.

* Using neural value approximations as heuristics to guide
planning.



Conclusions

Human video game learning as theory-building, not pattern
recognition.

Using theory induction methods in a simple but rich
description language for games can do better, but there is still
much work to be done.



Extra slides



Preconditions

Win by getting the yellow item. Touching pink kills the
agent, unless the agent has picked up a white box.
Touching pink while holding a white box eliminates
that white box from the agent’s possession.
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“Pushing boulders”

Agent (dark blue) wins when it touches the pink square.
Green can be pushed. Orange kills the agent, but
green can be pushed into orange to destroy if.



“Pushing boulders”
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