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Learning machines

Learning machines, natural or artificial, find statistical patterns in data that

generalize to previously unseen samples.

Learning
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How do we find/learn the parameters of the learning machine?

How well does the machine predict?
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y=ax+b y=ax’+bx+c y=ax"+...

1. More data is better

2. Too many parameters is not good

Figure Reference: https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42
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Classical wisdom: Overparametrization = Overfitting

Overfitting

y=ax+b y=ax*+bx+c y=ax+...
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Classical wisdom: Overparametrization = Overfitting
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Main result of classical statistical learning theory
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Figure reference: Belkin et al., PNAS 2019



Classical wisdom: Overparametrization = Overfitting

Overfitting

y=ax+b y=ax*+bx+c y=ax+...
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Why doesn’t the brain overfit”



“Parameters” of the brain

10 neurons
10 synapses

What changes as one learns?




Rapid formation and selective stabilization of
synapses for enduring motor memories

Tonghui Xu'*, Xinzhu Yu'*, Andrew J. Perlik', Willie F. Tobin', Jonathan A. Zweig', Kelly Tennant? Theresa Jones>
& Yi Zuo'
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Rapid formation and selective stabilization of
synapses for enduring motor memories
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“Parameters” of the brain
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10 neurons
10 synapses

Do we have enough “data” to “fit” all
the synaptic weights of our brains?




The brain is overparametrized

Geoffrey Hinton:
(Turing Medalist, “Godfather of Deep Learning”)

The brain has about 10'* synapses and we only live for about
10 seconds. So we have a lot more parameters than data.

This motivates the idea that we must do a lot of unsupervised
learning since the perceptual input (including proprioception)

IS the only place we can get 10° dimensions of constraint per
second.

(Reddit forum)



The brain is overparametrized

s the missing information in our genome?

Anthony Zador:

The human genome has about 3 X 10” nucleotides, so it can
encode no more than about 1 GB of information—an hour or

so of streaming video. But the human brain has about 10!
neurons, and more than 10° SYNapSses Per neuron. Since
specifying a connection target requires about lc)glO11 = 37

bits/synapse, it would take about 3.7 X 10" bits to specify
all 10'* connections.

Zador, 2019



Why doesn’t the brain overfit”

Why don’t deep networks overfit”



Deep networks as models of brain function

PERSPECTIVE FOCUS ON NEURAL COMPUTATION AND THEORY
nature
neuroscicnce

Using goal-driven deep learning models to understand
sensory cortex

Daniel L K Yamins!»? & James ] DiCarlo!+2
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Deep networks work well in the overparametrized regime
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Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.



DEEP DOUB
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WHERE BIGGER MODELS AND MORE DATA HURT
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Risk

Reconciling modern machine-learning practice and
the classical bias—variance trade-off

Mikhail Belkin®"", Daniel Hsu¢, Siyuan Ma?, and Soumik Mandal®

2Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210; PDepartment of Statistics, The Ohio State University,
Columbus, OH 43210; and “Computer Science Department and Data Science Institute, Columbia University, New York, NY 10027

Edited by Peter J. Bickel, University of California, Berkeley, CA, and approved July 2, 2019 (received for review February 21, 2019)

Breakthroughs in machine learning are rapidly changing science  ing data (i.e., have large empirical risk) and hence predict poorly
and society, yet our fundamental understanding of this technol- on new data. 2) If # is too large, the empirical risk minimizer

under-parameterized over-parameterized
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Why*

Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural
Networks

Blake Bordelon' Abdulkadir Canatar?> Cengiz Pehlevan '’



Deep Learning and Generalization

Parameters

Y

fix

J7(X): target function where (possibly noisy) training examples come from

Question: How many training examples do we need to learn a function?
Depends on network architecture, training algorithm and the nature of the target function.



Rajat's Blog Work of Rajat Vadiraj Dwaraknath

A blog about machine learning and math.

Blog Projects About
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Understanding the Neural Tangent Kernel
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Figure Reference: https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42
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Infinite-Width Limit of Neural Networks
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In this limit, gradient descent training of a fully connected neural network
IS equivalent to kernel regression with a kernel called the Neural Tangent Kernel.

Jacot et al., 2018, Arora et al., 2019; Lee et al., 2019



Goal of Network Training

P

2
Cost function for training: 5 Z (s w) — fr(xH))
u=1

X*: training datum
Ww: training datum
f(x*, w): Network’s output
fT(X/", w): Desired output, target output, teacher, supervision ...

P: number of training samples

| Training Goal: Find best W




Solution “Manifold”

1 2

min — 3" (F(x" w) = f7(x"))
u=1

We found the minimum if f(x*; w) = f(x¥) forally = 1,..., P

Suppose we have N parameters/weights: N > P if overparametrized (infinite width)

Many more equations than unknowns!

(Possibly) many optimal w on an N — P dimensional manifold? Which one to chose?



(Let this slide represent the N dimensional w-space)

N — P dimensional solution space

Learning/Training method selects the solution|




Popular Method of Network Training: Stochastic Gradient Descent

Cost
1 - )
2 (f(xts w) — fr(x)) N
p=1 ~
1 < 2
Gradient Descent: Wemw-Vyo Z (fxts w) = fr(x))
u=1

1
Stochastic Gradient Descent: W W — VWE (F(xH; w) —fT(X’“‘))2



(Let this slide represent the N dimensional w-space)

N — P dimensional solution space

/

‘What kind of solutions does stochastic gradient|
| descent choose? |
(Inductive bias of)

™~




Reduce Deep Network Complexity by Taylor Expansion!

1 - 2
= 2. (Fx W) = fr(x)
u=1

Taylor expansion: Jx;w) = f(x; Wg) + (W — W) - V, f(X; W)

1

1 & c
o (W) = f)” % (O W)+ O = W) - Vo 5 W) = ()
u=1 ﬂ=1



Linearized Networks and Neural Tangent Kernel (NTK)

Jx;w) = f(X; Wg) + (W= W) - Vi f(X; W)

1

1 P P
= 25 (FO¢ W) = ) 0 = 3 (FR Wo) (W = Wo) - Vi fxs W) = f(x))°
M=1 ﬂ=1

Gradient flow to zero error: f(x) = y 'Ky k(x)
Kyre(X, X') = Vi f(X; Wo) - Vi, f(X5 W) NTK

Kyrx P X P kernel gram matrix Kyrg ,, = Kypg(X¥, X7),
k(x), = Kyrg(X, x*)
= fr(x*)

Approximation is exact in the infinite-width limit
Jacot et al., 2018, Arora et al., 2019, Lee et al., 2019




Neural Tangent Kernel (NTK) and Its Spectrum
Kyre(X,X') =V, f(X; wp) - Vi, f(X; W) NTK

KNTK P X P matrix KNTK,IMU — KNTK(XM’ XU),

f 2 =S¥ and kernel is rotation invariant, as is Ky, then

00 N(d k)

K&X) =) & D V(XY (X)

k=0 m=1 I

Spherical
Harmonics
(Mercer Decomposition)
Smola et. al, 2001, Bietti & Mairal, 2019



Spherical Harmonics
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Figure SI.1. Spectrum of fully connected ReLU NTK without bias
for varying depth £. As the depth increases, the spectrum whitens,
causing derivatives of lower order to have infinite variance. As
¢ — 00, Ak N(d, k) ~ 1 implying that the kernel becomes a Delta
function possibly added to a scalar K (x,x’') ~ ad(x — x') + b
for some constants a and b.



Expression for Generalization Error
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Why don’t deep networks overfit”?

Learning algorithms are biased toward simple functions

Spherical Harmonics
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Large-d limit
To gain insight, we take d — oo limit. In this limit 1, ~ O(d™"). We assume P = ad',

We can analyze the asymptotes of the learning curves:

E, (P) L
fork < [, = > Perfect generalization
Ekm(o)
fork =1, = f(a) > Learning
Ekm(o)
E, (P)
for k > |, =1 & Not learned

Ekm(o) -



Sharpening the question
(one of the many ways the study of mathematical models is useful)

'he brain is not overtitting because it has an “inductive bias”.
"heory suggests that we need to understand (at least)

1. The learning algorithms of the brain

2. The (tangent) kernel of the brain
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