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Learning machines

Learning machines, natural or artificial, find statistical patterns in data that 
generalize to previously unseen samples.

Input OutputLearning  
Machine

w

w :      “Parameters” to be learned from data



x: Input

y: Output
Training Data

y = ax + b
a and b are parameters 

to be learned

Predict 
these points 
“Test data”



How do we find/learn the parameters of the learning machine? 

How well does the machine predict?



𝑦 = 𝑎𝑥 + 𝑏 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑦 = 𝑎𝑥15 + …

1. More data is better 
2. Too many parameters is not good

Figure Reference: https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42
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Main result of classical statistical learning theory

Figure reference: Belkin et al., PNAS 2019

# of parameters

Risk = Error
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Why doesn’t the brain overfit?



“Parameters” of the brain

 neurons 
 synapses

1011

1014

What changes as one learns?





Figure reference:  
Ziv and Ahissar, 2009



“Parameters” of the brain

 neurons 
 synapses

1011

1014

Do we have enough “data” to “fit” all 
the synaptic weights of our brains?  



The brain is overparametrized

Geoffrey Hinton:  
(Turing Medalist, “Godfather of Deep Learning”) 

The brain has about  synapses and we only live for about 
 seconds. So we have a lot more parameters than data. 

This motivates the idea that we must do a lot of unsupervised 
learning since the perceptual input (including proprioception) 
is the only place we can get  dimensions of constraint per 
second. 
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109

105

(Reddit forum)



The brain is overparametrized

Is the missing information in our genome? 

Anthony Zador:  

The human genome has about  nucleotides, so it can 
encode no more than about 1 GB of information—an hour or 
so of streaming video. But the human brain has about  
neurons, and more than  synapses per neuron. Since 
specifying a connection target requires about 
bits/synapse, it would take about  bits to specify 
all  connections.

3 × 109

1011

103

log1011 = 37 
3 . 7 × 1015

1014

Zador, 2019



Why doesn’t the brain overfit?

Why don’t deep networks overfit?



Deep networks as models of brain function





Deep networks work well in the overparametrized regime

ImageNet dataset has ~1.2M images





Read as # of parameters



Why?



Deep Learning and Generalization

x

Input

y
Output

f(x; w)
Parameters

: target function where (possibly noisy) training examples come from fT(x)

Question: How many training examples do we need to learn a function? 
Depends on network architecture, training algorithm and the nature of the target function. 



Work of Rajat Vadiraj Dwaraknath
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m = 10 m = 100 m = 1000

Work of Rajat Vadiraj Dwaraknath



Work of Rajat Vadiraj Dwaraknath



Infinite-Width Limit of Neural Networks

nl → ∞ nl+1 → ∞

Initialize 𝒩 (0,
1
nl )

In this limit, gradient descent training of a fully connected neural network 
is equivalent to kernel regression with a kernel called the Neural Tangent Kernel.  

Jacot et al., 2018; Arora et al., 2019; Lee et al., 2019



Goal of Network Training

1
2

P

∑
μ=1

(f(xμ; w) − fT(xμ))2
Cost function for training:

: training datum 
: training datum 

: Network’s output 
 : Desired output, target output, teacher, supervision … 

: number of training samples

xμ

w
f(xμ, w)

fT(xμ, w)
P

Training Goal: Find best w



Solution “Manifold”

min
w

1
2

P

∑
μ=1

(f(xμ; w) − fT(xμ))2

We found the minimum if  for all  

Suppose we have  parameters/weights:  if overparametrized (infinite width) 

Many more equations than unknowns! 

(Possibly) many optimal  on an  dimensional manifold? Which one to chose?

f(xμ; w) = fT(xμ) μ = 1,…, P

N N ≫ P

w N − P



(Let this slide represent the  dimensional -space)N w

 dimensional solution spaceN − P

Learning/Training method selects the solution



Popular Method of Network Training: Stochastic Gradient Descent

w ⟵ w − ∇w
1
2

P

∑
μ=1

(f(xμ; w) − fT(xμ))2
Gradient Descent:

Cost 

w1

w2

w ⟵ w − ∇w
1
2 (f(xμ; w) − fT(xμ))2Stochastic Gradient Descent:

1
2

P

∑
μ=1

(f(xμ; w) − fT(xμ))2



(Let this slide represent the  dimensional -space)N w

 dimensional solution spaceN − P

What kind of solutions does stochastic gradient 
descent choose?  

(Inductive bias of SGD)

w0



Reduce Deep Network Complexity by Taylor Expansion!

f(x; w) ≈ f(x; w0) + (w − w0) ⋅ ∇w f(x; w0)

1
2

P

∑
μ=1

(f(xμ; w) − fT(xμ))2 ≈
1
2

P

∑
μ=1

(f(xμ; w0) + (w − w0) ⋅ ∇w f(xμ; w0) − fT(xμ))2

1
2

P

∑
μ=1

(f(xμ; w) − fT(xμ))2

Taylor expansion:



Linearized Networks and Neural Tangent Kernel (NTK)

f(x) = y⊤K−1
NTKk(x)Gradient flow to zero error:

   NTK 

           kernel gram matrix  ,   

 

KNTK(x, x′ ) = ∇w f(x; w0) ⋅ ∇w f(x′ ; w0)

KNTK P × P KNTK,μν = KNTK(xμ, xν)
k(x)μ = KNTK(x, xμ)
yμ = fT(xμ)

Approximation is exact in the infinite-width limit 
Jacot et al., 2018; Arora et al., 2019; Lee et al., 2019

f(x; w) ≈ f(x; w0) + (w − w0) ⋅ ∇w f(x; w0)

1
2

P

∑
μ=1

(f(xμ; w) − fT(xμ))2 ≈
1
2

P

∑
μ=1

(f(xμ; w0) + (w − w0) ⋅ ∇w f(xμ; w0) − fT(xμ))2



Neural Tangent Kernel (NTK) and Its Spectrum

   NTK 

           matrix  ,   

KNTK(x, x′ ) = ∇w f(x; w0) ⋅ ∇w f(x′ ; w0)

KNTK P × P KNTK,μν = KNTK(xμ, xν)

If     ,  and kernel is rotation invariant, as is , then 𝒳 = 𝕊d−1 KNTK

K(x, x′ ) =
∞

∑
k=0

λk

N(d,k)

∑
m=1

Ykm(x)Ykm(x′ )

Spherical 
Harmonics 

(Mercer Decomposition) 
Smola et. al, 2001; Bietti & Mairal, 2019



Spherical Harmonics

𝑘





         
Eg = ⟨(f(x) − fT(x))2⟩ =: ∑

ρ

Eρ

Expression for Generalization Error

t = ∑
ρ

1
1
λρ

+ P
λ + t

γ = ∑
ρ

1

( 1
λρ

+ P
λ + t )

2

Eρ =
w2

ρ

λρ
[ (λ + t)2

(λ + t)2 − Pγ ] 1

( 1
λρ

+ P
λ + t )

2



Spherical Harmonics

𝑘

Why don’t deep networks overfit? 

Learning algorithms are biased toward simple functions



Large-d limit

To gain insight, we take  limit. In this limit . We assume , 

We can analyze the asymptotes of the learning curves: 

for ,                                                       Perfect generalization 

for ,                                                      Learning 

for ,                                                       Not learned 

d → ∞ λρ ∼ O(d−ρ) P = αdl

k < l
Ekm(P)
Ekm(0)

= 0

k = l
Ekm(P)
Ekm(0)

= f(α)

k > l
Ekm(P)
Ekm(0)

= 1



Sharpening the question 
(one of the many ways the study of mathematical models is useful)

The brain is not overfitting because it has an “inductive bias”.  
Theory suggests that we need to understand (at least) 

1. The learning algorithms of the brain 

2. The (tangent) kernel of the brain
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