
Sparse Coding, ReLU Auto-encoders, and Pattern Discovery in
Neural Data

Demba Ba1

Associate Professor of Electrical Engineering
and Bioengineering

1Harvard University
School of Engineering and Applied Sciences (SEAS)

Neuroacademy



Outline

Learning patterns from neural data

Auto-encoders for spike sorting



Outline

Learning patterns from neural data

Auto-encoders for spike sorting



Auto-encoders for spike sorting



Auto-encoders for spike sorting



Auto-encoders for spike sorting



Outline

Learning patterns from neural data

Auto-encoders for spike sorting



Blind source separation by dictionary learning
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Blind source separation by dictionary learning

Sparse Codes Dictionary



Goal: neural networks for dictionary learning

Auto-Encoder Dictionary Learning

y =

 H




x





Convolutional generative model
The generative model for shift-invariant sparse representation:

yn =

C∑
c=1

hc[n] ∗ xc[n] + vn

Sources Data

(Linear-algebraic form) y =
[
H1| · · · |HC

] x1
...
xC

+ v = Hx+ v

Given only the data y, how to solve for H and x?
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Optimization perspective

Given J examples of data {yj}Jj=1,

CDL solves:

min
(xj)Jj=1,(hc)

C
c=1

J∑
j=1
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2
+ λ
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1

s.t. ||hc||2 ≤ 1 for c = 1, · · · , C,
where λ > 0 (regularization parameter enforcing sparsity).



Convolutional sparse coding step

Given the filters,

CSC is separable over J examples

min
xj

1
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This step is

I Embarrassingly parallelizable.

I Amenable to GPU processing (long recordings).



Convolutional dictionary update Step

min
(hc)Cc=1

J∑
j=1

1

2

∣∣∣∣yj −Hxj
∣∣∣∣2
2

s.t. ||hc||2 ≤ 1 for c = 1, · · · , C.

This step is

I Computationally Expensive.

I Not parallelizable over J examples.



Auto-encoder for CDL by deep unfolding and weight tying

1. Nonlinear encoder: xt = η λ
L
(xt−1 +

1
LH

T(y −Hxt−1)).

2. Linear decoder: ŷ = HxT .

3. Training: backprop with MSE loss.



Simulated data
Sources Data

Data: 17 minutes of electrical activity from 3 neurons!
Sampling rate: fs = 10 kHz.
Firing rate: 30 Hz.



AE performs dictionary learning

err(hc, ĥc) =

√
1− 〈hc, ĥc〉2
‖hc‖22‖ĥc‖22
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Training of AE is fast

CRsAE Sporco CBP

Learning Spike Shapes
runtime 69.27 s 319.52 s
iterations 10 89

Spike Sorting runtime 0.93 s 17 hours
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Harris dataset: spike sorting and denoising



Spike Sorting
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Concluding thoughts



Thank you
Demba Ba

demba@seas.harvard.edu
https://crip.seas.harvard.edu/

https://github.com/demba/ https://bitbucket.org/demba/

Special shout out to Konrad Kording for converting the slides to the NMA format.
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