Sparse Coding, ReLU Auto-encoders, and Pattern Discovery in Neural Data

Demba Ba¹ Associate Professor of Electrical Engineering and Bioengineering

¹Harvard University School of Engineering and Applied Sciences (SEAS)

Neuroacademy

HARVARD JOHN A. PAULSON SCHOOL OF ENGINEERING AND APPLIED SCIENCES

Outline

Learning patterns from neural data

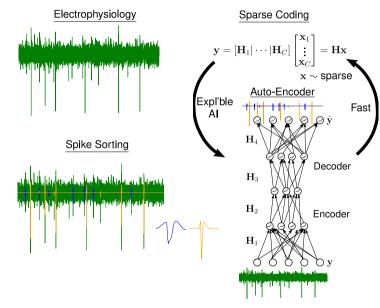
Outline

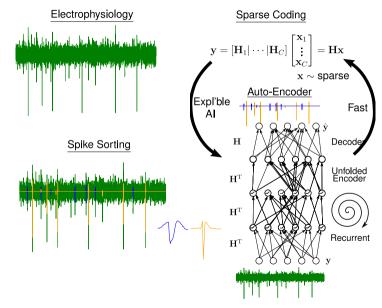
Learning patterns from neural data

Auto-encoders for spike sorting

 Sparse Coding

$$\mathbf{y} = [\mathbf{H}_1|\cdots|\mathbf{H}_C] \begin{bmatrix} \mathbf{x}_1\\ \vdots\\ \mathbf{x}_C \end{bmatrix} = \mathbf{H}\mathbf{x}$$
$$\mathbf{x} \sim \text{sparse}$$

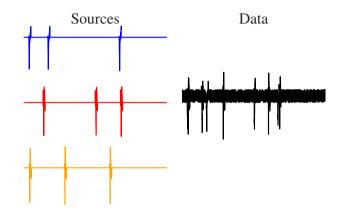




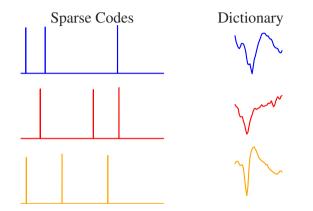
Outline

Learning patterns from neural data

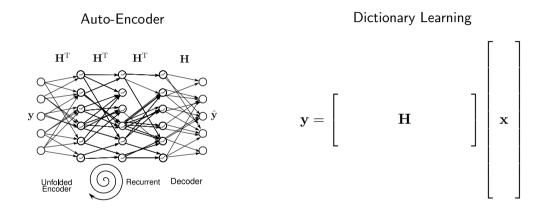
Blind source separation by dictionary learning



Blind source separation by dictionary learning

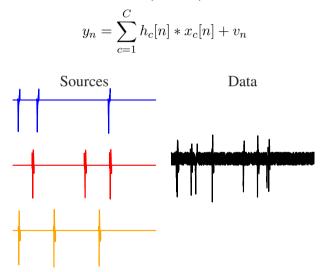


Goal: neural networks for dictionary learning



Convolutional generative model

The generative model for shift-invariant sparse representation:



Convolutional generative model

The generative model for shift-invariant sparse representation:

$$y_n = \sum_{c=1}^C h_c[n] * x_c[n] + v_n$$
(Linear-algebraic form) $\mathbf{y} = \begin{bmatrix} \mathbf{H}_1 | \cdots | \mathbf{H}_C \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_C \end{bmatrix} + \mathbf{v} = \mathbf{H}\mathbf{x} + \mathbf{v}$

Given only the data $\mathbf y,$ how to solve for $\mathbf H$ and $\mathbf x?$

Optimization perspective

Given J examples of data $\{\mathbf{y}^j\}_{j=1}^J$,

CDL solves:

$$\min_{\substack{(\mathbf{x}^{j})_{j=1}^{J}, (\mathbf{h}_{c})_{c=1}^{C}}} \sum_{j=1}^{J} \frac{1}{2} \left| \left| \mathbf{y}^{j} - \mathbf{H} \mathbf{x}^{j} \right| \right|_{2}^{2} + \lambda \left| \left| \mathbf{x}^{j} \right| \right|_{1}$$

s.t. $\left| \left| \mathbf{h}_{c} \right| \right|_{2} \leq 1 \quad \text{for } c = 1, \cdots, C,$

where $\lambda > 0$ (regularization parameter enforcing sparsity).

Convolutional sparse coding step

Given the filters,

CSC is separable over J examples

$$\min_{\mathbf{x}^{j}} \frac{1}{2} \left| \left| \mathbf{y}^{j} - \mathbf{H} \mathbf{x}^{j} \right| \right|_{2}^{2} + \lambda \left| \left| \mathbf{x}^{j} \right| \right|_{1}$$

This step is

- Embarrassingly parallelizable.
- Amenable to GPU processing (long recordings).

Convolutional dictionary update Step

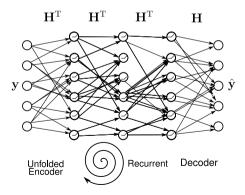
$$\min_{(\mathbf{h}_c)_{c=1}^C} \sum_{j=1}^J \frac{1}{2} \left| \left| \mathbf{y}^j - \mathbf{H} \mathbf{x}^j \right| \right|_2^2 \text{ s.t. } \left| |\mathbf{h}_c| \right|_2 \le 1 \quad \text{for } c = 1, \cdots, C.$$

This step is

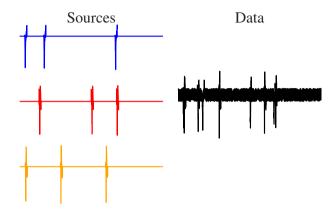
- Computationally Expensive.
- ► Not parallelizable over *J* examples.

Auto-encoder for CDL by deep unfolding and weight tying

- 1. <u>Nonlinear encoder</u>: $\mathbf{x}_t = \eta_{\frac{\lambda}{L}} (\mathbf{x}_{t-1} + \frac{1}{L} \mathbf{H}^{\mathsf{T}} (\mathbf{y} \mathbf{H} \mathbf{x}_{t-1})).$
- 2. Linear decoder: $\hat{\mathbf{y}} = \mathbf{H}\mathbf{x}_T$.
- 3. Training: backprop with MSE loss.

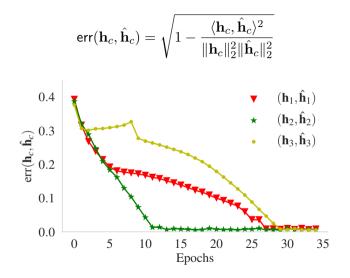


Simulated data



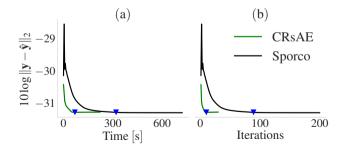
Data: 17 minutes of electrical activity from 3 neurons! Sampling rate: $f_s = 10$ kHz. Firing rate: 30 Hz.

AE performs dictionary learning

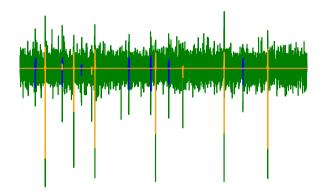


Training of AE is fast

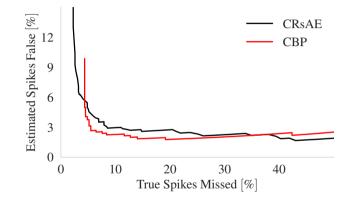
		CRsAE	Sporco	CBP
Learning Spike Shapes	runtime		$319.52 \mathrm{~s}$	
	iterations	10	89	·
Spike Sorting	runtime	0.93 s		$17 \ hours$



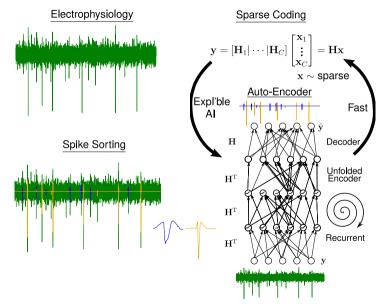
Harris dataset: spike sorting and denoising



Spike Sorting



Concluding thoughts



Thank you

Demba Ba demba@seas.harvard.edu https://crip.seas.harvard.edu/

https://github.com/demba/ https://bitbucket.org/demba/

Special shout out to Konrad Kording for converting the slides to the NMA format.

Song, Tolooshams, Temereanca and **Ba**. Convolutional dictionary learning of stimulus form spiking data. Cosyne 2020.

Song, Flores and **Ba**. Convolutional dictionary learning with grid refinement. IEEE Transcations on Neural Networks, 2020.

Song, Tolooshams, Temereanca and **Ba**. Convolutional dictionary learning based auto-encoders for natural exponential-family distributions. ICML 2020 (accepted).

Tolooshams, Dey and **Ba**. Deep residual auto encoders for expectation maximization inspired dictionary learning. Submitted to IEEE Transactions on Neural Networks, 2019.