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Controlled Variable Selection

Given:

Y an outcome of interest (AKA response or dependent variable),

X1, . . . , Xp a set of p potential explanatory variables (AKA covariates,
features, or independent variables),

How can we select important explanatory variables with few mistakes?

Applications to:

Biology/genomics/health care

Economics/political science

Industry/technology
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Controlled Variable Selection (cont’d)

What is an important variable?

We consider Xj to be unimportant if the conditional distribution of Y given
X1, . . . , Xp does not depend on Xj . Formally, Xj is unimportant if it is
conditionally independent of Y given X-j :

Y ⊥⊥ Xj | X-j

Markov Blanket of Y : smallest set S such that Y ⊥⊥ X-S |XS

For GLMs with no stochastically redundant covariates, equivalent to {j : βj = 0}

To make sure we do not make too many mistakes, we seek to select a set Ŝ to
control the false discovery rate (FDR):

FDR = E
[

#{j in Ŝ : Xj unimportant}
#{j in Ŝ}

]
≤ q (e.g., 10%)

“Here is a set of variables Ŝ, 90% of which I expect to be important”
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“Here is a set of variables Ŝ, 90% of which I expect to be important”

Lucas Janson (Harvard Statistics) Knockoffs for Controlled Variable Selection 2 / 26



Controlled Variable Selection (cont’d)

What is an important variable?

We consider Xj to be unimportant if the conditional distribution of Y given
X1, . . . , Xp does not depend on Xj . Formally, Xj is unimportant if it is
conditionally independent of Y given X-j :

Y ⊥⊥ Xj | X-j

Markov Blanket of Y : smallest set S such that Y ⊥⊥ X-S |XS

For GLMs with no stochastically redundant covariates, equivalent to {j : βj = 0}

To make sure we do not make too many mistakes, we seek to select a set Ŝ to
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Group Knockoffs

“What if two variables are so correlated as to be indistinguishable?”

Insufficient info to select either variable confidently (needed for FDR control)

Single-variable resolution impossible: wrong question

Group variables with their highly-correlated neighbors:
⊎m

k=1Gk = {1, . . . , p}

Redefine null hypothesis on per-group basis: group Gk is unimportant if

Y ⊥⊥ XGk
| X-Gk

Redefine FDR: for selected set of groups ŜG,

FDRG = E
[

#{k in ŜG : Gk contains no important variables}
#{j in ŜG}

]
≤ q (e.g., 10%)

Everything in this talk works for this setting! (Dai and Barber, 2016)
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FDRG = E
[
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Sneak Peak

Model-X knockoffs uses knowledge of X’s distribution to solve the controlled
variable selection problem with

Any model for Y and X1, . . . , Xp

Any dimension (including p > n)

Finite-sample control (non-asymptotic) of FDR

Practical performance on real problems

Analysis of the genetic basis of Crohn’s Disease (WTCCC, 2007)

≈ 5, 000 subjects (≈ 40% with Crohn’s Disease)

≈ 375, 000 single nucleotide polymorphisms (SNPs) for each subject

Original analysis of the data made 9 discoveries by running marginal tests and
selecting p-values to target a FDR of 10%

Knockoffs used the same FDR of 10% and made 18 discoveries, with many of the
new discoveries confirmed by a larger meta-analysis
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Existing Methods for Controlled Variable Selection

Marginal p-values

Excellent exploratory tool
Answer wrong question Y ⊥⊥ Xj instead of Y ⊥⊥ Xj | X-j

Can lose power, interpretation, and FDR control when Xj are correlated

Bayesian inference

Great way of incorporating prior information
Computation constrains to very simple priors which may not match actual
prior knowledge
Inference (esp. in high dimensions) is sensitive to choice of prior

Machine learning

Excellent for prediction
Cross-validation comes with no statistical guarantees
Statistical analysis exists only for simplest methods (lasso) and makes
unrealistic assumptions
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Knockoffs
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View from 10,000 feet

You have:

n data samples of Y and X stacked into y ∈ Rn and X ∈ Rn×p

Algorithm to compute variable importance measure Zj of each Xj for Y
This need not be based on any statistical model, or have any statistical
properties at all
For instance, you could fit any machine learning method and use the drop in
prediction accuracy when Xj is removed from the data

Desired FDR level q but no way to use Zj to control it

Knockoffs allows you to:

Select a subset of the variables based on your variable importance measure
and nothing else, while controlling the FDR exactly (no asymptotics)

y, X1, . . . ,Xp

↓
Variable importances Z1, . . . , Zp
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Overview of the Knockoffs Procedure

(1) Construct knockoffs:

Artificial versions (“knockoffs”) of each variable
Act as controls for assessing importance of original variables

(2) Compute knockoff statistics:

Compute variable importance measures for all variables and their knockoffs
For each variable, compute Wj as how much more important the original
variable is than its knockoff

(3) Find the knockoff threshold:

Order the variables by decreasing |Wj | and proceed down list

Select variables with positive Wj until an F̂DR goes above q

Coin-flipping property: The key to knockoffs is that steps (1) and (2) are done
specifically to ensure that, conditional on |W1|, . . . , |Wp|, the signs of the
unimportant/null Wj are independently ±1 with probability 1/2
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A Picture for Intuition

Null distribution of variable importance measure
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Figure: Variable importances for 500 variables and their knockoffs. Colored points are
nulls, grey are non-nulls.
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Step (1): Construct Knockoffs
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Knockoff Construction

Valid knockoffs are defined by

(1) Swap exchangeability:

[X1, ···,Xj , ···,Xp, X̃ 1, ···,X̃ j , ···,X̃ p]

D
= [X1, ···,X̃ j , ···,Xp, X̃ 1, ···,Xj , ···,X̃ p]

(2) Nullity: X̃ ⊥⊥ y |X (don’t look at y when constructing X̃ )

Example: (X1, . . . , Xp) ∼ N (0,Σ), need

Cov(X1, . . . , Xp, X̃1, . . . , X̃p) =

[
Σ Σ− diag{s}

Σ− diag{s} Σ

]

Semidefinite program construction for s:

minimize
∑

j |Σjj − sj |
subject to sj ≥ 0

diag{s} � 2Σ,
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Other Knockoff Constructions

Valid knockoff variables can always be generated:

Algorithm 1 Sequential Conditional Independent Pairs

for j = {1, . . . , p} do

Sample X̃j from L(Xj |X-j , X̃1:j−1) conditionally independently of Xj

end

Efficient knockoff constructions for the following X distributions:

Multivariate Gaussian (Candès et al., 2018)
Discrete Markov chains (Sesia et al., 2018)
Hidden Markov models (Sesia et al., 2018)
Gaussian mixture models (Gimenez et al., 2018)
General graphical models (ongoing work with Wenshuo and others)

Approximate knockoff constructions (no theoretical guarantees):

Second-order knockoffs (tend to work well with regression-based statistics)
(Candès et al., 2018)
Deep learning, including GANs (empirically valid in low-dimensions n > p)
(Romano et al., 2018; Liu and Zheng, 2018; Anonymous, 2018)
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Sample X̃j from L(Xj |X-j , X̃1:j−1) conditionally independently of Xj

end

Efficient knockoff constructions for the following X distributions:

Multivariate Gaussian (Candès et al., 2018)
Discrete Markov chains (Sesia et al., 2018)
Hidden Markov models (Sesia et al., 2018)
Gaussian mixture models (Gimenez et al., 2018)
General graphical models (ongoing work with Wenshuo and others)

Approximate knockoff constructions (no theoretical guarantees):

Second-order knockoffs (tend to work well with regression-based statistics)
(Candès et al., 2018)
Deep learning, including GANs (empirically valid in low-dimensions n > p)
(Romano et al., 2018; Liu and Zheng, 2018; Anonymous, 2018)
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Why all the Fuss?
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Figure: Variable importances for 500 variables and their knockoffs. Colored points are
nulls, grey are non-nulls.
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Figure: Variable importances for 500 variables and their knockoffs. Colored points are
nulls, grey are non-nulls.
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Figure: Variable importances for 500 variables and their knockoffs. Colored points are
nulls, grey are non-nulls.
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Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. n = 800, p = 1500,
and target FDR is 10%. Y comes from a binomial linear model with logit link function
with 50 nonzero entries.
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Step (2): Compute Knockoff Statistics
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Ingredients for Knockoff Statistics

Variable importance measures for all original and knockoff variables

Z1, . . . , Zp, Z̃1, . . . , Z̃p

Antisymmetric function fj : R2 → R, i.e., fj(a, b) = −fj(b, a)

Wj = fj(Zj , Z̃j)

Example 1:

Z is magnitude of fitted coefficient β from a lasso regression of y on [XX̃ ]

fj(a, b) = a− b

Wj = |βj | − |β̃j | (Lasso Coefficient Difference statistic)

Example 2:

Fit machine learning method (e.g., deep learning) to y with features [XX̃ ]

Z is increase in cross-validation error when variable is dropped; same fj

(CV-j − CV)−
(

C̃V-j − CV
)

= CV-j − C̃V-j
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Fit machine learning method (e.g., deep learning) to y with features [XX̃ ]

Z is increase in cross-validation error when variable is dropped; same fj

(CV-j − CV)−
(

C̃V-j − CV
)

= CV-j − C̃V-j
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Adaptivity and Prior Information in Z

Adaptivity

Z can be any variable importance measure

Higher-level adaptivity: CV to choose best-fitting model for inference

− E.g., fit random forest and `1-penalized regression; derive feature importance
from whichever has lower CV error—still strict FDR control

Can even let analyst look at (masked version of) data to choose Z function

Prior information

Bayesian approach: choose prior and model, and Zj could be the posterior
probability that Xj contributes to the model

Still strict FDR control, even if wrong prior or MCMC has not converged
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Why Does it Work?

Recall swap exchangeability property: for any j,

[X1, ···,Xj , ···,Xp, X̃ 1, ···,X̃ j , ···,X̃ p]

D
= [X1, ···,X̃ j , ···,Xp, X̃ 1, ···,Xj , ···,X̃ p]

Coin-flipping property for Wj : for any unimportant variable j,(
Zj , Z̃j

)
:=
(
Zj

(
y,
[
· · ·Xj · · ·X̃ j · · ·

])
, Z̃j

(
y,
[
· · ·Xj · · ·X̃ j · · ·

]))
D
=
(
Zj

(
y,
[
· · ·X̃ j · · ·Xj · · ·

])
, Z̃j

(
y,
[
· · ·X̃ j · · ·Xj · · ·

]))
=
(
Z̃j

(
y,
[
· · ·Xj · · ·X̃ j · · ·

])
, Zj

(
y,
[
· · ·Xj · · ·X̃ j · · ·

]))
=
(
Z̃j , Zj

)
Wj = fj(Zj , Z̃j)

D
= fj(Z̃j , Zj) = −fj(Zj , Z̃j) = −Wj
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Step (3): Find the Knockoff Threshold
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Simple Example

Example with p = 10 and q = 20% = 1/5:

0
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W3 W4 W5

W6W7

W8

W9W10
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|W2|

|W3| |W4| |W5|
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|W8|

|W9| |W10|

0
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0
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0
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1
3

1
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1
5

2
5

3
5

3
6

3
7

|W1| |W4| |W5|

|W6||W7|

q = 20%

F̂DR =
#{negative Wj}
#{positive Wj}

τ̂

S = {1, 4, 5, 6, 7}
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Tracking the FDR

FDR = E
[

#{null Xj selected}
#{total Xj selected}

]

= E
[

#{null positive |Wj | > τ̂}
#{positive |Wj | > τ̂}

]
≈ E

[
#{null negative |Wj | > τ̂}

#{positive |Wj | > τ̂}

]
≤ E

[
#{negative |Wj | > τ̂}
#{positive |Wj | > τ̂}

]
= E

[
F̂DR

]
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Numerical Results
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Simulations in Low-Dimensional Linear Model
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Figure: Power and FDR (target is 10%) for knockoffs and alternative procedures. The
design matrix is i.i.d. N (0, 1/n), n = 3000, p = 1000, and y comes from a Gaussian
linear model with 60 nonzero regression coefficients having equal magnitudes and
random signs. The noise variance is 1.
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Simulations in Low-Dimensional Nonlinear Model
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Figure: Power and FDR (target is 10%) for knockoffs and alternative procedures. The
design matrix is i.i.d. N (0, 1/n), n = 3000, p = 1000, and y comes from a binomial
linear model with logit link function, and 60 nonzero regression coefficients having equal
magnitudes and random signs.
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Simulations in High Dimensions
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Figure: Power and FDR (target is 10%) for knockoffs and alternative procedures. The
design matrix is i.i.d. N (0, 1/n), n = 3000, p = 6000, and y comes from a binomial
linear model with logit link function, and 60 nonzero regression coefficients having equal
magnitudes and random signs.
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Simulations in High Dimensions with Dependence
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Figure: Power and FDR (target is 10%) for knockoffs and alternative procedures. The
design matrix has AR(1) columns, and marginally each Xj ∼ N (0, 1/n). n = 3000,
p = 6000, and y follows a binomial linear model with logit link function, and 60 nonzero
coefficients with random signs and randomly selected locations.
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Genetic Analysis of Crohn’s Disease

2007 case-control study by WTCCC

n ≈ 5, 000, p ≈ 375, 000; preprocessing mirrored original analysis

Strong spatial structure: second-order knockoffs generated on genetic
covariance estimate (Wen and Stephens, 2010)

Entire analysis took 6 hours of serial computation time; 1 hour in parallel

Knockoffs made twice as many discoveries as original analysis

− Some new discoveries confirmed in larger study

− Some corroborated by work on nearby genes: promising candidates

Similar result obtained with X model taken from existing genomic
imputation software (Sesia et al., 2018)
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Computation and Software

R, Python, and Matlab packages available depending on knockoff
construction; link on my website

Knockoff construction algorithms generally scale linearly in p and n

Given variable importances Z1, . . . , Zp, Z̃1, . . . , Z̃p, computation trivial

Need to compute Z1, . . . , Zp, Z̃1, . . . , Z̃p

Just compute variable importances for twice as many variables
Generally only constant slower than computing variable importances without
knockoffs
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Checking Sensitivity to Misspecification Error

Concern about misspecification

Y |X X

Canonical (fixed-X) Yes No

Model-X No Yes

Misspecification replicated
in simulation?

No Yes

Model-X: can actually check sensitivity to misspecification error!
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Robustness on Real Data
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Figure: Power and FDR (target is 10%) for knockoffs applied to subsamples of a
chromosome 1 of real genetic design matrix; n ≈ 1, 400.
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Summary

The controlled variable selection problem is ubiquitous in modern science, and
knockoffs is a powerful, flexible, and robust solution

My group is extremely interested in making knockoffs work for you. Please
reach out if you think it could help with your research.

Thank you!

http://lucasjanson.fas.harvard.edu

ljanson@fas.harvard.edu
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Existing Methods: Low-Dimensional Linear Model

Suppose we assume that our data:

follows a linear model:

Y = X1β1 + · · ·+Xpβp + ε, ε ∼ N (0, σ2),

has more observations that variables: n ≥ p (low-dimensional).

Classical problem:

Ordinary least squares (OLS) theory gives exact p-values for testing whether
each βj = 0 or not (under very mild assumptions, βj = 0 ⇔ Y ⊥⊥ Xj |X-j)

The Benjamini-Hochberg procedure (BHq) applied to the p-values will
essentially control the FDR

Minor caveats:

FDR control not exact (but good enough in practice)

Sparsity not used (reduces power to find important variables)
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Nonlinearity and High Dimensions

Low-dimensional (n ≥ p) generalized linear model

Apply BHq to asymptotic p-values

Can be far from valid in practice

High-dimensional (n < p) generalized linear models

Apply BHq to p-values from

0.00 0.25 0.50 0.75 1.00
Null p−values (n = 500, p = 200)

. Debiased lasso, e.g., Zhang and Zhang (2014), Javanmard and Montanari
(2014), van de Geer et al. (2014), Cai and Guo (2015)

Causal inference, e.g., Belloni et al. (2014), Athey et al. (2016), Farrell (2015)

Inference after selection, e.g., Berk et al. (2013), Lee et al. (2016), Fithian et
al. (2014)

Asymptotic, require sparsity and random design assumptions
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Sequential Independent Pairs Generates Valid Knockoffs

Algorithm 2 Sequential Conditional Independent Pairs

for j = {1, . . . , p} do
Sample X̃j from L(Xj |X-j , X̃1:j−1) conditionally independently of Xj

end

Proof sketch (discrete case):

Denote PMF of (X1:p, X̃1:j−1) by L(X-j , Xj , X̃1:j−1)

Conditional PMF of X̃j |X1:p, X̃1:j−1 is

L(X-j , X̃j , X̃1:j−1)∑
u L(X-j , u, X̃1:j−1)

.

Joint PMF of (X1:p, X̃1:j) is

L(X-j , Xj , X̃1:j−1)L(X-j , X̃j , X̃1:j−1)∑
u L(X-j , u, X̃1:j−1)
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Computation of Second-Order Knockoffs

Cov(X1, . . . , Xp) = Σ, need:Candès et al. (2018); Barber and Candès (2015); WTCCC (2007); Wen and Stephens (2010)

Cov(X1, . . . , Xp, X̃1, . . . , X̃p) =

[
Σ Σ− diag{s}

Σ− diag{s} Σ

]

Equicorrelated (EQ) (fast, less powerful): sEQ
j = 2λmin(Σ) ∧ 1 for all j

Semidefinite program (SDP) (slower, more powerful):

minimize
∑

j |1− sSDP
j |

subject to sSDP
j ≥ 0

diag{sSDP} � 2Σ,

(New) Approximate SDP:

Approximate Σ as block diagonal so that SDP separates
Bisection search scalar multiplier of solution to account for approximation
faster than SDP, more powerful than EQ, and easily parallelizable
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Proof of Control

FDR = E
[

#{null Xj selected}
#{total Xj selected}

]

= E
[

#{null positive |Wj | > τ̂}
#{positive |Wj | > τ̂}

]
≈ E

[
#{null negative |Wj | > τ̂}

#{positive |Wj | > τ̂}

]
≤ E

[
#{negative |Wj | > τ̂}
#{positive |Wj | > τ̂}

]

q

τ̂

More precisely:

mFDR = E
[

#{null Xj selected}
q−1 + #{total Xj selected}

]
= E

[
#{null positive |Wj | > τ̂}
q−1 + #{positive |Wj | > τ̂}

]
= E

(
#{null positive |Wj | > τ̂}

1 + #{null negative |Wj | > τ̂}︸ ︷︷ ︸
Supermartingale ≤ 1

with τ̂ a stopping time

· 1 + #{null negative |Wj | > τ̂}
q−1 + #{positive|Wj | > τ̂}︸ ︷︷ ︸
≤ q by definition of τ̂

)
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