

Neuro 140: Biological & Artificial Intelligence

Feb 9th, 2021: Using AI in the laboratory

Mackenzie Mathis, PhD Bertarelli Foundation Chair of Integrative Neuroscience Assistant Professor, EPFL

mackenzie@post.harvard.edu

Outline

3 – 5 PM

(1) Animal behavior in the laboratory: what problems could use "better" quantification of behavior?

(2) What are the challenges for video based analysis?

(3) How can deep neural networks help automate the process

(4) Transfer learning & pose estimation

~4 – 4:15 PM BREAK!

(5) Using transfer learning for robustness in o.o.d. data

(6) Google Colab intro / model zoo (if you have a dog/cat video, you can have it handy!)

E. Muybridge, 1887 (zoopraxiscope)

Ota et al. 2015 Sci Reports

Mathis et al 2017 Neuron

Animal behavior in the lab: how to quantify the behavior?

Measuring behavior

Pose estimation in the laboratory

Fransechi et al. 2016 Wilschko et al. 2015 Azim et al. 2014 Kawai et al. 2014 Dell et al. 2014 Berman 2018 Vargas-Irwin et al. 2010 Pereira et al, 2018 Human motion capture systems

manual annotation

Detailed pose

center of mass tracking

Time commitment & Inflexibility of tracking system

Deep learning in the lab

DeepPose DeeperCut OpenPose Conv. PoseMachines

deep neural networks

DATA hungry algorithms... how to bring this to the lab?

Transfer Learning: take a trained network and ask it to learn a new task

ResNet-50 (or 101)

ImageNet

Flute

Matchstick

IM GENET

Olga Russakovsky^{*}, Jia Deng^{*}, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (* = equal contribution) **ImageNet Large Scale Visual Recognition Challenge**. *International Journal of Computer Vision*, 2015.

Sea lion

Strawberry

Backpack

Traffic light

Bathing cap

CNNs

152 layers

Image

Convolved Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Do Better ImageNet Models Transfer Better?

Simon Kornblith, Jonathon Shlens, and Quoc V. Le Google Brain {skornblith, shlens, qvl}@google.com

Do Better ImageNet Models Transfer Better?

Figure 1. Transfer learning performance is highly correlated with ImageNet top-1 accuracy for fixed ImageNet features (left) and fine-tuning from ImageNet initialization (right). The 16 points in each plot represent transfer accuracy for 16 distinct CNN architectures, averaged across 12 datasets after logit transformation (see Section 3). Error bars measure variation in transfer accuracy across datasets. These plots are replicated in Figure 2 (right).

Output: Scale T-shirt <u>Steel drum</u> Drumstick Mud turtle Output: Scale T-shirt Giant panda Drumstick Mud turtle

Х

DEEP GAZE I: BOOSTING SALIENCY PREDICTION WITH FEATURE MAPS TRAINED ON IMAGENET

Matthias Kümmerer, Lucas Theis & Matthias Bethge

Werner Reichardt Centre for Integrative Neuroscience University Tübingen, Germany {matthias.kuemmerer,lucas,matthias}@bethgelab.org

DeepGaze II: Reading fixations from deep features trained on object recognition

Matthias Kümmerer Thomas S. A. Wallis Matthias Bethge

Figure 1: The architecture of DeepGaze II. The activations of a subset of the VGG feature maps for a given image are passed to a second neural network (the readout network) consisting of four layers of 1×1 convolutions. The parameters of VGG are held fixed through training (only the readout network learns about saliency prediction). This results in a final saliency map, which is then blurred, combined with a centre bias and converted into a probability distribution by means of a softmax.

Gold Standard

Challenges for animal pose estimation in the laboratory

•animals have highly different bodies

•not practical to label >10,000 frames for training

•3D postures

•fast video analysis for many experiments (such as closed-loop optogenetics)

•Multi-animal tracking

•Generalization & Robustness

DeepLabCut: animal pose estimation w/transfer learning

A. Mathis M.W. Mathis* and Bethge* Nature Neurosci, 2018

DeepLabCut: a toolbox for markerless pose estimation

Benchmarking: testing accuracy

End-to-end training with more labels improves performance

Generalization: multi-mice

Mathis M.W. Mathis* and Bethge* Nature Neurosci, 2018

Score-maps provide network confidence readout

A. Mathis et al, Nature Neuroscience 2018

A. Erskine (Hires Lab)

J. Saunders

DeepLabCut Horse Network

11 frames added....

Frame-by-frame predictions (no filtering)

Transfer learning enables deep learning in the lab

"Software 2.0" – integration of annotation, training and inference

Mathis et al. Nature Neurosci, 2018 Nath* & Mathis* et al. Nature Protocols 2019

DeepLabCut: training one network for 3D tracking of a hunting cheetah

camera-invariant labels learned

Nath*, Mathis* et al. Nature Protocols (in press)

e 6-camera 3D reconstruction of full cheetah

Nath*, Mathis* et al. Nature Protocols (in press)

Courtesy Amir Patel (U of Cape Town) Nath et al. Nat. Protocols, 2019

How does markerless pose estimation work?

Key Features:

- Data augmentation
- Model architecture
- Optimization

Mathis, Schneider, Lauer & Mathis, 2020 Neuron

Data Augmentation: how to get the most out of your data!

2020 Neuron

How AI can influence new behavioral paradigms (and model systems...)

- Robust tracking can allow for more natural behaviors, and better analysis of classical paradigms ...
- Opens new research avenues in behavioral phenotyping, new tools for relating neural circuits to behavior ...

Robust & "simple" trial-based behaviors

Diverse species, natural environments, many animals

Looming stimulus

Multi-directional reaching (and neural reconstruction with DL)

Complex & more variable (trial-based) behaviors

BREAK

The larger the scale, the greater the diversity

How do we create generalizable pose estimation networks?

An animal pose benchmark (horses) for robustness

Animal Pose Estimation 2 papers with code · Computer Vision Subtask of Pose Estimation

vse > Computer Vision > Pose Estimation > Animal Pose Estimation

ImageNet performance correlates with pose estimation robustness and generalization on out-of-domain data

More powerful architectures generalize better

Mathis*, Biasi* et al. 2021 WACV

Transfer learning (using pretrained ImageNet models), gives a 2X boost on out-of-domain data vs. from scratch training

Mathis*, Biasi* et al. 2021 WACV

Using transfer learning boosts out of domain robustness *(bonus: 6X shorter training times, and less data required)*

vse > Computer Vision > Pose Estimation > Animal Pose Estimation

Animal Pose Estimation 2 papers with code · Computer Vision Subtask of Pose Estimation

Animal pose estimation is the task of identifying the pose of an animal.

we present Horse-C to contrast the domain shift inherent in the Horse-10 dataset with domain shift induced by common image corruptions Animal Pose Estimation Benchmarks for Robustness

<section-header><section-header><complex-block>

Paper, data, etc. at: http://horse10.deeplabcut.org/

~2 min talk by first author, Tom Biasi: https://www.youtube.com/watch?v=pM6Z-ASiI2Y Continual learning; adding small amounts of data from a new source to bring it "within domain"

Trained on this video only....

Transfer learning: a more robust & generalizable network, plus less data needed

Mathis et al. 2020 IMCL workshop Mathis, Biasi et al WACV 2021

Google Colab demo!

https://colab.research.google.com/

DeepLabCut Model Zoo

Here we provide model weights that are already trained on specific animals & scenarios You can use these models for video analysis Enference) without the need to train it yoursell. Simply click on the blue icon to try it out on your videos now (and worch our tutorial):

model options:

http://modelzoo.deeplabcut.org

DeepLabCut Model Zoo

Here we provide model weights that are already trained on specific animals & scenarios

You can use these models for video analysis (inference) without the need to train it yourself. Simply click on the blue icon to try it out on your videos now (and watch our tutorial):

00 Open in Colab

model options:

full_cat

A pre-trained cat network! More details will be released soon. (video courtesy of Dr. Erin Diel)

From MacaquePose!

A pre-trained mouse pupil detector. Video must be cropped around the eye (as shown)! Trained on C57/B6 mice ages 6-24 weeks (both sexes). Read more here!

full_dog

