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Outline
3—-5PM

(1) Animal behavior in the laboratory: what problems could use “better” quantification of behavior?
(2) What are the challenges for video based analysis?

(3) How can deep neural networks help automate the process

(4) Transfer learning & pose estimation

~4 — 4:15 PM BREAK!

(5) Using transfer learning for robustness in 0.0.d. data

(6) Google Colab intro / model zoo (if you have a dog/cat video, you can have it handy!)



E. Muybridge, 1887 (zoopraxiscope) Ota et al. 2015 Sci Reports Mathis et al 2017 Neuron



Animal behavior in the lab: how to quantify the behavior?

: ')'ij Diverse species, natural
5‘ environments, many animals

Natural

behaviors

C. Everett N
Bendesky lab R

Looming stimulus

(4 "

Multi-directional reaching
(and neural reconstruction with DL)

Classical conditionin : B
/ = \ g NO trlal \ M. Meister/Cal Tech /
i A structure
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s response "f 2 Hand Stitched LFADS
Whistle Salivation . ?=076
i il \ LFADS — Pandarinath et aI2018j
stimulus response
Qtp://open,\'\b.umn,edu/intropsyc// .
Complex & more variable
Robust & “simple” (trial-based) behaviors

trial-based behaviors



observation

Measuring behavior

— pose estimation o

Neurons

kinematics

DeeplLabCut
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Pose estimation in the laboratory

Detailed
pose

center of mass tracking
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Time commitment & Inflexibility of tracking system

Fransechi et al. 2016
Wilschko et al. 2015

Azim et al. 2014

Kawai et al. 2015

Dell et al. 2014

Berman 2018
Vargas-Irwin et al. 2010
Pereira et al, 2018
Human motion capture
systems

manual
annotation




Deep learning in the lab

DeepPose DATA hungry algorithms... how to bring this to the lab?

DeeperCut
. OpenPose Transfer Learning: take a trained network and ask it to learn a new task

- = Conv. PoseMachines

R N S0
A wah

deep

cat

neural networks
image—>  Predictor —> pose

A lot of labeled
images (>1076 joints!)

train

Andrew Ng
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ImageNet

Strawberry Traffic light

Matchstick

Sea lion
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IMAGENET

Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg and Li Fei-Fei. (* = equal contribution) ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision, 2015.
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Low-Level| |Mid-Level| |High-Level Trainable
— — e
Feature Feature Featu\te Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]




Do Better ImageNet Models Transfer Better?

Simon Kornblith! Jonathon Shlens, and Quoc V. Le
Google Brain
{skornblith,shlens,gvl}fgoogle.com
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Do Better ImageNet Models Transfer Better?

Simon Kornblith} Jonathon Shlens, and Quoc V. Le
Google Brain
{skornblith,shlens,gvl}fgoogle.com
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Figure 1. Transfer learning performance is highly correlated with
ImageNet top-1 accuracy for fixed ImageNet features (left) and
fine-tuning from ImageNet initialization (right). The 16 points in

each plot represent transfer accuracy for 16 distinct CNN architec-
tures, averaged across 12 datasets after logit transformation (see

Section 3). Error bars measure variation in transfer accuracy across
datasets. These plots are replicated in Figure 2 (right).
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DEEP GAZE I: BOOSTING SALIENCY PREDICTION VGG festurs readout network

(fixed parameters) (trained parameters)

WITH FEATURE MAPS TRAINED ON IMAGENET " & = ~

Rl

Matthias Kiimmerer, Lucas Theis & Matthias Bethge

Wemer Reichardt Centre for Integrative Neuroscience

University Tiibingen, Germany

{matthias.kuemmerer, lucas,matthias}@bethgelab.org

Figure 1: The architecture of DeepGaze 1I. The activations of a subset of the

DeepGaze II: Reading fixations from deep
. . 2y R VGG feature maps for a given image are passed to a second neural network (the
feat ur% traJ ned On ObJ ect recognltlon readout network) consisting of four layers of 1 x 1 convolutions. The parameters

of VGG are held fixed through training (only the readout network learns about
saliency prediction). This results in a final saliency map, which is then blurred,
combined with a centre bias and converted into a probability distribution by

Matthias Kiimmerer Thomas S. A. Wallis means of a softmax.
Matthias Bethge
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Challenges for animal pose estimation

In the laboratory

«animals have highly different bodies

*not practical to label >10,000 frames for training

*3D postures

fast video analysis for many experiments
(such as closed-loop optogenetics)

*Multi-animal tracking

*Generalization & Robustness

Diverse species,
wild environments
Looming stimulus

Classical conditioning

Skilled reaching

Mathis & Mathis, 2020
Current Opinion in Neurobiology



DeeplLabCut: animal pose estimation w/transfer learning

Train DNN
Label features in frames
- e

(pre-trained <L
on ImageNet)

deconvolutional i

layers ‘ V"Vl”"

A. Mathis .... M.W. Mathis* and Bethge*
Nature Neurosci, 2018



DeeplabCut: a toolbox for markerless pose estimation

Train DNN

ResNet-50
(pre-trained -
on ImageNet)

deconvolutional

layers "' V‘J”'r
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an applied labels

Benchmarking: testing accuracy

RMSE [pixels]

All body parts

test o
human variability
train
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End-to-end training with more labels improves performance

Training with full body labeling vs. tail + snout only

Test
Train
Human ,
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Generalization: multi-mice

Mathis .... M.W. Mathis* and Bethge*
Nature Neurosci, 2018



Score-maps provide network confidence readout

Human and DeeplLabCut labels Log transform of score-map

[
I .
5. 0.,
| I

Human applied labels

® Network applied labels
® Network applied labels with low confidence

Score-map

A. Mathis et al, Nature Neuroscience 2018



A. Erskine (Hires Lab) J. Saunders

DeeplLabCut Horse Network 11 frames added....

Frame-by-frame predictions (no filtering)



Transfer learning enables deep learning in the lab

Deep learning + transfer learning

/ D(‘,Op !C(HHIH_Q

Pre-trained! (i.e. on ImageNet)

image—>  Predictor —> pose
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train  Only a few examples (10-200)
for most applications

Amount of daia task-related data




“Software 2.0" — integration of annotation, training and inference

Networks build on ResNets (2018),
MobileNetV2 (2019), EfficientNets (2020)

- - =

.

Mathis et al. Nature Neurosci, 2018
Nath* & Mathis* et al. Nature Protocols 2019
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DeeplabCut: training one network for 3D tracking of a hunting cheetah

a  Train a single network for
all camera angles
for 3D reconstruction

camera-invariant labels learned

4343

: - Camera 5
Camera 2 ' .
Camera 4

Camera 3

Nath*, Mathis* et al. Nature Protocols (in press)



X

e 6-caer 3D reconstruction of full cheetah

AU (x)

Nath*, Mathis* et al. Nature Protocols (in press)




Courtesy Amir Patel (U of Cape Town)
Nath et al. Nat. Protocols, 2019



How does markerless pose estimation work?

original rotation & scaling fog

Key Features:

* Data augmentation
* Model architecture
* Optimization

Mathis, Schneider,
Lauer & Mathis, 2020

Neuron



Data Augmentation: how to get the most out of your data!

tensorpack imgaug scale-crop
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Mathis, Schneider, Lauer & Mathis
2020 Neuron



Percentage of Correct Keypoints (PCK)
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Built on the open source python stack: User testing/dev & deployment: Neuroscience-specific tools:
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How Al can influence new behavioral paradigms (and model systems...)

Robust tracking can allow for
more natural behaviors, and
better analysis of classical
paradigms ...

Natural
behaviors

Opens new research avenues in
behavioral phenotyping, new
tools for relating neural circuits
to behavior ...

Classical conditioning

Conditioned Conditioned
stimulus response

N /

Robust & “simple”
trial-based behaviors

No trial
structure

-\

Multi-directional reaching
(and neural reconstruction with DL)

Hand Stitched LFADS -
=076

\ LFADS - Pandarinath et al 2018J

Complex & more variable
(trial-based) behaviors



BREAK ....



EXPERIMENTS
WITHIN A LAB

The larger the scale, the greater the diversity ....



How do we create generalizable
pose estimation networks?



vse > Compute ion > Animal Pose Estimation

Animal Pose Estimation

Animal pose estimation is the task of identifying the pose of an animal.
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ImageNet performance correlates with pose estimation
robustness and generalization on out-of-domain data
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More powerful architectures generalize better

Mathis*, Biasi* et al. 2021 WACV



Transfer learning (using pretrained ImageNet models),
gives a 2X boost on out-of-domain data vs. from scratch training
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Mathis*, Biasi* et al. 2021 WACV




50% training data

Using transfer learning boosts out of domain robustness
(bonus: 6X shorter training times, and less data required)
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'owse State-of-the-Art

Horse-C: an animal pose estimation corruption ~ —w oo
benchmark for robustness |

2 papers with code - Computer Vision

Subtask of Pose Estimation

Animal pose estimation is the task of identifying the pose of an animal.

we present Horse-C to contrast the domain shift inherent in the Horse-10 dataset
with domain shift induced by common image corruptions



r — —u

Animal Pose Estimation Benchmarks for Robustness Robustness and Generalizability - How do we achieve them?

Horse-C

an animal pose estimation corruption benchmark for robustness

Mathis, Biasi et al: Pretraining boosts out-of-domain robustness for pose estimation. WACV 2021

~2 min talk by first author, Tom Biasi:

Paper, data, etc. at: http://horse10.deeplabcut.org/ https://www.youtube.com/watch?v=pM6Z-ASi12Y



Continual learning; adding small amounts of data
from a new source to bring it “within domain”

Trained on this video only....




Transfer learning: a more robust & generalizable network, plus less data needed
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Transfer learning (using pretrained ImageNet models),
gives a 2X boost on out-of-domain data vs. from scratch training
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Google Colab demo!

https://colab.research.google.com/



DeepLabCut Model Zoo

praede model weights ol ors

alreody tealned on specific animels &

scenarios

model options:

http://modelzoo.deeplabcut.org

DeepLabCut:

a software package for

&L animal pose estimation

DeepLabCut Model Zoo

Here we provide model weights that are

already trained on specific animals &

scenarios

You can use these models for video analysis
(inference] without the need to train it yourself.

Simply click on the blue icon to try it out on your

videos now (and watch

model options:

full_cat
A pre-trained cat network! More details

will be released soon.
(video courtesy of Dr. Erin Diel)

CL7e AWACVITRT

our tutorial):

full_dog

A pre-trained dog network! More details
will be released soon.

full_macaque

From MacaaquePose!

mouse_pupil_vclose

Model contributed by Jim McBurney-Lin
at University of California Riverside, USA!

A pre-trained mouse pupil detector. Video
must be cropped around the eye (as

shown)! Trained on C57/B6 mice ages 6-
24 weeks (both sexes). Read more here!



http://modelzoo.deeplabcut.org/

