
A/V Test

See my screen? Hear the bell?

https://www.youtube.com/watch?v=H4JtIbBX_BA

Coding Machine Learning

Spandan Madan
Neuro 140/240

Learning Outcomes

Main Goal: Get you set up and running for coding ML projects.

•How to set up your code?

•What tools/languages/frameworks can help make our life easier?

•How does it connect with the Theory?

Learning Outcomes

My Amazing ML Project

Files in that project

Code in these files

Learning Outcomes

My Amazing ML Project

Files in that project

Code in these files

How is this box organized?
Where is it stored?

How do I track changes?
How do I share it with someone else?

What kind of files would I have?
How would these be opened?

Which ones need to be shared and how?

What language/frameworks should I use?

Part 1: The Box of Code

•How is your project organized?

•Where is it stored?

•How do you track changes?

•How do you share it with someone else?
My Amazing ML Project

Github

GitHub = Git + Hub

• Git: A system for tracking versions of files (Version Control)

• GitHub: Store your code + it tracks changes using git

Why do we need Git?

• Managing versions is important.

• Especially when multiple people
are working on the same code-
base.

• Combined with GitHub - Great
way to store/manage/share your
projects.

Why do we need Git?

How version control works

How git works

Remote

Local

Few useful commands
Group 1: Getting stuff from github
git clone - Copy from GitHub to local.
git fetch - get changes from remote
git merge - merge changes into local
git pull = git fetch + git merge

Group 2: Reflecting your local changes on github
git add - add a changed file to staging area
git commit - commit the change i.e. create snapshot
git push - upload new snapshot to github

Group 3: Branches etc
git checkout - switch or create new branch (Assignment 2)

https://github.com/Spandan-Madan/Harvard_BAI

More advanced git

• How to resolve merge conflicts.

• Pushing too large a file - undoing added files.

• Undoing a commit i.e. moving to previous commit.

Summary Part 1

• Git = Management system for your files

• GitHub = a place where code is stored and managed using git snapshots

My Amazing ML Project

Files in that project

Code in these files

Part 2: Files in the Box

Files in that project

•What kind of files would I have?

•How would these be opened?

•Which ones need to be shared and how?

Jupyter

What is Jupyter?

https://www.youtube.com/watch?v=e52iCIJnFH8

Google Colab

https://www.youtube.com/watch?v=inN8seMm7UI

Summary of Part 1 and 2

GitHub

Jupyter Notebooks

Part 3

• What language/framework should
we use to write code in our files?

• We will use PyTorch.

• Facebook’s framework for ML/DL research.

• Easy to install.

• Easy to prototype.

• Resource for PyTorch: https://pytorch.org/tutorials/beginner/
deep_learning_60min_blitz.html

https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

A very brief introduction to ML/DL
…and how PyTorch allows us to code for ML

What is Machine Learning?
• Very elusive to define.

• Tom Mitchell (CMU): “A machine for which performance improves for
some specific task with experience”.

Why is ML everywhere?

The toolkit perspective

INFORMATION
GOES IN

xi

MORE USEFUL
INFORMATION
COMES OUT

yi

MACHINE
LEARNING

MODEL

f

EXAMPLES

What is f?
• Assumption: Underlying relationship. We have reason to believe that:

• But, g is very, very complex/hard to pin point. Ex: protein folding,
music preference, voting preference, and so on.

• Solution: Let’s approximate g with f.

yi = g(xi) ∀xi ∈ X

Typically learning setups

• Supervised: Both y (labels) and x (inputs) are given.

• Ex: Is this a picture of chair? Can you translate this from English to
Hindi/Mandarin/French?

• Unsupervised: Discovering patterns in x, independent of a y.

• Ex: Anomaly detection in a subset of pictures, or predicting next word
in a sequence.

Typically learning setups

• Semi-supervised: Supervised + Unsupervised components.

• Ex: MRI, CT scans - mixing vision + small, labeled doctor feedback.

• Reinforcement: Really shouldn’t be on the same list. Specifically cast for
settings where multiple actions are taken in a sequence.

Supervised Learning

• Goal, finding f which best approximates g.

yi = g(xi) ∼ f(xi)

• Let , is the goal to find the best fit on ?xi ∈ Xtrain, yi ∈ Ytrain f (Xtrain, Ytrain)

Overfitting

Empirical Risk Minimization

ϵ(f) = ∫X×Y
f(x) ∼ g(x)

•f and g should be similar on all possible X,Y you will get.

•This includes - (1) Train set, (2) Test set, (3) Samples you don’t have

L(f(x), y) → [0, inf)

•How should we quantify f ~ g?

Empirical Risk Minimization II

ϵ(f) = ∫X×Y
L(y, f(x))

min
f

ϵ(f)
The goal of supervised learning:

ϵ(f) = ∫X×Y
f(x) ∼ g(x)

L(f(x), y) → [0, inf)

What all factors did we see?

• We are trying to minimize, the loss function (L) incurred by our chosen
function f on dataset space (X,Y)

• Let’s go over each one of these components

Minimization:
How do we do it?

• Gradient Descent: (1) Measure gradient of loss w.r.t. parameter (say),

(2) change parameter as:

α

α = α + r *
∂L
∂α

How about a more complex function?

• Gradient descent
should not work.

• We have other
variants which work
better in practice.

So, we need to make the job easy.

• Components to play with - Loss function L, Data (X,Y), and architecture of
the function f.

• Let’s see how we can modify each of them.

What is a good loss function?

• It should reflect what is important to us. For classification:- don’t penalize
if prediction is same, and do penalize if classification is wrong.

• Should help optimization. Best to keep it continuous.

• For ex: Misclassification loss does not have good gradients. Hence, we
use CrossEntropy loss for classification.

• If we have a custom use case, we can design a custom loss function.

Making (X,Y) most useful

• Features = facets of your data. Ex: For picking best advertisement - age,
shoe preference, favorite color.

• Conventional ML: features are everything.

• Finding the right features is very, very hard.

Making (X,Y) most useful

• Typical things done:- PCA, mean normalization. More fancy ones -
whitening, sketching/streaming, random projections.

• Deep learning automates this search. First few layers = non-linear
projection of your data.

• First few layers combine parts of input in non-linear way till they find
something which is a good feature.

Deep Learning - automatic feature extraction

ClassificationFeature extraction

Important questions worth asking

• Are we sure a CNN can be the mathematically best f?

• Yes, universal approximation theorem proves that.

• If we’re doing automatic search, why do certain architectures work better?
Why CNNs, and not normal feed forward architectures?

Architectures to help
automatic search

• Addition of inductive
bias - i.e. exploiting the
structure of the problem.

• For ex:

I am going to the _____ because I am hungry.

I am hungry, so I am going to the _____.
• CNNs, RNNs are designed so

this structure can be exploited.

So, how do we code all this?

We were introduced to 4 components of Deep Learning today. These are:

1.Dataset: We want to load + Pre-Processing easily + fast.

2.Architectures: We may want to include specific structure of our problem.

3.Loss functions: Custom loss functions for our task are important.

4.Optimization: Variant of gradient descent used. So, gradient of loss w.r.t.
NN parameters needs to be calculated.

PyTorch allows great control over each of these aspects

•Data-Loading: Automatically manages issues of memory and speed on GPU.

•Architectural expressivity: If you’ve ever used CAFFE, you would know.

returns

•Easy definition of losses and custom losses.

•Autograd.

•Easy implementation of different gradient algorithms.

Let’s see it in code?
https://colab.research.google.com/drive/125blGZwFZUm8g6YsRntzyJrrp-NjWkuW?authuser=1

