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Reflections on Assignment 1
(2 minutes)

Segment 1



Congratulations! Great job!
• Tough assignment, lots covered – python, git, 

jupyter, colab, pytorch.

• Thank you for your patience!

• Inputs, questions, discussions all highly 
appreciated!

• Please share your concluding thoughts on 
slack!



Quick Recap of Tutorial 1
(5 minutes)

Segment 2



Recap

• Git – version control system
• Github = Git + hub

• Jupyter, colab

• Introduction to ML: the equations, the 
components of these equations and how 
to code them up.



• Takes in information
• Returns more useful information.

The toolkit perspective

Machine 
Learning 
System

Information 
goes in

Meaningful information 
out

𝑥! 𝑦!
𝑓



Features – aspects of input useful 
for the task 

Pixabay

4 legs?

But then, how do you find legs in the image?



Researchers have spent their entire 
careers finding useful features



Deep Learning: Let’s learn the right features

Machine 
Learning
System 

chairLearned 
features

Deep
Learning
System 



Learned Feature Hierarchy 
Yes No classification

high level
features

medium level
features

low level 
features

input image 
patch[Honglak Lee]



Feed-Forward Networks
(20 minutes)

Segment 3



Intuition for how this works

Which of these data sets would be hard to train a classifier for?

• Is there was a way to transform Data B into Data A so that classification becomes 
easy?

• That is precisely what deep learning does!

Data A Data B

Y=3



So, how does this really work?

• Anatomy of a neural network:
• Artificial Neuron
• Multiple Layers of Neurons
• Activation Functions
• Architectures (Covered Later)



Linear neuron

/
x

b

w

wx+b

• A neural network is composed of millions of neurons.

• A neuron is defined by:
• Weight
• Bias
• Function inside: Usually a non-linear function like sigmoid, ReLU etc.

w*x + b
(output)

(Input)



Non-linear neuron

x

b

w

s(wx+b)
Sigmoid(w*x + b)

Other common kinds of non-linearity include Tanh, ReLU etc.

But, why do we need non-linear nodes? Let’s compare them!



Linear vs Non-linear neuron

• Consider the data below. Let’s try to fit the 
simplest neural net to it: 1 layer with just 1 
neuron.



Fitting linear vs non-linear model

Linear neuron Non-linear neuron

As expected, non-linearity helps us fit to more complicate data. 



Simple intuition

• f(x) ~ g(x)
• If g(x) is non-linear, f must also be non-

linear to approximate it.
• Two ways to do this:-

• Take lines and combine non-linearly.
• Take non-linear functions and combine linearly



Source of non-linearity: 
Activation Functions

• Without non-linearity at units, whole neural 
network acts like a linear function. So, it 
reduces to linear regression!

• Different kinds of non-linearities: Sigmoid, 
ReLU, leaky ReLU etc.



From 1 neuron to 1 layer
• Let’s increase the network’s complexity: 

only 1 layer, but multiple neurons.

• Intuition:- Combining simpler functions to 
approximate more complicated ones.

Different combinations of sigmoids



Multiple units, single layer



Two ways to look at it



Why have multiple layers?
• What is the utility of multiple layers then?

• Intuition: Groups of neurons in first layer can 
make different patterns. Subsequent layers 
combine these patterns to make even more 
complicated patterns.



Architectures vs classification power



A typical neural network
• 2 layers with artificial 

neurons
• Outputs of one layer 

are connected to 
inputs of next layer

• Four numbers as 
input, two numbers as 
output

A. Glassner, Deep Learning - From Basics to Practice



What do different layers do?
Classification

high level features

medium level features

low level features

Yes           No



https://playground.tensorflow.org/



Parameters of Neural Network
• Feedforward neural network ~ Chain of 

computations.

• Output depends on the learned weights, or 
parameters.

• Training ~ Finding the right set of weights 
such that the output is desirable. For ex, the 
label chair, if input is a chair image.

• For the network to train, several factors must 
be hand designed. 



Gradient Descent: Minimizing Error

• Moving along any axis corresponds to how loss will change as one particular 
weight is changed. We want to move in direction (i.e. update weights) that 
minimizes loss.

• Gradient: Quantifying change in loss as a particular weight is updated. Thus, one 
gradient per each weight. 

• This is done by calculating the rate of change of loss, and the weight is updated 
according to this weight.

Loss for current 
set of weights

Loss for best 
set of weights.



Stochastic Gradient Descent (SGD)

• Gradient descent looks at all training samples 
when deciding how to update weights. This is very 
slow.

• In practice, Stochastic gradient descent is used. At 
every training iteration, a random sample of 
training data is used to update weights.

• Two benefits: 
1. Faster
2. Based on randomness, so it can randomly “jump” out of a 

tough spot in the terrain.



Backpropagation

RECAP, Gradient: Quantifying 
change in loss as a particular weight 
is updated. Thus, one gradient per 
each weight.

Problem in calculating gradients: 
Gradient of weights in layer 1 
depends on gradient of the weights 
of layer 2. Intractable for large 
network.

Solution: Re-use calculations made 
for one layer, when calculating 
gradients for another layer.

A. Glassner, Deep Learning - From Basics to Practice



Chain Rule



Regularization

• One way to prevent overfitting.

• Many, many ways to regularize. If you 
read it somewhere, it’s a way to prevent 
overfitting.



Recap
• Training -> Finding the right set of weights such that 

output of net is favourable.
• Loss -> Quantifying how well a particular set of 

weights does.
• Thus, training = minimizing loss.
• Loss is minimized by updating weights as dictated by 

gradient descent. 
• To calculate gradient, we use backpropagation which 

re-uses calculations.
• One common problem is overfitting. It results in good 

test performance, but model doesn’t generalize to new 
samples.

• Regularization is one way to prevent overfitting.



Convolutional Neural Networks
(10 minutes)

Segment 1



Images Have Structure – Let’s exploit it

• Position of neighboring pixels should be correct for them 
to resemble an object. 

• We need to look at chunks of local information to extract 
information from them. Convolutions help us do this.



Motivation for idea of CNN

• Distilling information in chunks of regions.
• Combining chunks into more complex 

chunks
• Parameter sharing: don’t learn the concept 

of a cat for every region of image from 
scratch.



Tweaking neural net to have these 
properties: Convolution

Blue maps are inputs images. The dark blue is a filter (another matrix) which 
operates on the image and gives the cyan maps as an output.

x

b

w

s(wx+b)
Sigmoid(w*x + b)
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CONV,
ReLU
e.g. 
5x5x3 
filters

28

28
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CONV,
ReLU
e.g. 
5x5x6
filters

CONV,
ReLU

….

10
24

24

http://cs231n.github.io/

CNNs are composed of layers of 
Convolutions

Note that the activation function is still present.





[Yann LeCun]

http://cs231n.github.io/

What has the network learned?



What has the network learned?

House

Dog

Train

Parts of the image that made network think it’s an image of a house/dog/train.



Applications
Classification Retrieval

[Krizhevsky 2012]

http://cs231n.github.io/



Resources for building further

Video Series to watch
(Videos 1-10):

Why? https://www.youtube.com/watch?v=VOC3huqHrss

https://www.youtube.com/watch?v=bXJx7y
51cl0&list=PLkDaE6sCZn6Gl29AoE31iwd
VwSG-KnDzF&index=10

If you like the song: https://www.youtube.com/watch?v=0jgrCKhxE1s



Recurrent Neural Networks
(10 minutes)

Segment 3



Intuition behind RNNs
• CNNs = patterns in grid of numbers, RNNs = 

patterns in a sequence

• Examples of sequences:- words in a sentence, 
characters in a word, sound pressure in air 
(speech) etc.

• How should we share parameters? 
• In CNN- across region of image, in RNN - across 

regions of ______?



Patterns in different positions of a 
sequence

• I am hungry, so I will go to the kitchen.
• I will go to the kitchen, because I am hungry.
• Which word indicates blank would be kitchen?



What’s the Recurrence in RNNs?

x

b

w

s(wx+b)
Sigmoid(w*x + b)



But, what is the recurrence?



How about a whole network?

• x, h, o are vectors (so, many units).
• Easy to add another layer – one more recurrent h unit!



Modern RNNs
• Most commonly used RNN types are LSTM 

(Long Short Term Memory), or GRU (Gated 
Recurrent Unit).

• We update the single unit to have additional 
properties.

• In a nutshell, can keep track of patterns 
across long distances in sequence.



The need for memorizing and 
forgetting information

• Kilimanjaro is a snow-covered mountain 
19,710 feet high, and is said to be the highest 
mountain in Africa. Close to the western 
summit there is the dried and frozen carcass 
of a leopard.

• It is important to remember Kilimanjaro 
from the past to make sense of word 
“summit” in the future of the sequence. 
Networks must have memory to retain such 
context.



Simple RNN: only 1 RNN cell
• Two Step process:

• For each new input, compute output using current 
input and state, which includes info from past 
inputs as well.

• Update state to contain info about current input.



How does the state update?
• Scale values passing 

through by weights in 
three places

• Combine delayed 
state information by 
adding values

• Output has activation 
function as well



Deep RNNs
• Multiple RNN stages
• Each stage manages 

its own state
• Each stage has 

multiple LSTM units



Further resources

• Illustrated RNN: 
https://www.youtube.com/watch?v=LHXXI
4-IEns

• Illustrated LSTM/GRU: 
https://www.youtube.com/watch?v=8HyCN
IVRbSU

https://www.youtube.com/watch?v=LHXXI4-IEns
https://www.youtube.com/watch?v=8HyCNIVRbSU&list=PL5rWfvZIL-NqKCWYjCnIiLf4cTthmWSGX&index=2


What do RNNs learn?



Applications

Translation



Applications

Sentiment Prediction



GANs and other generative models
(10 minutes)

Segment 4



Discriminative vs Generative Models

• Consider two coins, one fair other unfair.

• One gives: H, H, T, T, H, T, H, T, T, H, H

• Other: H, H, H, H, H, H, H, H, T, H, H, H

• Which one is fair?



You just discriminated using a 
generative model

• Generative model for a coin toss:

• X = {0,1} with 50% probability.

• Similarly, can define generative model over 
images.

• If you have a model you can – (1) get new 
samples from it, (2) use model to discriminate.



Some faces

https://thispersondoesnotexist.com

Learning distributions can be very useful!



Auto-Encoders
• Dimensionality reduction: Summary of a vector.
• Stenographers of the deep learning world.

This is how 
google stores 
your images 
on the cloud



Variational Auto-encoders

𝜇

𝜎
Encoding



Generative Adversarial Networks

• Learning to sample from complex 
distribution like images of faces.

• Data available = Images of faces only!
• Trained by a “Discriminator Network”



Discriminator Network

• What can we do with face image? 
• Train a classifier!
• Generating new image = fooling classifier?
• Classifier = Discriminator Network



Adversarial Examples and Out of 
distribution Generalization
(10 minutes)

Segment 5



Adversarial Examples



Many ways to find adversarial 
examples

• Usually, loss = output value of correct 
category node.

• Adv loss = output value of wrong category 
node.

• Many ways to find them, mostly 
optimization based.

• Physical adversarial examples exist too!



Out of Distribution generalization



Do networks generalize across…

• Time i.e. video frames?
• Pose?
• Change in color/texture?
• Motion Blur?



Summary - 1

• Reflections + Recap
• Feed forward networks: non-linear 

neurons, many neurons in one layer, many 
layers.

• Gradient descent to learn it all.
• Let’s exploit problem structure –

parameter sharing.



Summary - 2

• CNNs: same filter across image, capture 
neighboring features, then combine them 
across layers.

• RNNs: Same recurrent node across 
sequence elements, cell state stores 
information about past words, combines 
with current word.

• LSTMs/GRUs: For learning long-term 
relations in sequences



Summary - 3

• Generative models: learning the 
distribution from which data would have 
come. For ex: Faces

• Autoencoders = Stenographers
• VAE = Autoencoder beyond just your data.
• GAN = Generator vs discriminator: 

distribution learned in the process.



Summary - 4

• Adversarial examples: Visual illusions for 
neural networks.

• Out of distribution generalization: the real 
end game.



Many moving parts, very little control. 
If you get frustrated…



Reminders
• Fill Track A/B sheet!

• Next assignment will be published this 
week, due Feb 23.

• Project declaration is due 23.

• Colin/Spandan/Gabriel’s Office Hours for 
discussing projects!



Thank you!


