
Tutorial 2 – CNNs, RNNs, GANs et al.

Spandan Madan

Reflections on Assignment 1
(2 minutes)

Segment 1

Congratulations! Great job!
• Tough assignment, lots covered – python, git,

jupyter, colab, pytorch.

• Thank you for your patience!

• Inputs, questions, discussions all highly
appreciated!

• Please share your concluding thoughts on
slack!

Quick Recap of Tutorial 1
(5 minutes)

Segment 2

Recap

• Git – version control system
• Github = Git + hub

• Jupyter, colab

• Introduction to ML: the equations, the
components of these equations and how
to code them up.

• Takes in information
• Returns more useful information.

The toolkit perspective

Machine
Learning
System

Information
goes in

Meaningful information
out

𝑥! 𝑦!
𝑓

Features – aspects of input useful
for the task

Pixabay

4 legs?

But then, how do you find legs in the image?

Researchers have spent their entire
careers finding useful features

Deep Learning: Let’s learn the right features

Machine
Learning
System

chairLearned
features

Deep
Learning
System

Learned Feature Hierarchy
Yes No classification

high level
features

medium level
features

low level
features

input image
patch[Honglak Lee]

Feed-Forward Networks
(20 minutes)

Segment 3

Intuition for how this works

Which of these data sets would be hard to train a classifier for?

• Is there was a way to transform Data B into Data A so that classification becomes
easy?

• That is precisely what deep learning does!

Data A Data B

Y=3

So, how does this really work?

• Anatomy of a neural network:
• Artificial Neuron
• Multiple Layers of Neurons
• Activation Functions
• Architectures (Covered Later)

Linear neuron

/
x

b

w

wx+b

• A neural network is composed of millions of neurons.

• A neuron is defined by:
• Weight
• Bias
• Function inside: Usually a non-linear function like sigmoid, ReLU etc.

w*x + b
(output)

(Input)

Non-linear neuron

x

b

w

s(wx+b)
Sigmoid(w*x + b)

Other common kinds of non-linearity include Tanh, ReLU etc.

But, why do we need non-linear nodes? Let’s compare them!

Linear vs Non-linear neuron

• Consider the data below. Let’s try to fit the
simplest neural net to it: 1 layer with just 1
neuron.

Fitting linear vs non-linear model

Linear neuron Non-linear neuron

As expected, non-linearity helps us fit to more complicate data.

Simple intuition

• f(x) ~ g(x)
• If g(x) is non-linear, f must also be non-

linear to approximate it.
• Two ways to do this:-

• Take lines and combine non-linearly.
• Take non-linear functions and combine linearly

Source of non-linearity:
Activation Functions

• Without non-linearity at units, whole neural
network acts like a linear function. So, it
reduces to linear regression!

• Different kinds of non-linearities: Sigmoid,
ReLU, leaky ReLU etc.

From 1 neuron to 1 layer
• Let’s increase the network’s complexity:

only 1 layer, but multiple neurons.

• Intuition:- Combining simpler functions to
approximate more complicated ones.

Different combinations of sigmoids

Multiple units, single layer

Two ways to look at it

Why have multiple layers?
• What is the utility of multiple layers then?

• Intuition: Groups of neurons in first layer can
make different patterns. Subsequent layers
combine these patterns to make even more
complicated patterns.

Architectures vs classification power

A typical neural network
• 2 layers with artificial

neurons
• Outputs of one layer

are connected to
inputs of next layer

• Four numbers as
input, two numbers as
output

A. Glassner, Deep Learning - From Basics to Practice

What do different layers do?
Classification

high level features

medium level features

low level features

Yes No

https://playground.tensorflow.org/

Parameters of Neural Network
• Feedforward neural network ~ Chain of

computations.

• Output depends on the learned weights, or
parameters.

• Training ~ Finding the right set of weights
such that the output is desirable. For ex, the
label chair, if input is a chair image.

• For the network to train, several factors must
be hand designed.

Gradient Descent: Minimizing Error

• Moving along any axis corresponds to how loss will change as one particular
weight is changed. We want to move in direction (i.e. update weights) that
minimizes loss.

• Gradient: Quantifying change in loss as a particular weight is updated. Thus, one
gradient per each weight.

• This is done by calculating the rate of change of loss, and the weight is updated
according to this weight.

Loss for current
set of weights

Loss for best
set of weights.

Stochastic Gradient Descent (SGD)

• Gradient descent looks at all training samples
when deciding how to update weights. This is very
slow.

• In practice, Stochastic gradient descent is used. At
every training iteration, a random sample of
training data is used to update weights.

• Two benefits:
1. Faster
2. Based on randomness, so it can randomly “jump” out of a

tough spot in the terrain.

Backpropagation

RECAP, Gradient: Quantifying
change in loss as a particular weight
is updated. Thus, one gradient per
each weight.

Problem in calculating gradients:
Gradient of weights in layer 1
depends on gradient of the weights
of layer 2. Intractable for large
network.

Solution: Re-use calculations made
for one layer, when calculating
gradients for another layer.

A. Glassner, Deep Learning - From Basics to Practice

Chain Rule

Regularization

• One way to prevent overfitting.

• Many, many ways to regularize. If you
read it somewhere, it’s a way to prevent
overfitting.

Recap
• Training -> Finding the right set of weights such that

output of net is favourable.
• Loss -> Quantifying how well a particular set of

weights does.
• Thus, training = minimizing loss.
• Loss is minimized by updating weights as dictated by

gradient descent.
• To calculate gradient, we use backpropagation which

re-uses calculations.
• One common problem is overfitting. It results in good

test performance, but model doesn’t generalize to new
samples.

• Regularization is one way to prevent overfitting.

Convolutional Neural Networks
(10 minutes)

Segment 1

Images Have Structure – Let’s exploit it

• Position of neighboring pixels should be correct for them
to resemble an object.

• We need to look at chunks of local information to extract
information from them. Convolutions help us do this.

Motivation for idea of CNN

• Distilling information in chunks of regions.
• Combining chunks into more complex

chunks
• Parameter sharing: don’t learn the concept

of a cat for every region of image from
scratch.

Tweaking neural net to have these
properties: Convolution

Blue maps are inputs images. The dark blue is a filter (another matrix) which
operates on the image and gives the cyan maps as an output.

x

b

w

s(wx+b)
Sigmoid(w*x + b)

32

32

3

CONV,
ReLU
e.g.
5x5x3
filters

28

28

6

CONV,
ReLU
e.g.
5x5x6
filters

CONV,
ReLU

….

10
24

24

http://cs231n.github.io/

CNNs are composed of layers of
Convolutions

Note that the activation function is still present.

[Yann LeCun]

http://cs231n.github.io/

What has the network learned?

What has the network learned?

House

Dog

Train

Parts of the image that made network think it’s an image of a house/dog/train.

Applications
Classification Retrieval

[Krizhevsky 2012]

http://cs231n.github.io/

Resources for building further

Video Series to watch
(Videos 1-10):

Why? https://www.youtube.com/watch?v=VOC3huqHrss

https://www.youtube.com/watch?v=bXJx7y
51cl0&list=PLkDaE6sCZn6Gl29AoE31iwd
VwSG-KnDzF&index=10

If you like the song: https://www.youtube.com/watch?v=0jgrCKhxE1s

Recurrent Neural Networks
(10 minutes)

Segment 3

Intuition behind RNNs
• CNNs = patterns in grid of numbers, RNNs =

patterns in a sequence

• Examples of sequences:- words in a sentence,
characters in a word, sound pressure in air
(speech) etc.

• How should we share parameters?
• In CNN- across region of image, in RNN - across

regions of ______?

Patterns in different positions of a
sequence

• I am hungry, so I will go to the kitchen.
• I will go to the kitchen, because I am hungry.
• Which word indicates blank would be kitchen?

What’s the Recurrence in RNNs?

x

b

w

s(wx+b)
Sigmoid(w*x + b)

But, what is the recurrence?

How about a whole network?

• x, h, o are vectors (so, many units).
• Easy to add another layer – one more recurrent h unit!

Modern RNNs
• Most commonly used RNN types are LSTM

(Long Short Term Memory), or GRU (Gated
Recurrent Unit).

• We update the single unit to have additional
properties.

• In a nutshell, can keep track of patterns
across long distances in sequence.

The need for memorizing and
forgetting information

• Kilimanjaro is a snow-covered mountain
19,710 feet high, and is said to be the highest
mountain in Africa. Close to the western
summit there is the dried and frozen carcass
of a leopard.

• It is important to remember Kilimanjaro
from the past to make sense of word
“summit” in the future of the sequence.
Networks must have memory to retain such
context.

Simple RNN: only 1 RNN cell
• Two Step process:

• For each new input, compute output using current
input and state, which includes info from past
inputs as well.

• Update state to contain info about current input.

How does the state update?
• Scale values passing

through by weights in
three places

• Combine delayed
state information by
adding values

• Output has activation
function as well

Deep RNNs
• Multiple RNN stages
• Each stage manages

its own state
• Each stage has

multiple LSTM units

Further resources

• Illustrated RNN:
https://www.youtube.com/watch?v=LHXXI
4-IEns

• Illustrated LSTM/GRU:
https://www.youtube.com/watch?v=8HyCN
IVRbSU

https://www.youtube.com/watch?v=LHXXI4-IEns
https://www.youtube.com/watch?v=8HyCNIVRbSU&list=PL5rWfvZIL-NqKCWYjCnIiLf4cTthmWSGX&index=2

What do RNNs learn?

Applications

Translation

Applications

Sentiment Prediction

GANs and other generative models
(10 minutes)

Segment 4

Discriminative vs Generative Models

• Consider two coins, one fair other unfair.

• One gives: H, H, T, T, H, T, H, T, T, H, H

• Other: H, H, H, H, H, H, H, H, T, H, H, H

• Which one is fair?

You just discriminated using a
generative model

• Generative model for a coin toss:

• X = {0,1} with 50% probability.

• Similarly, can define generative model over
images.

• If you have a model you can – (1) get new
samples from it, (2) use model to discriminate.

Some faces

https://thispersondoesnotexist.com

Learning distributions can be very useful!

Auto-Encoders
• Dimensionality reduction: Summary of a vector.
• Stenographers of the deep learning world.

This is how
google stores
your images
on the cloud

Variational Auto-encoders

𝜇

𝜎
Encoding

Generative Adversarial Networks

• Learning to sample from complex
distribution like images of faces.

• Data available = Images of faces only!
• Trained by a “Discriminator Network”

Discriminator Network

• What can we do with face image?
• Train a classifier!
• Generating new image = fooling classifier?
• Classifier = Discriminator Network

Adversarial Examples and Out of
distribution Generalization
(10 minutes)

Segment 5

Adversarial Examples

Many ways to find adversarial
examples

• Usually, loss = output value of correct
category node.

• Adv loss = output value of wrong category
node.

• Many ways to find them, mostly
optimization based.

• Physical adversarial examples exist too!

Out of Distribution generalization

Do networks generalize across…

• Time i.e. video frames?
• Pose?
• Change in color/texture?
• Motion Blur?

Summary - 1

• Reflections + Recap
• Feed forward networks: non-linear

neurons, many neurons in one layer, many
layers.

• Gradient descent to learn it all.
• Let’s exploit problem structure –

parameter sharing.

Summary - 2

• CNNs: same filter across image, capture
neighboring features, then combine them
across layers.

• RNNs: Same recurrent node across
sequence elements, cell state stores
information about past words, combines
with current word.

• LSTMs/GRUs: For learning long-term
relations in sequences

Summary - 3

• Generative models: learning the
distribution from which data would have
come. For ex: Faces

• Autoencoders = Stenographers
• VAE = Autoencoder beyond just your data.
• GAN = Generator vs discriminator:

distribution learned in the process.

Summary - 4

• Adversarial examples: Visual illusions for
neural networks.

• Out of distribution generalization: the real
end game.

Many moving parts, very little control.
If you get frustrated…

Reminders
• Fill Track A/B sheet!

• Next assignment will be published this
week, due Feb 23.

• Project declaration is due 23.

• Colin/Spandan/Gabriel’s Office Hours for
discussing projects!

Thank you!

