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Knew who the adult is talking to

What “That’s your train” is referring to

What trains do on tracks

Tried to put trains on tracks

Knew what the adult was referring to when they waved their hand
Decided what object to get next

Knew what Santa brought

Answered questions about objects and abstract concepts
Demonstrated “it goes”

Understood that “doggie” and “dog” are similar
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Machines on the other hand

Generated by GPT-2 large

Q: Leader of Canada A: Trudeau
Q: Leader of Germany A: Merkel
Q: Leader of India A: Modi

Canada is a country that’s become very strong over the last five or six years and has been
at the heart of our growth over the last decade or so," he told host Andrew Coyne

| was on the glideslope and looked down and there’s a lot of wind and clouds and there’s
lightning coming from the west, so my flight path went off to the left in that direction.
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Get some things terribly wrong

GPT-2 large
The first 3 completions for

| was holding something heavy and my friend . ..
thought | was getting too close.
held my back so | wasn’t able to grab anything.
took it and hit me in the head,"
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Multi-task Vision

Kendall et al. 2019

Andrei Barbu (MIT) Flexible intelligence April, 2021 /77



Multi-task Vision

Input Image

_| Semantic

Decoder

Encoder

| Instance |, % ,u*- wa_

Decoder

D
-

Depth
Decoder

Semantic
Task
Uncertainty

Instance
Task
Uncertainty

Depth
Task
Uncertainty

Kendall et al. 2019

Andrei Barbu (MIT)

Flexible intelligence



Andrei Barbu (MIT) le intelligence



Recognition

Andrei Barbu (MIT) Flexible intelligence



Recognition

Retrieval

Andrei Barbu (MIT) Flexible intelligence April, 2021 8/77



Recognition
Retrieval

Generation

Andrei Barbu (MIT) Flexible intelligence April, 2021 8/77



Recognition
Retrieval
Generation

Question answering

Andrei Barbu (MIT) Flexible intelligence April, 2021 8/77



Recognition
Retrieval
Generation
Question answering

Disambiguation

Andrei Barbu (MIT) Flexible intelligence April, 2021 8/77



Recognition
Retrieval
Generation
Question answering

Disambiguation

Language acquisition

Andrei Barbu (MIT) Flexible intelligence April, 2021 8/77



Recognition
Retrieval
Generation
Question answering
Disambiguation

Language acquisition

Paraphrasing

Andrei Barbu (MIT) Flexible intelligence April, 2021 8/77



Recognition
Retrieval

Generation

Question answering
Disambiguation
Language acquisition
Paraphrasing

Translation

Andrei Barbu (MIT) Flexible intelligence April, 2021 8/77



Recognition
Retrieval

Generation

Question answering
Disambiguation
Language acquisition
Paraphrasing
Translation

Common sense reasoning

Andrei Barbu (MIT) Flexible intelligence

April, 2021

8/77



Recognition

Retrieval

Generation

Question answering
Disambiguation
Language acquisition
Paraphrasing

Translation

Common sense reasoning

Planning

Andrei Barbu (MIT) Flexible intelligence

April, 2021

8/77



Recognition

Retrieval

Generation

Question answering
Disambiguation
Language acquisition
Paraphrasing

Translation

Common sense reasoning
Planning

Command following

Andrei Barbu (MIT) Flexible intelligence

April, 2021

8/77



Recognition

Retrieval

Generation

Question answering
Disambiguation
Language acquisition
Paraphrasing

Translation

Common sense reasoning
Planning

Command following

Andrei Barbu (MIT) Flexible intelligence

April, 2021

8/77



Recognition

Retrieval
Generation
Question answering Computer vision
NLP
Disambiguation .
| e Robotics
LLanguage acquisition Al

Paraphrasing

Translation

Common sense reasoning
Planning

Command following

Andrei Barbu (MIT) Flexible intelligence April, 2021 8/77



Representation P(sentence, video)

Yu, Siddharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77



Representation P(sentence, video)
Sentence — First order temporal logic — video detector

Yu, Siddharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77



Representation P(sentence, video)
Sentence — First order temporal logic — video detector

Danny and Andrei move a chair.

Yu, Siddharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77



Representation P(sentence, video)
Sentence — First order temporal logic — video detector

Danny and Andrei move a chair.

Ixyz chair(x), person(y), person(z),y # z, move(y, x), move(z, x)

Yu, Siddharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77



Representation P(sentence, video)
Sentence — First order temporal logic — video detector

Danny and Andrei move a chair.

Ixyz chair(x), person(y), person(z),y # z, move(y, x), move(z, x)

Don't build in attributes like shape, color, etc.

Yu, Siddharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77



Representation P(sentence, video)
Sentence — First order temporal logic — video detector

Danny and Andrei move a chair.

Ixyz chair(x), person(y), person(z),y # z, move(y, x), move(z, x)

Don't build in attributes like shape, color, etc.
Build in mechanics! Physics, Interactions, ToM, out of domain goals, etc.

Yu, Siddharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77



Representation P(sentence, video)
Sentence — First order temporal logic — video detector

Danny and Andrei move a chair.

Ixyz chair(x), person(y), person(z),y # z, move(y, x), move(z, x)

Don't build in attributes like shape, color, etc.
Build in mechanics! Physics, Interactions, ToM, out of domain goals, etc.
Attributes exist because they matter, mechanisms are built in

Yu, Siddharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77



Representation P(sentence, video)
Sentence — First order temporal logic — video detector

Danny and Andrei move a chair.
Ixyz chair(x), person(y), person(z),y # z, move(y, x), move(z, x)

Don't build in attributes like shape, color, etc.
Build in mechanics! Physics, Interactions, ToM, out of domain goals, etc.
Attributes exist because they matter, mechanisms are built in

Compositions of networks or graphical models:

Yu, Siddharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77



Representation P(sentence, video)
Sentence — First order temporal logic — video detector

Danny and Andrei move a chair.
Ixyz chair(x), person(y), person(z),y # z, move(y, x), move(z, x)

Don't build in attributes like shape, color, etc.
Build in mechanics! Physics, Interactions, ToM, out of domain goals, etc.
Attributes exist because they matter, mechanisms are built in

Compositions of networks or graphical models:

Yu, Siddharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77



Representation P(sentence, video)
Sentence — First order temporal logic — video detector

Danny and Andrei move a chair.

Ixyz chair(x), person(y), person(z),y # z, move(y, x), move(z, x)

Don't build in attributes like shape, color, etc.
Build in mechanics! Physics, Interactions, ToM, out of domain goals, etc.
Attributes exist because they matter, mechanisms are built in

Compositions of networks or graphical models:

x-tracker y-tracker z-tracker

- - gu.dharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77




Representation P(sentence, video)
Sentence — First order temporal logic — video detector

Danny and Andrei move a chair.

Ixyz chair(x), person(y), person(z),y # z, move(y, x), move(z, x)

Don't build in attributes like shape, color, etc.
Build in mechanics! Physics, Interactions, ToM, out of domain goals, etc.
Attributes exist because they matter, mechanisms are built in

Compositions of networks or graphical models:

chair person person # move move

x-tracker y-tracker z-tracker

- - gu.dharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77




Representation P(sentence, video)
Sentence — First order temporal logic — video detector

Danny and Andrei move a chair.

Ixyz chair(x), person(y), person(z),y # z, move(y, x), move(z, x)

Don't build in attributes like shape, color, etc.
Build in mechanics! Physics, Interactions, ToM, out of domain goals, etc.
Attributes exist because they matter, mechanisms are built in

Compositions of networks or graphical models:

chair person person # move move

x-tracker y-tracker z-tracker

. i dharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77




Representation P(sentence, video)
Sentence — First order temporal logic — video detector

Danny and Andrei move a chair.

Ixyz chair(x), person(y), person(z),y # z, move(y, x), move(z, x)

Don't build in attributes like shape, color, etc.
Build in mechanics! Physics, Interactions, ToM, out of domain goals, etc.
Attributes exist because they matter, mechanisms are built in

Compositions of networks or graphical models:

chair person person # move move

x-tracker y-tracker z-tracker

Py N

gu.dharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77




Representation P(sentence, video)
Sentence — First order temporal logic — video detector

Danny and Andrei move a chair.

Ixyz chair(x), person(y), person(z),y # z, move(y, x), move(z, x)

Don't build in attributes like shape, color, etc.
Build in mechanics! Physics, Interactions, ToM, out of domain goals, etc.
Attributes exist because they matter, mechanisms are built in

Compositions of networks or graphical models:

chair person person # move move

x-tracker y-tracker z-tracker

, .7

.dharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77



Representation P(sentence, video)
Sentence — First order temporal logic — video detector

Danny and Andrei move a chair.

Ixyz chair(x), person(y), person(z),y # z, move(y, x), move(z, x)

Don't build in attributes like shape, color, etc.
Build in mechanics! Physics, Interactions, ToM, out of domain goals, etc.
Attributes exist because they matter, mechanisms are built in

Compositions of networks or graphical models:

chair person person # move move

x-tracker y-tracker z-tracker

, .7

.dharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77



Representation P(sentence, video)
Sentence — First order temporal logic — video detector

Danny and Andrei move a chair.

Ixyz chair(x), person(y), person(z),y # z, move(y, x), move(z, x)

Don't build in attributes like shape, color, etc.
Build in mechanics! Physics, Interactions, ToM, out of domain goals, etc.
Attributes exist because they matter, mechanisms are built in

Compositions of networks or graphical models:

chair person person # move move

T

x-tracker y-tracker z-tracker

, .7

.dharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77



Representation P(sentence, video)
Sentence — First order temporal logic — video detector

Danny and Andrei move a chair.

Ixyz chair(x), person(y), person(z),y # z, move(y, x), move(z, x)

Don't build in attributes like shape, color, etc.
Build in mechanics! Physics, Interactions, ToM, out of domain goals, etc.
Attributes exist because they matter, mechanisms are built in

Compositions of networks or graphical models:

chair person person # move move

T T

x-tracker y-tracker z-tracker

, .7

.dharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77



Representation P(sentence, video)
Sentence — First order temporal logic — video detector

Danny and Andrei move a chair.

Ixyz chair(x), person(y), person(z),y # z, move(y, x), move(z, x)

Don't build in attributes like shape, color, etc.
Build in mechanics! Physics, Interactions, ToM, out of domain goals, etc.
Attributes exist because they matter, mechanisms are built in

Compositions of networks or graphical models:

chair person person # move move

TS

x-tracker y-tracker z-tracker

, .7

.dharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77



Representation P(sentence, video)
Sentence — First order temporal logic — video detector

Danny and Andrei move a chair.

Ixyz chair(x), person(y), person(z),y # z, move(y, x), move(z, x)

Don't build in attributes like shape, color, etc.
Build in mechanics! Physics, Interactions, ToM, out of domain goals, etc.
Attributes exist because they matter, mechanisms are built in

Compositions of networks or graphical models:

chair person person # move move

B

x-tracker y-tracker z-tracker

, .7

.dharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77



Representation P(sentence, video)
Sentence — First order temporal logic — video detector

Danny and Andrei move a chair.

Ixyz chair(x), person(y), person(z),y # z, move(y, x), move(z, x)

Don't build in attributes like shape, color, etc.
Build in mechanics! Physics, Interactions, ToM, out of domain goals, etc.
Attributes exist because they matter, mechanisms are built in

Compositions of networks or graphical models:

chair person person # move move

| S ===

x-tracker y-tracker z-tracker

, .7

.dharth, Barbu, Siskind JAIR 2015

Andrei Barbu (MIT) Flexible intelligence April, 2021 9/77



Recognition P(sentence, video)
Retrieval

Generation

Question answering

Disambiguation

Language acquisition

Paraphrasing

Translation

Common sense reasoning

Planning

Command following

Andrei Barbu (MIT)

Flexible intelligence

Narayanaswamy et al. 2014




Recognition P(sentence, video)

Retrieval argmax P(s, v)
veV

Generation

Question answering

Disambiguation

Language acquisition

Paraphrasing

Translation

Common sense reasoning

Planning

Command following

Andrei Barbu (MIT)

Flexible intelligence

Narayanaswamy et al. 2014

Barret et al. 2016




Sentential retrieval

Barrett, Barbu, Siddharth, Siskind PAMI 2016

Andrei Barbu (MIT) Flexible intelligence April, 2021 11 /77



Sentential retrieval

IR Pr—

BLACK BEAUTY

A

MICKEY ROONEY  ELIZABETH TAYLOR

NAImNALVET

Barrett, Barbu, Siddharth, Siskind PAMI 2016

Andrei Barbu (MIT) Flexible intelligence April, 2021 11/77



Recognition P(sentence, video)

Retrieval argmax P(s, v)
veV

Generation

Question answering

Disambiguation

Language acquisition

Paraphrasing

Translation

Common sense reasoning

Planning

Command following

Andrei Barbu (MIT)

Flexible intelligence

Narayanaswamy et al. 2014

Barret et al. 2016




Recognition P(sentence, video)

Retrieval argmax P(s, V)
vev

Generation argmax P(s, V)
seL

Question answering
Disambiguation
Language acquisition
Paraphrasing

Translation

Common sense reasoning
Planning

Command following

Andrei Barbu (MIT)

Flexible intelligence

Narayanaswamy et al. 2014

Barret et al. 2016

Yu et al. 2015, N. et al. 2014




Generating sentences

Andrei Barbu (MIT) Flexible intelligence April, 2021



Generating sentences

S—NP VP
NP—D [A] N [PP]
D—an | the
A—blue | red
N—person | backpack | chair | bin | object
PP—P NP
P—to the left of | to the right of
VP—V NP [Adv] [PPum]
V—approached | carried | picked up | put down
Adv—quickly | slowly
PPy—Pwm NP
Pm— towards | away from

Andrei Barbu (MIT) Flexible intelligence

April, 2021



Generating sentences

S—NP VP
NP—D [A] N [PP]
D—an | the
A—blue | red
N—person | backpack | chair | bin | object
PP—P NP
P—to the left of | to the right of
VP—V NP [Adv] [PPum]
V—approached | carried | picked up | put down
Adv—quickly | slowly
PPy—Pwm NP
Pm— towards | away from

147,123,874,800 sentences without recursion

Andrei Barbu (MIT) Flexible intelligence

April, 2021



Generating sentences

S—NP VP
NP—D [A] N [PP]
D—an | the
A—blue | red
N—person | backpack | chair | bin | object
PP—P NP
P—to the left of | to the right of
VP—V NP [Adv] [PPum]
V—approached | carried | picked up | put down
Adv—quickly | slowly
PPy—Pwm NP
Pm— towards | away from

147,123,874,800 sentences without recursion

Andrei Barbu (MIT) Flexible intelligence

April, 2021



Generating sentences

S—NP VP
NP—D [A] N [PP]
D—an | the
A—blue | red
N—person | backpack | chair | bin | object
PP—P NP
P—to the left of | to the right of
VP—V NP [Adv] [PPum]
V—approached | carried | picked up | put down
Adv—quickly | slowly
PPy—Pwm NP
Pm— towards | away from

147,123,874,800 sentences without recursion

“carried”

Andrei Barbu (MIT) Flexible intelligence

April, 2021



Generating sentences

S—NP VP
NP—D [A] N [PP]
D—an | the
A—blue | red
N—person | backpack | chair | bin | object
PP—P NP
P—to the left of | to the right of
VP—V NP [Adv] [PPum]
V—approached | carried | picked up | put down
Adv—quickly | slowly
PPy—Pwm NP
Pm— towards | away from

147,123,874,800 sentences without recursion

“the person carried”

Andrei Barbu (MIT) Flexible intelligence

April, 2021



Generating sentences

S—NP VP
NP—D [A] N [PP]
D—an | the
A—blue | red
N—person | backpack | chair | bin | object
PP—P NP
P—to the left of | to the right of
VP—V NP [Adv] [PPum]
V—approached | carried | picked up | put down
Adv—quickly | slowly
PPy—Pwm NP
Pm— towards | away from

147,123,874,800 sentences without recursion

“the person carried the backpack”
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Question answering

What did the person put on top of the red car?
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Question answering

What did the person put on top of the red car?
The person put NP on top of the red car.

Andrei Barbu (MIT) Flexible intelligence April, 2021



Question answering

What did the person put on top of the red car?
The person put NP on top of the red car.
The person put the pear on top of the red car.
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Danny looked at the man with a telescope.
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Danny looked at the man with a telescope.

o

Danny has the telescope

Andrei Barbu (MIT) Flexible intelligence April, 2021 18 /77



Danny looked at the man with a telescope.

N

Danny has the telescope The man has the telescope

Andrei Barbu (MIT) Flexible intelligence April, 2021 18 /77



Danny looked at the man with a telescope.

N

Danny has the telescope The man has the telescope

Andrei Barbu (MIT) Flexible intelligence April, 2021



Danny looked at the man with a telescope.

N

Danny has the telescope The man has the telescope

Andrei Barbu (MIT) Flexible intelligence April, 2021



Danny looked at the man with a telescope.

N

Danny has the telescope The man has the telescope

Andrei Barbu (MIT) Flexible intelligence April, 2021 18/ 77



Ambiguities

Berzak, Barbu, Katz, and Ullman EMNLP 2016
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Ambiguities

PP Attachment Danny looked at the man with a telescope.

Berzak, Barbu, Katz, and Ullman EMNLP 2016
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Ambiguities

PP Attachment Andrei approached the person holding a green chair.

VP Attachment

Berzak, Barbu, Katz, and Ullman EMNLP 2016
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Ambiguities

PP Attachment Danny and Andrei picked up the yeIIow bag and chair.

VP Attachment

Conjunction

Berzak, Barbu, Katz, and Ullman EMNLP 2016
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Ambiguities

PP Attachment Someone put down the bags.

VP Attachment
Conjunction

Logical Form

Berzak, Barbu, Katz, and Ullman EMNLP 2016
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Ambiguities

PP Attachment picked up the bag and the chair. It is yellow.

VP Attachment

Conjunction
Logical Form

Anaphora

Berzak, Barbu, Katz, and Ullman EMNLP 2016
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Ambiguities

PP Attachment Danny left Andrei. Also Yevgeni.

VP Attachment

Conjunction
Logical Form

Anaphora

Ellipsis

Berzak, Barbu, Katz, and Ullman EMNLP 2016
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heard /~12000 words per day
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Language acquisition from 10,000 feet
By age 4

heard /~12000 words per day
~1-2 million utterances

~550 daily conversational turns

{( Take this apple. )}

Recognition
Generation
Disambiguation
Representation Paraphrasing
Planning
Command following
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Grounded language acquisition

Ross, Barbu, Berzak, Myanganbayar, Katz EMNLP 2018
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Grounded language acquisition

Danny approached the chair with a bag.

Ross, Barbu, Berzak, Myanganbayar, Katz EMNLP 2018

Andrei Barbu (MIT) Flexible intelligence April, 2021 22/77




Grounded language acquisition

Danny approached the chair with a bag.

-

parser

Ross, Barbu, Berzak, Myanganbayar, Katz EMNLP 2018

Andrei Barbu (MIT) Flexible intelligence April, 2021 22/77




Grounded language acquisition

Danny approached the chair with a bag.

-

parser

o VF Pe E
am PN VBD /\
\//\NP I NP NP /PP\
Py hed 2N
e o e of aoprosched o R e
| [ RPN
2 bag the chair with DT NN

approached the  chair N
a bag

Ross, Barbu, Berzak, Myanganbayar, Katz EMNLP 2018

April, 2021 22 /77

Andrei Barbu (MIT) Flexible intelligence



Grounded language acquisition

Danny approached the chair with a bag.

v

parser

NP
NNP /\ NNP
e
s MS 4 m P
am
\//\NP P vio P .
A~ hed N TN
Vo DT Rn wih DT RN approached o [y e
L o o de o W o7 T
pproached the  chair ]
2 bag

Ross, Barbu, Berzak, Myanganbayar, Katz EMNLP 2018
April, 2021 22 /77

Flexible intelligence

Andrei Barbu (MIT)



Grounded language acquisition

Danny approached the chair with a bag.

v

parser

NP
NNP /\ Dig
S VP PP E /\
m
P | NF B
A~ A or I
vbo DT RNn with DT AN i We
Y | [ o~
chcred the b bag the chair it DT RN
a2 bag

Ross, Barbu, Berzak, Myanganbayar, Katz EMNLP 2018
April, 2021 22 /77

Flexible intelligence

Andrei Barbu (MIT)



Grounded language acquisition

Danny approached the chair with a bag.

v

parser

Ross, Barbu, Berzak, Myanganbayar, Katz EMNLP 2018

Andrei Barbu (MIT) Flexible intelligence April, 2021 22/77




Grounded language acquisition

Danny approached the chair with a bag.

v

~parser

Ross, Barbu, Berzak, Myanganbayar, Katz EMNLP 2018

Andrei Barbu (MIT) Flexible intelligence April, 2021 22/77




Grounded language acquisition

Danny approached the chair with a bag.

v

~parser

Ross, Barbu, Berzak, Myanganbayar, Katz EMNLP 2018

Andrei Barbu (MIT) Flexible intelligence April, 2021 22/77




Grounded language acquisition

Danny approached the chair with a bag.

v

~parser

Ross, Barbu, Berzak, Myanganbayar, Katz EMNLP 2018

Andrei Barbu (MIT) Flexible intelligence April, 2021 22/77




Grounded language acquisition

Danny approached the chair with a bag.
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The acquired syntactic & semantic parser

A CCG-based parser with an acquired lexicon and
a small network that ranks derivations
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The acquired syntactic & semantic parser

A CCG-based parser with an acquired lexicon and
a small network that ranks derivations

She places the toy car down on the table.
AXyz.person X, put-down X y,toy y,car y,table z,on y z

Fully-supervised: 93% accuracy
Unsupervised: =1% accuracy
Ours, videos without annotations: 60% accuracy

Andrei Barbu (MIT) Flexible intelligence

April, 2021



Learning a parser-generator pair using a robotic simulator

Wang, Ross, Katz, Barbu CoRL 2020
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Learning a parser-generator pair using a robotic simulator
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Learning a parser-generator pair using a robotic simulator
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Use a robot to discover the structure of language

> factory > > gem >

Ofactory A Ogem

Parser

English sentence Sentence embedding

N Generator

e e English sentence
Reconstruction loss

Wang, Ross, Katz, Barbu CoRL 2020
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Language models that interact physically
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What about social interactions?

We have no social simulators

Netanyahu, Shu, Barbu, Katz, Tenenbaum AAAI 2021
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What about social interactions?

We now have social simulators

PHASE: PHysically-grounded Abstract Social Events for Machine Social Perception

Agents gR &8
v Objects

Landmarks. .

Walls
Field of View

We have no mathematical theories theories of social interactions

Netanyahu, Shu, Barbu, Katz, Tenenbaum AAAI 2021
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Paraphrasing today

Socher et al. 2011, Cheng and Kartsaklis 2015
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Paraphrasing today
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Paraphrasing with vision

Mao, Katz, Barbu; IJCAI in review
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Paraphrasing with vision
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Paraphrasing with vision
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Mao, Katz, Barbu; IJCAI in review
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Paraphrasing with vision
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Paraphrasing with vision
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YouTube
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Paraphrasing with vision
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Paraphrasing with imagination
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Generated “videos”

Alice carried the chair away from the backpack.
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Comparing sentences vs Parikh et al. 2016 + ELMo

Does the sentence above imply the one below, and vice versa?

Mao et al. in review
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Comparing sentences vs Parikh et al. 2016 + ELMo

Does the sentence above imply the one below, and vice versa?

Ours Theirs
Alice carried the chair (3 Y N
Alice held the chair M N Y

Alice carried the chair towards Ben
Alice approached Ben

Mao et al. in review
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Comparing sentences vs Parikh et al. 2016 + ELMo

Does the sentence above imply the one below, and vice versa?

Ours Theirs
Alice carried the chair (3 Y N
Alice held the chair M N Y
Alice carried the chair towards Ben U Y N
Alice approached Ben M N Y7
Alice carried the chair towards Ben (3 N Y7?
Alice left Ben M N Y7

Mao et al. in review

Andrei Barbu (MIT) Flexible intelligence April, 2021 33/77



Comparing sentences vs Parikh et al. 2016 + ELMo

Does the sentence above imply the one below, and vice versa?

Ours Theirs
Alice carried the chair (3 Y N
Alice held the chair M N Y
Alice carried the chair towards Ben U Y N
Alice approached Ben M N Y7
Alice carried the chair towards Ben (3 N Y7?
Alice left Ben M N Y7?
Alice picked up the chair, and Ben put down the bag |} N Y
Ben picked up the chair, and Alice put down the bag 1 N Y

Mao et al. in review
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Word Embedding Association Test (WEAT)
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Home = {children, home}

Andrei Barbu (MIT) Flexible intelligence April, 2021 35/77



Word Embedding Association Test (WEAT)

Women = {Anna, Mary} Work = {office, desk}
Home = {children, home}

Targets Attributes

Andrei Barbu (MIT) Flexible intelligence April, 2021



Word Embedding Association Test (WEAT)

Women = {Anna, Mary} Work = {office, desk}
Home = {children, home}

Targets Attributes

Compare the distances between Women Work and Home
and between Work and Home
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Word Embedding Association Test (WEAT)

Women = {Anna, Mary} Work = {office, desk}
Home = {children, home}

Targets Attributes

Compare the distances between Women Work and Home
and between Work and Home

If they are very different then there is some bias
because this has practical consequences for the inferences that networks make.
There are variants like SEAT which test whole sentences.

Andrei Barbu (MIT) Flexible intelligence April, 2021
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Grounded WEAT
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Ross, Katz, Barbu NAACL 2021
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Different groupings answer different questions

Ross, Katz, Barbu NAACL 2021
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Different groupings answer different questions

3 tests: word, sentence, and context
6 gender bias tests and 7 racial bias tests
4 popular models (VisualBERT, VL-BERT, ViLBERT, LXMERT

Ross, Katz, Barbu NAACL 2021
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Different groupings answer different questions

3 tests: word, sentence, and context
6 gender bias tests and 7 racial bias tests
4 popular models (VisualBERT, VL-BERT, VILBERT, LXMERT

Do multimodal models have social biases? They all do
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Different groupings answer different questions

3 tests: word, sentence, and context
6 gender bias tests and 7 racial bias tests
4 popular models (VisualBERT, VL-BERT, VILBERT, LXMERT

Do multimodal models have social biases? They all do
Can counterstereotypical visual evidence offset a bias? No
Do biases come from vision or language? VILBERT clearly language, mix for the others

Ross, Katz, Barbu NAACL 2021
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A missing algorithm in our language learning story

Overwhelm with realistic but synthetic visual evidence against biases.

Ross, Katz, and Barbu in prep
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Planning and language

(2.10)

Find a short plan to get to (2, 10).

Kuo, Katz, Barbu 2020
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Planning and language
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Turn parses into networks that encode sentences

Kuo, Katz, Barbu 2020
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Turn parses into networks that encode sentences
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Compositionality matters, but how is unclear

Planner accuracy for different models
Same number of parameters, same implementation, same optimizer, same hyperparameters

Kuo, Katz, Barbu in review
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gSCAN in domain 97% 96% 96%
gSCAN out of domain  54% 96% 58%
gSCAN target length 15 95% 93%
gSCAN target length 16 19% 91%
gSCAN target length 17 1% 88%
gSCAN target length 18  ~0% 57%
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Compositionality matters, but how is unclear

Planner accuracy for different models
Same number of parameters, same implementation, same optimizer, same hyperparameters

Dataset RNN  Compositional RNN  Compositional RNN (bad tree)
gSCAN in domain 97% 96% 96%
gSCAN out of domain  54% 96% 58%
gSCAN target length 15  95% 93%
gSCAN target length 16 19% 91%
gSCAN target length 17 1% 88%
gSCAN target length 18  ~0% 57%

Our compositional network is robust to new combinations
But why are we robust to longer sequences?

Kuo, Katz, Barbu in review
April, 2021 43/77
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What theories can we generalize to?

Pick up the box.
Pick up all the boxes.

Every time a box falls on the ground, pick it up.

If the box is stacked precariously, fix it.

If someone wants to drop the box, stop them.
If the box is about to fall, catch it.

Pick up the biggest box.

Get the box that won't leak.

Show me the shiny side.

Be friendly

Propositional Logic
FOL

LTL, STL, etc.
Physics

Inverse planning, ToM
Possibility, Modal logic
Scalar implicatures
Modification
Grounding

Social interactions

You can't just hope to generalize between these domains!
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But in the real world . ..

Boston Dynamics | TED
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Vision is integral to grounded language acquisition

Torralba & Efros, 2011; Berzak et al., 2017

Andrei Barbu (MIT) Flexible intelligence April, 2021 46 /77



Vision is integral to grounded language acquisition

Machine performance on ImageNet is around 97%

Torralba & Efros, 2011; Berzak et al., 2017

Andrei Barbu (MIT) Flexible intelligence April, 2021 46 /77



Vision is integral to grounded language acquisition

Machine performance on ImageNet is around 97%
Human-level performance on ImageNet is around 94%

Torralba & Efros, 2011; Berzak et al., 2017

Andrei Barbu (MIT) Flexible intelligence April, 2021 46 /77



Vision is integral to grounded language acquisition

Machine performance on ImageNet is around 97%
Human-level performance on ImageNet is around 94%
Machines outperform humans according standard metrics!

Torralba & Efros, 2011; Berzak et al., 2017

Andrei Barbu (MIT) Flexible intelligence April, 2021 46 /77



Vision is integral to grounded language acquisition

Machine performance on ImageNet is around 97%
Human-level performance on ImageNet is around 94%
Machines outperform humans according standard metrics!

Performance on datasets is not predictive of real-world performance.

Torralba & Efros, 2011; Berzak et al., 2017

Andrei Barbu (MIT) Flexible intelligence April, 2021 46 /77



Vision is integral to grounded language acquisition

Machine performance on ImageNet is around 97%
Human-level performance on ImageNet is around 94%
Machines outperform humans according standard metrics!

Performance on datasets is not predictive of real-world performance.
Or even performance on other datasets!

Torralba & Efros, 2011; Berzak et al., 2017
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Data collection in action

Object: object

Find a object. You will be taking
pictures of it.

Next

Find the object
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What object features (shape, texture, etc.) lead to similar response curves?
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Next steps in understanding human vision

acc acc ﬁ

time fg

Ullman et al.

Accuracy(Foreground, Background, Time)

What object features (shape, texture, etc.) lead to similar response curves?
What are the parameters of these curves?
Are there any other discontinuities?
Can we find mode switches? (feedforward vs. feedback)
Can human data constrain networks?

Andrei Barbu (MIT) Flexible intelligence

April, 2021
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Spoken ObjectNet to address this and to test out of domain generalization.
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Captioning datasets are really biased ...

Spoken ObjectNet to address this and to test out of domain generalization.

[rae o g mieee] [ oieomiiemne o] B e b e |
a jar of honey being a straw like sun hat someone holding a
held on its side of the upside down on a bottle of extra virgin
yellow lid in front of brown sectional with a olive oil upside down
old flowers in a vase gray piece of clothing over a white washer
on a bathroom sink in the corner with a plug-in behind it

countertop
On a retrieval task trained with Places-400k R@10 goes from 0.735 to 0.118!
A larger drop than for object recognition on ObjectNet

Palmer, Rouditchenko, Barbu, Katz, Glass in review
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Big data neuroscience for language

Yaari, Singh, Cases, Subramaniam, Katz, Kreiman, Barbu in prep.
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Big data neuroscience for language

Collected ~40 hours of data while 7 subjects watched movies.
153 + 26.6 electrodes per subject, 5 male / 2 female, 12.5 years old £+ 5.23
1,079 electrodes, 27,981 sentences, 169,314 words
10-100x more data per subject than previous language datasets.

Yaari, Singh, Cases, Subramaniam, Katz, Kreiman, Barbu in prep.
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Some levels of linguistic analysis

| don’t think Gandalf meant for us to come this way.
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Word segmentation Mdon 't think‘ Ganda/ﬂ meant‘for‘us‘ to‘come‘ this‘ way. ‘
Phonemes ar dount Ok 'geendolf ment for os to kam d1s wer

Parse structure
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Part of speech PRON VERB ADV VERB NOUN VERB SCONJ PRON PART VERB DET NOUN PUNCT
[ Topic ]
Thematic relations [ Purpose )

Sentiment analysis Negative

Andrei Barbu (MIT) Flexible intelligence



Some levels of linguistic analysis

Word segmentation Mdon 't think‘ Ganda/ﬂ meant‘for‘us‘ to‘come‘ this‘ way. ‘
Phonemes ar dount Ok 'geendolf ment for os to kam d1s wer

Parse structure

/ do n't think Gandalf meant for us to come  this way
Part of speech PRON VERB ADV VERB NOUN VERB SCONJ PRON PART VERB DET NOUN PUNCT
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Thematic relations [ up )
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Nouns and verbs, one electrode

Every E day | go outside and look at the vast E horizons.
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Nouns and verbs, all electrodes
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Homonyms allow for controlled experiments
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Decoding nouns and verbs — homonyms

Yaari, Singh, Cases, Subramaniam, Katz, Kreiman, Barbu in prep.
Andrei Barbu (MIT) Flexible intelligence April, 2021 61/77




Decoding nouns and verbs — homonyms

Yaari, Singh, Cases, Subramaniam, Katz, Kreiman, Barbu in prep.
Andrei Barbu (MIT) Flexible intelligence April, 2021 61 /77




Decoding nouns and verbs — homonyms

Train on nouns and verbs, hold out all homonyms
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Decoding nouns and verbs — homonyms

Train on nouns and verbs, hold out all homonyms
At training time no word appears as both as noun and a verb
At test time, test on only homonyms:
Generalize to unseen words and unseen word-POS pairs
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Decoding nouns and verbs in time
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Decoding nouns and verbs in time

Word
-200ms onset 100ms 300ms 450ms
1
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Decoding nouns and verbs in time

Word
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Well before a word is uttered you predict the POS of that word
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Decoding nouns and verbs in time

Word
-200ms onset 100ms 300ms 450ms
1

Well before a word is uttered you predict the POS of that word
When the word is uttered predictions are updated in STG
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Prediction vs computation

Prediction + Computation Just computation
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Prediction vs computation

Prediction + Computation Just computation

Amygdala
G_Ins_lg_and_S_cent_ins
G_and_S_subcentral
G_temp_sup-G_T_transv
G_temp_sup-Lateral
G_temp_sup-Plan_polar
G_temporal_middle
S_circular_insula_inf
S_temporal_sup

0
<

Balance data to make previous POS not predictive about next POS
Areas that predict POS are now gone, isolating POS computation

Yaari, Singh, Cases, Subramaniam, Katz, Kreiman, Barbu in prep.
Andrei Barbu (MIT) Flexible intelligence April, 2021 63 /77



The long road ahead ...
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3D
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Physics

SloggerVlogger
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The long road ahead ...

Coherent stories

3D

Physics: Forces & contact relations
Segmentation

Parts and low-level features

Theory of mind

Social understanding
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The long road ahead ...

Coherent stories

3D

Physics: Forces & contact relations
Segmentation

Parts and low-level features

Theory of mind

Social understanding

Modification
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Adam Yaari David Mayo Christopher Wang Julian Alverio
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ReCOgnitiOn P(Sentence, Video) Narayanaswamy et al. 2014

Retrieval argmax P(s, v) Barret et al. 2016
veV
Generation argmax P(s, V) Yu et al. 2015, N. et al. 2014
seL
Question answering argmax P(Q(s, sq), v) Barbu et al. in prep.
seL
Disambiguation argmax P(f, v) Berzak et al. 2015
i€parser(s)
Language acquisition argmax H P(s(8), v) Yu et al. 2015, Ross et al. 2018
Paraphrasing /\ P(s,v) — P(s,v) | Mao et al. in review
Translation argmln/| P S, V — P(S/, V) | Fu et al. in prep.
s'el’
Common sense reasoning argmax [ P(sq,v) P(Q(s,5sq), V)
seL v
Planning argmax [ P(s,vo:V:Vv,) Kuo et al. 2018, Kuo et al. 2020
seL v
Command following argmax P(C(s), vTv) E(v p,v) Pauletal 2017, Kuo et al. in prep.
2] vt
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There are deep connections between language, vision, perception, and embodiment
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The dataset crisis in vision & NLP is just a manifestation of this.

These domains are all compositional and that looks to be our biggest hammer.
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Most research is on supervised uni-modal uni-task in-domain models.
But our brains are unlikely to be anything like those models!
We need to take seriously zero-shot multi-modal multi-task out-of-domain learning.
The dataset crisis in vision & NLP is just a manifestation of this.

These domains are all compositional and that looks to be our biggest hammer.
But we have no idea about why and how compositionality works.
We use many crutches (like data augmentation) to avoid dealing with the theory of
compositionality.

Maybe flexible intelligence is possible because it's multi-modal and multi-task? Maybe our poor
understanding of the brain is a consequence of building narrow models?
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