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Flexible intelligenceFlexible intelligence

Knew who the adult is talking to

What “That’s your train” is referring to

What trains do on tracks

Tried to put trains on tracks

Knew what the adult was referring to when they waved their hand

Decided what object to get next

Knew what Santa brought

Answered questions about objects and abstract concepts

Demonstrated “it goes”

Understood that “doggie” and “dog” are similar

etc.
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Machines on the other handMachines on the other hand

Generated by GPT-2 large

Q: Leader of Canada A: Trudeau
Q: Leader of Germany A: Merkel
Q: Leader of India A: Modi

Canada is a country that’s become very strong over the last five or six years and has been
at the heart of our growth over the last decade or so," he told host Andrew Coyne

I was on the glideslope and looked down and there’s a lot of wind and clouds and there’s
lightning coming from the west, so my flight path went off to the left in that direction.
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Get some things terribly wrongGet some things terribly wrong

GPT-2 large
The first 3 completions for

I was holding something heavy and my friend . . .

thought I was getting too close.
held my back so I wasn’t able to grab anything.
took it and hit me in the head,"
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Multi-task VisionMulti-task Vision
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Recognition

P(sentence, video) Narayanaswamy et al. 2014

Retrieval

argmax
v∈V

P(s, v) Barret et al. 2016

Generation

argmax
s∈L

P(s, v) Yu et al. 2015, N. et al. 2014

Question answering

argmax
s∈L

P(Q(s, sq), v) Barbu et al. in prep.

Disambiguation

argmax
i∈parser(s)

P(i , v) Berzak et al. 2015

Language acquisition

argmax
θ

∏
s,v

P(s(θ), v) Yu et al. 2015, Ross et al. 2018

Paraphrasing

∫
v
|P(s, v) − P(s ′, v) | Mao et al. in review

Translation

argmin
s ′∈L′

∫
v
|P(s, v) − P(s ′, v) | Fu et al. in prep.

Common sense reasoning

argmax
s∈L

∫
v
P(sq , v) P(Q(s, sq), v)

Planning

argmax
s∈L

∫
v
P(s, v0 : v : vn) Kuo et al. 2018, Kuo et al. 2020

Command following

argmax
p

∫
v+

P(C (s), v+v) E (v+, p, v) Paul et al. 2017, Kuo et al. in prep.

. . .

Computer vision
NLP

Robotics
AI
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∃xyz chair(x),person(y),person(z), y 6= z ,move(y , x),move(z , x)

Don’t build in attributes like shape, color, etc.
Build in mechanics! Physics, Interactions, ToM, out of domain goals, etc.

Attributes exist because they matter, mechanisms are built in

Compositions of networks or graphical models:
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NP→D [A] N [PP]
D→an | the
A→blue | red
N→person | backpack | chair | bin | object

PP→P NP
P→to the left of | to the right of

VP→V NP [Adv] [PPM]
V→approached | carried | picked up | put down

Adv→quickly | slowly
PPM→PM NP
PM→towards | away from
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Question answeringQuestion answering

What did the person put on top of the red car?
The person put NP on top of the red car.

The person put the pear on top of the red car.
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Andrei approached the person holding a green chair.
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Danny and Andrei picked up the yellow bag and chair.
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Danny picked up the bag and the chair. It is yellow.
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Danny left Andrei. Also Yevgeni.
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v
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Language acquisition from 10,000 feetLanguage acquisition from 10,000 feet
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...

By age 4
heard ≈12000 words per day
≈1-2 million utterances
≈550 daily conversational turns

What do we learn?
How do we learn?

How do we interact?
How do we use it?
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The acquired syntactic & semantic parserThe acquired syntactic & semantic parser

A CCG-based parser with an acquired lexicon and
a small network that ranks derivations

She places the toy car down on the table.
λxyz .person x , put-down x y , toy y , car y , table z , on y z

Fully-supervised: 93% accuracy
Unsupervised: ≈1% accuracy

Ours, videos without annotations: 60% accuracy
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gem and
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Agent output

Compatible?

Language
output

Language encoder

Training objectives
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PHASE: PHysically-grounded Abstract Social Events for Machine Social Perception

We have no mathematical theories theories of social interactions
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Recognition P(sentence, video) Narayanaswamy et al. 2014

Retrieval argmax
v∈V

P(s, v) Barret et al. 2016

Generation argmax
s∈L

P(s, v) Yu et al. 2015, N. et al. 2014

Question answering argmax
s∈L

P(Q(s, sq), v) Barbu et al. in prep.

Disambiguation argmax
i∈parser(s)

P(i , v) Berzak et al. 2015

Language acquisition argmax
θ

∏
s,v

P(s(θ), v) Yu et al. 2015, Ross et al. 2018

Paraphrasing

∫
v
| P(s, v) − P(s ′, v) | Mao et al. in review

Translation

argmin
s ′∈L′

∫
v
| P(s, v) − P(s ′, v) | Fu et al. in prep.

Common sense reasoning

argmax
s∈L

∫
v

P(sq , v) P(Q(s, sq), v)

Planning

argmax
s∈L

∫
v

P(s, v0 : v : vn) Kuo et al. 2018, Kuo et al. 2020

Command following

argmax
p

∫
v+

P(C (s), v+v) E (v+, p, v) Paul et al. 2017, Kuo et al. in prep.

. . .

Computer vision
NLP

Robotics
AI

Andrei Barbu (MIT) Flexible intelligence April, 2021 28 / 77



Recognition P(sentence, video) Narayanaswamy et al. 2014

Retrieval argmax
v∈V

P(s, v) Barret et al. 2016

Generation argmax
s∈L

P(s, v) Yu et al. 2015, N. et al. 2014

Question answering argmax
s∈L

P(Q(s, sq), v) Barbu et al. in prep.

Disambiguation argmax
i∈parser(s)

P(i , v) Berzak et al. 2015

Language acquisition argmax
θ

∏
s,v

P(s(θ), v) Yu et al. 2015, Ross et al. 2018

Paraphrasing
∫

v
| P(s, v) − P(s ′, v) | Mao et al. in review

Translation

argmin
s ′∈L′

∫
v
| P(s, v) − P(s ′, v) | Fu et al. in prep.

Common sense reasoning

argmax
s∈L

∫
v

P(sq , v) P(Q(s, sq), v)

Planning

argmax
s∈L

∫
v

P(s, v0 : v : vn) Kuo et al. 2018, Kuo et al. 2020

Command following

argmax
p

∫
v+

P(C (s), v+v) E (v+, p, v) Paul et al. 2017, Kuo et al. in prep.

. . .

Computer vision
NLP

Robotics
AI

Andrei Barbu (MIT) Flexible intelligence April, 2021 28 / 77



Paraphrasing todayParaphrasing today

Andrei Barbu (MIT) Flexible intelligence April, 2021 29 / 77
Socher et al. 2011, Cheng and Kartsaklis 2015



Paraphrasing todayParaphrasing today

Andrei Barbu (MIT) Flexible intelligence April, 2021 29 / 77
Socher et al. 2011, Cheng and Kartsaklis 2015



Paraphrasing todayParaphrasing today

Andrei Barbu (MIT) Flexible intelligence April, 2021 29 / 77
Socher et al. 2011, Cheng and Kartsaklis 2015
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Alice carried the chair away from the backpack.
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Comparing sentences vs Parikh et al. 2016 + ELMoComparing sentences vs Parikh et al. 2016 + ELMo

Does the sentence above imply the one below, and vice versa?

Ground Ours Theirs

Alice carried the chair ⇓ Y Y N
Alice held the chair ⇑ N N Y

Alice carried the chair towards Ben ⇓ Y Y N
Alice approached Ben ⇑ N N Y?

Alice carried the chair towards Ben ⇓ N N Y?
Alice left Ben ⇑ N N Y?

Alice picked up the chair, and Ben put down the bag ⇓ N N Y
Ben picked up the chair, and Alice put down the bag ⇑ N N Y
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What about other languages?What about other languages?

爱丽丝靠近了一把椅子。
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Word Embedding Association Test (WEAT)Word Embedding Association Test (WEAT)

Women = {Anna, Mary}
Men = {Dave, John}

Work = {office, desk}
Home = {children, home}

Targets Attributes

Compare the distances between Women Work and Home
and between Men Work and Home

If they are very different then there is some bias
because this has practical consequences for the inferences that networks make.

There are variants like SEAT which test whole sentences.
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Grounded WEATGrounded WEAT

Dave

John

Steve

Anna

Mary

Beth

doctor

lawyer

police

doctor

lawyer

police

librarian

teacher

secretary

librarian

teacher

secretary
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Different groupings answer different questionsDifferent groupings answer different questions

3 tests: word, sentence, and context
6 gender bias tests and 7 racial bias tests

4 popular models (VisualBERT, VL-BERT, ViLBERT, LXMERT

Do multimodal models have social biases?

They all do

Can counterstereotypical visual evidence offset a bias?

No

Do biases come from vision or language?

ViLBERT clearly language, mix for the others
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A missing algorithm in our language learning storyA missing algorithm in our language learning story

Overwhelm with realistic but synthetic visual evidence against biases.
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Communication isn’t all verbalCommunication isn’t all verbal
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Sampling-based planning with languageSampling-based planning with language
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Planning and languagePlanning and language

Find a short plan to get to (2, 10).

(2,10)

LSTMshort

LSTMcar

LSTMwavy

Weave to the green car.
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Turn parses into networks that encode sentencesTurn parses into networks that encode sentences

Pick up the black triangle below the orange ball.

· · ·· · · · · · · · ·

Visual feature CNN

BallTriangle

OrangeBlack

RNN

×
Attention prediction

Below

Pick up

Proposal layer

Direction Stop probability
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Compositionality matters, but how is unclearCompositionality matters, but how is unclear

Planner accuracy for different models
Same number of parameters, same implementation, same optimizer, same hyperparameters

Dataset RNN Compositional RNN Compositional RNN (bad tree)
gSCAN in domain 97% 96% 96%

gSCAN out of domain 54% 96% 58%

gSCAN target length 15 95% 93%
gSCAN target length 16 19% 91%
gSCAN target length 17 1% 88%
gSCAN target length 18 ≈0% 57%

Our compositional network is robust to new combinations
But why are we robust to longer sequences?
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What theories can we generalize to?What theories can we generalize to?

Pick up the box. Propositional Logic

Pick up all the boxes. FOL
Every time a box falls on the ground, pick it up. LTL, STL, etc.
If the box is stacked precariously, fix it. Physics
If someone wants to drop the box, stop them. Inverse planning, ToM
If the box is about to fall, catch it. Possibility, Modal logic
Pick up the biggest box. Scalar implicatures
Get the box that won’t leak. Modification
Show me the shiny side. Grounding
Be friendly Social interactions

. . .

You can’t just hope to generalize between these domains!
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But in the real world . . .But in the real world . . .
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Vision is integral to grounded language acquisitionVision is integral to grounded language acquisition

Machine performance on ImageNet is around 97%
Human-level performance on ImageNet is around 94%

Machines outperform humans according standard metrics!

Performance on datasets is not predictive of real-world performance.
Or even performance on other datasets!
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Data collection in actionData collection in action
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313 object classes

50k images No training set!
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Detectors
by year
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I don’t think Gandalf meant for us to come this way.
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Balance data to make previous POS not predictive about next POS
Areas that predict POS are now gone, isolating POS computation
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Coherent stories
3D
Physics: Forces & contact relations
Segmentation
Parts and low-level features
Theory of mind
Social understanding
Modification
The vast majority of verbs: absolve, admire, anger, approve,

bark, bend, chase, cheat, complete, concede, discover, fire,
follow, fumble, hurry, race, recruit, reject, scratch, steal,
taste, want, etc.

Metaphoric extension
etc .
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Recognition P(sentence, video) Narayanaswamy et al. 2014

Retrieval argmax
v∈V

P(s, v) Barret et al. 2016

Generation argmax
s∈L

P(s, v) Yu et al. 2015, N. et al. 2014

Question answering argmax
s∈L

P(Q(s, sq), v) Barbu et al. in prep.

Disambiguation argmax
i∈parser(s)

P(i , v) Berzak et al. 2015

Language acquisition argmax
θ

∏
s,v

P(s(θ), v) Yu et al. 2015, Ross et al. 2018

Paraphrasing
∫

v
| P(s, v) − P(s ′, v) | Mao et al. in review

Translation argmin
s ′∈L′

∫
v
| P(s, v) − P(s ′, v) | Fu et al. in prep.

Common sense reasoning argmax
s∈L

∫
v

P(sq , v) P(Q(s, sq), v)

Planning argmax
s∈L

∫
v

P(s, v0 : v : vn) Kuo et al. 2018, Kuo et al. 2020

Command following argmax
p

∫
v+

P(C (s), v+v) E (v+, p, v) Paul et al. 2017, Kuo et al. in prep.

. . .

Computer vision
NLP

Robotics
AI
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There are deep connections between language, vision, perception, and embodiment

Most research is on supervised uni-modal uni-task in-domain models.
But our brains are unlikely to be anything like those models!

We need to take seriously zero-shot multi-modal multi-task out-of-domain learning.
The dataset crisis in vision & NLP is just a manifestation of this.

These domains are all compositional and that looks to be our biggest hammer.
But we have no idea about why and how compositionality works.

We use many crutches (like data augmentation) to avoid dealing with the theory of
compositionality.

Maybe flexible intelligence is possible because it’s multi-modal and multi-task? Maybe our poor
understanding of the brain is a consequence of building narrow models?
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