
Neuro 140/240
Tutorial 2

Morgan Talbot

Outline
1. Intro to Pytorch Dataset and Dataloader classes

2. Code walkthrough for Assignment 2

3. Building intuition for ML with neural networks

4. Survey of some common neural network types (CNNs, RNNs, autoencoders)

Part 1: Datasets and DataLoaders
For reference - a good introduction to these important Pytorch classes can be
found here: https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

Pytorch Dataset class

__len__ function
>>> len(my_dataset)
10

>>> my_dataset[2]
(<PIL Image>, 8)

7 4 8 2 5 2 9 5 1 3

Image:

Label:

__getitem__
function

__init__ function
sets up image files, labels, transforms, etc

Any Dataset class only needs three functions: “__init__”, “__len__”, and “__getitem__”.
__init__ is a constructor that sets up the mapping between images and labels, including how to
access the images (e.g., storing directory paths to each image file)
__len__ returns the number of images in the Dataset
__getitem__ returns one image and one label when given an index (e.g. __getitem__(4) gets image
number 4 in the Dataset, along with its label. This function may also apply transforms.

Pytorch DataLoader class (the DataLoader has a Dataset)

5
7

8

Batch
batch_size=3
shuffle=True

5
7

8

DataLoader

Transforms, such as:
● Format conversion
● Resizing
● Normalization
● Vertical/horizontal flips
● Random cropping

Model
(e.g., convnet)

Dataset instance

Feed into model
for training

num_workers=8

Pytorch DataLoader class (the DataLoader has a Dataset)

5
7

8

Batch
batch_size=3
shuffle=True

5
7

8

DataLoader

Transforms, such as:
● Format conversion
● Resizing
● Normalization
● Vertical/horizontal flips
● Random cropping

Model
(e.g., convnet)

Dataset instance

Note: transforms are typically applied within the
Dataset’s __getitem__ function, which the DataLoader
calls to retrieve each image. It is also possible for the
DataLoader to apply its own transforms.

Feed into model
for training

The DataLoader loads images in batches from the Dataset which is
passed to it upon initialization. It does so in parallel using many CPU
thread “workers”, which is important because the speed of training is
often limited by loading the data rather than all the computations for
training the network itself. num_workers=8 is a decent starting point.

num_workers=8

Part 2: Code walkthrough for Assignment 2

Dataloader

Part 3: Building intuition for ML with neural networks

List of key concepts
● Linear vs non-linear models
● Neural networks as function approximators
● Engineered vs learned features
● Basics of neural networks
● Backpropagation and gradient descent
● Overfitting
● CNNs
● RNNs
● Generative models

Features – aspects of input useful for the task

Pixabay, Flybar

4 legs?

But then, how do you find legs in the image?

study.com

Non-linear functions

y = x2

y = c1x1
2 + sin(x2) + …

Linear functions

y = mx + b

y = c1x1 + c2x2 + … + cnxn + b

How would you draw a line to separate the classes (red and blue) in these datasets?

Data A Data B

Linear and non-linear classifiers

Decision rule:
y > (x-4)2 ?

Recall: A feature is some aspect of the input that is useful for a task.
● For example, in the plots above, x and y are features of each dot!
● Given only x and y, we can classify the dots as “red” or “blue” using a decision rule

y

x

y

x

Decision rule:
y > 2x - 1 ?
(if so, say “blue”)

How would you draw a line to separate the classes (red and blue) in these datasets?

Data A Data C

Linear and non-linear classifiers

Recall: A feature is some aspect of the input that is useful for a task.
● For example, in the plots above, x and y are features of each dot!
● Given only x and y, we can classify the dots as “red” or “blue” using a decision rule

y

x

y

x

Decision rule:
y > 2x - 1 ?
(if so, say “blue”)

Data B Data B (transformed!)

Linear and non-linear classifiers

Decision rule:
y > (x-4)2 ?

y

x

y

(x-4)2

• Idea: transform the data so it becomes easy to classify with a straight line
• When we use a = (x-4)2 as a feature (in addition to y), our decision rule is linear!

Decision rule:
y > a ?

Linear and non-linear classifiers

• Idea: Can we find some non-linear features for data C, such that our final decision
rule is linear?

• That is precisely what deep learning does!

y

xData C Data C (transformed!)

Data B Data B (transformed!)

Linear and non-linear classifiers

Decision rule:
y > (x-4)2 ?

y

x

y

(x-4)2

Decision rule:
y > a ?

Making a linear function composed of linear functions results in… a linear function. For example:
a = 2x + 3, b = 5x + 4, c = x + 1
3⨉a + 2⨉b + c + 1 = 16x + 19

**You can think of this as a “linear combination” of functions

We can’t get around the need for non-linearities

Features – aspects of input useful for the task

Pixabay, Flybar

4 legs?

But then, how do you find legs in the image?

Researchers have spent their entire careers
finding useful features

Analytics Vidhya

Deep Learning: Let’s learn the right features

Machine
Learning
System

chair
Learned
features

Deep
Learning
System

Feed-forward neural networks: a foundation

<packt>

h1

h2

h3

x1

x2

y

W1 W2hx y

Feed-forward neural networks: a foundation

“inputs”
“output”

or
“prediction”

3

1

?

-3

0.5

2

5

2

1

0

1/3

3

1
1

h2 = 0.5x1 + x2

x1

x2

h1

h2

h3

h1 = -3x1

h3 = 2x1 + 5x2

y = 1/3h1 + 2h2 + 1h3

y

 = 1/3(-3x1) + 2(0.5x1 + x2)+ 1(2x1 + 5x2)

W1 W2hx y

The network view:

Feed-forward neural networks: a foundation

x2 = 1

x1 = 3
The equation view:

“inputs”
“output”

or
“prediction”

13

-3

0.5

2

5

2

1

0

2/3

h = W1x

y = W2h

y = W2(W1x)
The matrix-vector view:

-9

2.5

11Problem 1: we need y to be a probability
between 0 and 1

Problem 2: y is still just a linear function of x!

x1

x2

h1

h2

h3

y

Feed-forward neural networks: a foundation
Problem 1: we need y to be a probability
between 0 and 1

Problem 2: y is still just a linear function of x!

Solution 1: a sigmoid activation function

yout = sigmoid(y) = ey/(1+ey)

Solution 2: Let’s put non-linear activation functions
on h1, h2, and h3as well! (e.g. sigmoid, ReLU)

ReLU Leaky ReLUUniversal Approximation Theorem:

A feed-forward network with 1 or more hidden
layers, enough neurons, and a non-linear activation
function for each neuron can approximate ANY
continuous function with ANY degree of accuracy.

For example: probability of being a cat = f(pixels)

yout

x1

x2

y

Gradient descent:

1. Define a “loss function”, such as: (yout – ylabel)
2

Intuition: the loss measures the network’s “badness”

2. Calculate the partial derivative of the loss with respect to each
parameter. These partial derivatives are called gradients

Intuition: if I increase parameter Wexample by a tiny bit, does the loss go
up or down? (by how much?)

3. Do this for every parameter: subtract the parameter’s gradient times
the learning rate (a small value, e.g. 0.001) from the parameter’s original
value, and set this as the parameter’s new value.

Intuition: if increasing W1:(2,3) improves loss, then increase it!
If it worsens the loss, decrease it! If no effect, do nothing.

4. Repeat 2 and 3 many times, using many different data points, to
reduce the loss!

We have our network. How does it learn?

W1 W2hx y

Wexample

Loss

Wexample

Optimal value for WexampleOriginal loss image: Rishi at GoPenAI

yout

ylabe

l

Loss

We have our network. How does it learn?

We are actually doing this for all of the weights
simultaneously, taking a series of “steps” in a
high-dimensional “loss landscape” to find the lowest
point. We process a randomly-chosen “batch” of
inputs and labels to determine gradients at each step
(stochastic gradient descent)

Loss for current
set of weights

Loss for best set
of weights.

Loss

Gradient descent:

1. Define a “loss function”, such as: (yout – ylabel)
2

Intuition: the loss measures the network’s “badness”

2. Calculate the partial derivative of the loss with respect to each
parameter. These partial derivatives are called gradients

Intuition: if I increase parameter Wexample by a tiny bit, does the loss go
up or down? (by how much?)

3. Do this for every parameter: subtract the parameter’s gradient times
the learning rate (a small value, e.g. 0.001) from the parameter’s original
value, and set this as the parameter’s new value.

Intuition: if increasing W1:(2,3) improves loss, then increase it!
If it worsens the loss, decrease it! If no effect, do nothing.

4. Repeat 2 and 3 many times, using many different data points, to
reduce the loss!

x1

x2

y

W1 W2hx y

Wexample

yout

ylabe

l

Loss

x1

x2

y

We have our network. How does it learn?

W1 W2hx y

yout

Backpropagation:

Just a method for finding the gradients, using the chain rule from calculus.

Intuition: the gradients for weights near the output end (where loss is calculated) are easy to find. Once
you have these gradients, you can use them to find the gradients of the next earliest layer - continue
“propagating” the gradients backwards until you arrive at the earliest set of weights.
Here, you would first find the gradients for each value in w2, then use those to find the gradients for w1.

Loss for current
set of weights

Loss for best set of
weights.

Loss

Learning rate: a very important “hyperparameter”
Loss

Parameter/weight value

Loss for current
set of weights

Loss for best set of
weights.

Loss

The learning rate, together with the gradients, determines the
overall size of our steps in the loss landscape.

Small learning rate: slow, (+ tend to get stuck in local minima)

Large learning rate: unstable

A neural network can (in theory) approximate any function,
which it learns from (almost never enough) data.

Fast.ai, Ryan Holbrook (L to R)

How to fix underfitting

● Bigger model - more neurons, more layers, etc (in practice, this makes it easier to fit complex functions)
● Train for more epochs

How to fix overfitting:
● Simpler model
● Reduce training epochs (“early stopping”)
● Regularize (e.g., dropout, adding an L2 regularizer term to the loss)
● Add more data

Multiple layers can learn increasingly complex features

Yes No Classification (is it a face?)

high level
features

medium level
features

low level
features

input image
[Honglak Lee]

input (1 neuron for each pixel value)

End of tutorial recording here

Convolutional Neural Networks (CNNS)
Before, we turned an image matrix/tensor into one long vector. But images
have 2D structure - let’s exploit that!

Visualization of a convolution operation

Legend:
Blue grid = input image
Dark blue shadow = “kernel”
Green grid = activation values of second layer

Example kernels. Each kernel is
a feature detector!

One convolution produces a new “image”
that encodes features instead of pixels.
We can apply another convolution to this!

In the visualization (right), the blue grid is an input image. The
darker blue shadow is a “kernel” - we apply the same neural
network function to each patch of the image. The green grid
represents neurons in the second layer of the network.

Intuition: let’s say we have a neuron in our second layer that
recognizes eyes. Convolution allows this neuron to find eyes
anywhere in the image!

**We apply many different “kernels” (each of which may detect a
specific feature), to every patch of the image. Eye detector, ear
detector, banana detector, etc…)

Convolutional Neural Networks (CNNS) (slide version 2, more verbose)

Before, we turned an image matrix/tensor into one long vector. But images
have 2D structure - let’s exploit that!

Visualization of a
convolution operation

The cook sings

<other> <noun> <verb>Outputs:

Inputs:

Feed-forward nets are not ideal for data with a sequential structure

<other> <noun> <verb>Outputs:

Inputs: We cook beans
The cook sings

Feed-forward nets are not ideal for data with a sequential structure

Idea behind recurrent neural networks (RNNs): save some activations
and feed them back into the network at the next time step

<other> <noun> <verb>Outputs:

Inputs: We cook beans
The cook sings

1. RNNs maintain a state (here, “A”)
2. The current state is combined with the next input in the sequence to produce the next state.
3. Each state is used to make some kind of prediction at time t

Note: each black arrow here represents an entire feed-forward network! (at least the vertical ones)

Recurrent Neural Networks (RNN) intuition

https://thispersondoesnotexist.com

Generative models

Generative models: autoencoders
Input: A picture in our dataset

Output: The same picture, reconstructed (we use
the original image as our “label”)

Loss:
mean squared error of pixel values
Intuition: the more different the images are from each
other, the higher the loss

We have our inputs, outputs, network model, and
loss. Everything we need for gradient descent and
backpropagation!

Our model learns to reconstruct images using a
low-dimensional vector (in the latent space)

We can generate a new image by feeding a
randomly-generated low-dim vector to the “decoder”

input
image

output
image

