
Tutorial 3
Neuro 140/240



Convolutional Neural Networks (CNNs)
With fully connected NNs, we had to unravel all the image pixel values into one 
long vector. But images have 2D structure - let’s exploit that! 

Visualization of a convolution operation

Legend:
Blue grid = input image
Dark blue shadow = “kernel”
Green grid = activation values of second NN 
layer

Example kernels. Each kernel is 
a feature detector! 

One convolution produces a new “image” 
that encodes features instead of pixels. We 
can apply another convolution to this!

After a number of convolutions, we can 
“flatten” the resulting tensor into one long 
vector and feed it into a fully connected NN.
(see “classification” part of diagram) 



CNN

COLAB TUTORIAL

https://colab.research.google.com/github/pytorch/tutorials/blob/gh-pages/_downloads/4e865243430a47a00d551ca0579a6f6c/cifar10_tutorial.ipynb


Transfer Learning
Should we train a CNN from scratch?

You can use the bulk of an already trained powerful CNN 
and modify some parts of the architecture 
to fit to your specific task

How?
1. Freeze weights of network
2. Remove last fully connected layer
3. Add new fully connected layer with random weights
4. Train on new layer

MAIN POINT:
Instead of random initialization of weights, you can initialize 

network with known weights and fine tune all or a portion of them 
through training



Transfer Learning

COLAB TUTORIAL

https://colab.research.google.com/github/pytorch/tutorials/blob/gh-pages/_downloads/74249e7f9f1f398f57ccd094a4f3021b/transfer_learning_tutorial.ipynb


U-Net
Encoding: Contracting Path
Decoding: Expanding Path

What happens in the contracting path?
Captures context and reduces spatial resolution
through convolutional and pooling layers

What happens in the expanding path?
Recovers spatial information
through convolutional and upsampling layers

Preserving high-resolution features?
Skip connections! A concatenation operation 
which allows network to retain information about 
extracted features at each depth



U-Net

KAGGLE TUTORIAL

https://www.kaggle.com/code/cordmaur/38-cloud-simple-unet/notebook


Generative models: autoencoders
Input: A picture in our dataset

Output: The same picture, reconstructed (we use 
the original image as our “label”)

Loss: 
mean squared error of pixel values
Intuition: the more different the images are from each 
other, the higher the loss

We have our inputs, outputs, network model, and 
loss. Everything we need for gradient descent and 
backpropagation! 

Our model learns to reconstruct images using a low-
dimensional vector (in the latent space)

We can generate a new image by feeding a 
randomly-generated low-dim vector to the “decoder”

input 
image 

output
image 



Autoencoder

GITHUB TUTORIAL

https://github.com/eugeniaring/Medium-Articles/blob/main/Pytorch/convAE.ipynb

