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The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent
times, however, communication and collaboration between the two fields has become less commonplace.
In this article, we argue that better understanding biological brains could play a vital role in building intelligent
machines. We survey historical interactions between the AI and neuroscience fields and emphasize current
advances in AI that have been inspired by the study of neural computation in humans and other animals. We
conclude by highlighting shared themes that may be key for advancing future research in both fields.
In recent years, rapid progress has been made in the related

fields of neuroscience and artificial intelligence (AI). At the

dawn of the computer age, work on AI was inextricably inter-

twined with neuroscience and psychology, andmany of the early

pioneers straddled both fields, with collaborations between

these disciplines proving highly productive (Churchland and

Sejnowski, 1988; Hebb, 1949; Hinton et al., 1986; Hopfield,

1982; McCulloch and Pitts, 1943; Turing, 1950). However,

more recently, the interaction has become much less common-

place, as both subjects have grown enormously in complexity

and disciplinary boundaries have solidified. In this review, we

argue for the critical and ongoing importance of neuroscience

in generating ideas that will accelerate and guide AI research

(see Hassabis commentary in Brooks et al., 2012).

We begin with the premise that building human-level general

AI (or ‘‘Turing-powerful’’ intelligent systems; Turing, 1936) is a

daunting task, because the search space of possible solutions

is vast and likely only very sparsely populated. We argue that

this therefore underscores the utility of scrutinizing the inner

workings of the human brain— the only existing proof that

such an intelligence is even possible. Studying animal cognition

and its neural implementation also has a vital role to play, as it

can provide a window into various important aspects of higher-

level general intelligence.

The benefits to developing AI of closely examining biological

intelligence are two-fold. First, neuroscience provides a rich

source of inspiration for new types of algorithms and architec-

tures, independent of and complementary to the mathematical

and logic-based methods and ideas that have largely dominated

traditional approaches to AI. For example, were a new facet of

biological computation found to be critical to supporting a cogni-

tive function, then we would consider it an excellent candidate

for incorporation into artificial systems. Second, neuroscience

can provide validation of AI techniques that already exist. If a

known algorithm is subsequently found to be implemented in

the brain, then that is strong support for its plausibility as an in-

tegral component of an overall general intelligence system.

Such clues can be critical to a long-term research program

when determining where to allocate resources most produc-
tively. For example, if an algorithm is not quite attaining the level

of performance required or expected, but we observe it is core to

the functioning of the brain, then we can surmise that redoubled

engineering efforts geared to making it work in artificial systems

are likely to pay off.

Of course from a practical standpoint of building an AI

system, we need not slavishly enforce adherence to biological

plausibility. From an engineering perspective, what works is

ultimately all that matters. For our purposes then, biological

plausibility is a guide, not a strict requirement. What we are

interested in is a systems neuroscience-level understanding

of the brain, namely the algorithms, architectures, functions,

and representations it utilizes. This roughly corresponds to

the top two levels of the three levels of analysis that Marr

famously stated are required to understand any complex bio-

logical system (Marr and Poggio, 1976): the goals of the sys-

tem (the computational level) and the process and computa-

tions that realize this goal (the algorithmic level). The precise

mechanisms by which this is physically realized in a biological

substrate are less relevant here (the implementation level).

Note this is where our approach to neuroscience-inspired AI

differs from other initiatives, such as the Blue Brain Project

(Markram, 2006) or the field of neuromorphic computing sys-

tems (Esser et al., 2016), which attempt to closely mimic or

directly reverse engineer the specifics of neural circuits (albeit

with different goals in mind). By focusing on the computational

and algorithmic levels, we gain transferrable insights into gen-

eral mechanisms of brain function, while leaving room to

accommodate the distinctive opportunities and challenges

that arise when building intelligent machines in silico.

The following sections unpack these points by considering the

past, present, and future of the AI-neuroscience interface.

Before beginning, we offer a clarification. Throughout this article,

we employ the terms ‘‘neuroscience’’ and ‘‘AI.’’ We use these

terms in the widest possible sense. When we say neuroscience,

we mean to include all fields that are involved with the study of

the brain, the behaviors that it generates, and the mechanisms

by which it does so, including cognitive neuroscience, systems

neuroscience and psychology. When we say AI, we mean work
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in machine learning, statistics, and AI research that aims to build

intelligent machines (Legg and Hutter, 2007).

We begin by considering the origins of two fields that are

pivotal for current AI research, deep learning and reinforcement

learning, both of which took root in ideas from neuroscience. We

then turn to the current state of play in AI research, noting many

cases where inspiration has been drawn (sometimes without

explicit acknowledgment) from concepts and findings in neuro-

science. In this section, we particularly emphasize instances

where we have combined deep learning with other approaches

from across machine learning, such as reinforcement learning

(Mnih et al., 2015), Monte Carlo tree search (Silver et al., 2016),

or techniques involving an external content-addressable mem-

ory (Graves et al., 2016). Next, we consider the potential for

neuroscience to support future AI research, looking at both the

most likely research challenges and some emerging neurosci-

ence-inspired AI techniques. While our main focus will be on

the potential for neuroscience to benefit AI, our final section

will briefly consider ways in which AI may be helpful to neuro-

science and the broader potential for synergistic interactions

between these two fields.

The Past
Deep Learning

As detailed in a number of recent reviews, AI has been revolu-

tionized over the past few years by dramatic advances in neural

network, or ‘‘deep learning,’’ methods (LeCun et al., 2015;

Schmidhuber, 2014). As the moniker ‘‘neural network’’ might

suggest, the origins of these AI methods lie directly in neuro-

science. In the 1940s, investigations of neural computation

began with the construction of artificial neural networks that

could compute logical functions (McCulloch and Pitts, 1943).

Not long after, others proposed mechanisms by which networks

of neurons might learn incrementally via supervisory feedback

(Rosenblatt, 1958) or efficiently encode environmental statistics

in an unsupervised fashion (Hebb, 1949). These mechanisms

opened up the field of artificial neural network research, and

they continue to provide the foundation for contemporary

research on deep learning (Schmidhuber, 2014).

Not long after this pioneering work, the development of

the backpropagation algorithm allowed learning to occur in

networks composed of multiple layers (Rumelhart et al., 1985;

Werbos, 1974). Notably, the implications of this method for

understanding intelligence, including AI, were first appreciated

by a group of neuroscientists and cognitive scientists, working

under the banner of parallel distributed processing (PDP)

(Rumelhart et al., 1986). At the time, most AI research was

focused on building logical processing systems based on serial

computation, an approach inspired in part by the notion that

human intelligence involves manipulation of symbolic represen-

tations (Haugeland, 1985). However, there was a growing sense

in some quarters that purely symbolic approaches might be too

brittle and inflexible to solve complex real-world problems of the

kind that humans routinely handle. Instead, a growing foundation

of knowledge about the brain seemed to point in a very different

direction, highlighting the role of stochastic and highly parallel-

ized information processing. Building on this, the PDP move-

ment proposed that human cognition and behavior emerge
246 Neuron 95, July 19, 2017
from dynamic, distributed interactions within networks of simple

neuron-like processing units, interactions tuned by learning pro-

cedures that adjust system parameters in order to minimize error

or maximize reward.

Although the PDP approach was at first applied to relatively

small-scale problems, it showed striking success in accounting

for a wide range of human behaviors (Hinton et al., 1986). Along

the way, PDP research introduced a diverse collection of ideas

that have had a sustained influence on AI research. For example,

current machine translation research exploits the notion that

words and sentences can be represented in a distributed

fashion (i.e., as vectors) (LeCun et al., 2015), a principle that

was already ingrained in early PDP-inspired models of sentence

processing (St. John andMcClelland, 1990). Building on the PDP

movement’s appeal to biological computation, current state-

of-the-art convolutional neural networks (CNNs) incorporate

several canonical hallmarks of neural computation, including

nonlinear transduction, divisive normalization, and maximum-

based pooling of inputs (Yamins and DiCarlo, 2016). These oper-

ations were directly inspired by single-cell recordings from the

mammalian visual cortex that revealed how visual input is filtered

and pooled in simple and complex cells in area V1 (Hubel and

Wiesel, 1959). Moreover, current network architectures replicate

the hierarchical organization of mammalian cortical systems,

with both convergent and divergent information flow in succes-

sive, nested processing layers (Krizhevsky et al., 2012; LeCun

et al., 1989; Riesenhuber and Poggio, 1999; Serre et al., 2007),

following ideas first advanced in early neural network models

of visual processing (Fukushima, 1980). In both biological and

artificial systems, successive non-linear computations transform

raw visual input into an increasingly complex set of features,

permitting object recognition that is invariant to transformations

of pose, illumination, or scale.

As the field of deep learning evolved out of PDP research into a

core area within AI, it was bolstered by new ideas, such as the

development of deep belief networks (Hinton et al., 2006) and

the introduction of large datasets inspired by research on human

language (Deng et al., 2009). During this period, it continued to

draw key ideas from neuroscience. For example, biological con-

siderations informed the development of successful regulariza-

tion schemes that support generalization beyond training data.

One such scheme, in which only a subset of units participate in

the processing of a given training example (‘‘dropout’’), was

motivated by the stochasticity that is inherent in biological sys-

tems populated by neurons that fire with Poisson-like statistics

(Hinton et al., 2012). Here and elsewhere, neuroscience has

provided initial guidance toward architectural and algorithmic

constraints that lead to successful neural network applications

for AI.

Reinforcement Learning

Alongside its important role in the development of deep learning,

neuroscience was also instrumental in erecting a second pillar of

contemporary AI, stimulating the emergence of the field of rein-

forcement learning (RL). RL methods address the problem of

how tomaximize future reward bymapping states in the environ-

ment to actions and are among the most widely used tools in AI

research (Sutton and Barto, 1998). Although it is not widely

appreciated among AI researchers, RL methods were originally
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inspired by research into animal learning. In particular, the

development of temporal-difference (TD) methods, a critical

component of many RL models, was inextricably intertwined

with research into animal behavior in conditioning experiments.

TD methods are real-time models that learn from differences

between temporally successive predictions, rather than having

towait until the actual reward is delivered. Of particular relevance

was an effect called second-order conditioning, where affective

significance is conferred on a conditioned stimulus (CS) through

association with another CS rather than directly via association

with the unconditioned stimulus (Sutton and Barto, 1981). TD

learning provides a natural explanation for second-order condi-

tioning and indeed has gone on to explain a much wider range

of findings from neuroscience, as we discuss below.

Here, as in the case of deep learning, investigations initially

inspired by observations from neuroscience led to further devel-

opments that have strongly shaped the direction of AI research.

From their neuroscience-informed origins, TD methods and

related techniques have gone on to supply the core technology

for recent advances in AI, ranging from robotic control (Hafner

and Riedmiller, 2011) to expert play in backgammon (Tesauro,

1995) and Go (Silver et al., 2016).

The Present
Reading the contemporary AI literature, one gains the impres-

sion that the earlier engagement with neuroscience has dimin-

ished. However, if one scratches the surface, one can uncover

many cases in which recent developments have been inspired

and guided by neuroscientific considerations. Here, we look at

four specific examples.

Attention

The brain does not learn by implementing a single, global optimi-

zation principle within a uniform and undifferentiated neural

network (Marblestone et al., 2016). Rather, biological brains

are modular, with distinct but interacting subsystems underpin-

ning key functions such as memory, language, and cognitive

control (Anderson et al., 2004; Shallice, 1988). This insight from

neuroscience has been imported, often in an unspoken way,

into many areas of current AI.

One illustrative example is recent AI work on attention. Up until

quite lately, most CNN models worked directly on entire images

or video frames, with equal priority given to all image pixels at the

earliest stage of processing. The primate visual system works

differently. Rather than processing all input in parallel, visual

attention shifts strategically among locations and objects,

centering processing resources and representational coordi-

nates on a series of regions in turn (Koch and Ullman, 1985;

Moore and Zirnsak, 2017; Posner and Petersen, 1990). Detailed

neurocomputational models have shown how this piecemeal

approach benefits behavior, by prioritizing and isolating the in-

formation that is relevant at any given moment (Olshausen

et al., 1993; Salinas and Abbott, 1997). As such, attentional

mechanisms have been a source of inspiration for AI architec-

tures that take ‘‘glimpses’’ of the input image at each step,

update internal state representations, and then select the next

location to sample (Larochelle and Hinton, 2010; Mnih et al.,

2014) (Figure 1A). One such network was able to use this selec-

tive attentional mechanism to ignore irrelevant objects in a
scene, allowing it to performwell in challenging object classifica-

tion tasks in the presence of clutter (Mnih et al., 2014). Further,

the attentional mechanism allowed the computational cost

(e.g., number of network parameters) to scale favorably with

the size of the input image. Extensions of this approach were

subsequently shown to produce impressive performance at diffi-

cult multi-object recognition tasks, outperforming conventional

CNNs that process the entirety of the image, both in terms of

accuracy and computational efficiency (Ba et al., 2015), as well

as enhancing image-to-caption generation (Xu et al., 2015).

While attention is typically thought of as an orienting mecha-

nism for perception, its ‘‘spotlight’’ can also be focused inter-

nally, toward the contents of memory. This idea, a recent focus

in neuroscience studies (Summerfield et al., 2006), has also

inspired work in AI. In some architectures, attentional mecha-

nisms have been used to select information to be read out

from the internal memory of the network. This has helped provide

recent successes in machine translation (Bahdanau et al., 2014)

and led to important advances on memory and reasoning tasks

(Graves et al., 2016). These architectures offer a novel imple-

mentation of content-addressable retrieval, which was itself a

concept originally introduced to AI from neuroscience (Hopfield,

1982).

One further area of AI where attention mechanisms have

recently proven useful focuses on generative models, systems

that learn to synthesize or ‘‘imagine’’ images (or other kinds of

data) that mimic the structure of examples presented during

training. Deep generative models (i.e., generative models imple-

mented as multi-layered neural networks) have recently shown

striking successes in producing synthetic outputs that capture

the form and structure of real visual scenes via the incorporation

of attention-like mechanisms (Hong et al., 2015; Reed et al.,

2016). For example, in one state-of-the-art generative model

known as DRAW, attention allows the system to build up an im-

age incrementally, attending to one portion of a ‘‘mental canvas’’

at a time (Gregor et al., 2015).

Episodic Memory

A canonical theme in neuroscience is that that intelligent

behavior relies on multiple memory systems (Tulving, 1985).

These will include not only reinforcement-based mechanisms,

which allow the value of stimuli and actions to be learned incre-

mentally and through repeated experience, but also instance-

based mechanisms, which allow experiences to be encoded

rapidly (in ‘‘one shot’’) in a content-addressable store (Gallistel

and King, 2009). The latter form of memory, known as episodic

memory (Tulving, 2002), is most often associated with circuits

in the medial temporal lobe, prominently including the hippo-

campus (Squire et al., 2004).

One recent breakthrough in AI has been the successful inte-

gration of RL with deep learning (Mnih et al., 2015; Silver et al.,

2016). For example, the deep Q-network (DQN) exhibits expert

play on Atari 2600 video games by learning to transform a vector

of image pixels into a policy for selecting actions (e.g., joystick

movements). One key ingredient in DQN is ‘‘experience replay,’’

whereby the network stores a subset of the training data in an

instance-based way, and then ‘‘replays’’ it offline, learning

anew from successes or failures that occurred in the past. Expe-

rience replay is critical to maximizing data efficiency, avoids the
Neuron 95, July 19, 2017 247



Figure 1. Parallels between AI Systems and Neural Models of Behavior
(A) Attention. Schematic of recurrent attention model (Mnih et al., 2014). Given an input image (xt) and foveal location (lt � 1), the glimpse sensor extracts a multi-
resolution ‘‘retinal’’ representation (r(xt, lt � 1)). This is the input to a glimpse network, which produces a representation that is passed to the LSTM core, which
defines the next location to attend to (lt) (and classification decision).
(B) Schematic of complementary learning systems and episodic control. Top: non-parametric fast learning hippocampal system and parametric slow-learning
neocortical system (i.e., parametric: a fixed number of parameters; non-parametric: the number of parameters can growwith the amount of data). Hippocampus/
instance-based system supports rapid behavioral adjustment (i.e., episodic control; Blundell et al., 2016) and experience replay, which supports interleaved
training (i.e., on random subsets of experiences) of deep neural network (Mnih et al., 2015) or neocortex. Bottom: episodic control (from Blundell et al., 2016).
Game states (Atari shown) are stored within buffers (one for each possible action) together with the highest (discounted) return experienced from that state (i.e.,
Q-value). When experiencing a new state, the policy (p) is determined by averaging the Q-value across the k nearest neighbors in each action buffer and selecting
the action with the highest expected return.
(C) Illustration of parallels betweenmacroscopic organization of models of workingmemory and the differentiable neural computer (Graves et al., 2016) (or Neural
Turing Machine). The network controller (typically recurrent) is analogous to the central executive (typically viewed to be instantiated in the prefrontal cortex) and
attends/reads/writes to an external memory matrix (phonological loo /sketchpad in working memory model). Architecture is shown performing copy task.
(D) Illustration of parallel between neurobiological models of synaptic consolidation and the elastic weight consolidation (EWC) algorithm. Left: two-photon
structural imaging data showing learning-related increase in size of dendrites (each corresponding approximately to a single excitatory synapse) that persists for
months (from Yang et al., 2009). Middle: schematic of Cascademodel of synaptic consolidation (adapted with permission from Fusi et al., 2005). Binary synapses
transition betweenmetaplastic states which aremore/less plastic (least plastic states at bottom of diagram), as a function of prior potentiation/depression events.
Right panel: schematic of elastic weight consolidation (EWC) algorithm. After training on the first task (A), network parameters are optimized for good perfor-
mance: single weight (w1

A* illustrated). EWC implements a constraint analogous to a spring that anchors weights to the previously found solution (i.e., for task A),
when training on a new task (e.g., task B), with the stiffness of the spring proportional to the importance of that parameter for task A performance (Kirkpatrick
et al., 2017).
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destabilizing effects of learning from consecutive correlated ex-

periences, and allows the network to learn a viable value function

even in complex, highly structured sequential environments such

as video games.

Critically, experience replay was directly inspired by theories

that seek to understand how the multiple memory systems in

the mammalian brain might interact. According to a prominent

view, animal learning is supported by parallel or ‘‘complemen-

tary’’ learning systems in the hippocampus and neocortex (Ku-

maran et al., 2016; McClelland et al., 1995). The hippocampus

acts to encode novel information after a single exposure (one-
248 Neuron 95, July 19, 2017
shot learning), but this information is gradually consolidated to

the neocortex in sleep or resting periods that are interleaved

with periods of activity. This consolidation is accompanied by

replay in the hippocampus and neocortex, which is observed

as a reinstatement of the structured patterns of neural activity

that accompanied the learning event (O’Neill et al., 2010; Skaggs

and McNaughton, 1996) (Figure 1B). This theory was originally

proposed as a solution to the well-known problem that in con-

ventional neural networks, correlated exposure to sequential

task settings leads to mutual interference among policies, re-

sulting in catastrophic forgetting of one task as a new one is
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learned. The replay buffer in DQN might thus be thought of as a

very primitive hippocampus, permitting complementary learning

in silico much as is proposed for biological brains. Later work

showed that the benefits of experience replay in DQN are

enhanced when replay of highly rewarding events is prioritized

(Schaul et al., 2015), just as hippocampal replay seems to favor

events that lead to high levels of reinforcement (Singer and

Frank, 2009).

Experiences stored in amemory buffer can not only be used to

gradually adjust the parameters of a deep network toward an

optimal policy, as in DQN, but can also support rapid behavioral

change based on an individual experience. Indeed, theoretical

neuroscience has argued for the potential benefits of episodic

control, whereby rewarded action sequences can be internally

re-enacted from a rapidly updateable memory store, imple-

mented in the biological case in the hippocampus (Gershman

and Daw, 2017). Further, normative accounts show that episodic

control is particularly advantageous over other learning mecha-

nisms when limited experience of the environment has been

obtained (Lengyel and Dayan, 2007).

Recent AI research has drawn on these ideas to overcome the

slow learning characteristics of deep RL networks, developing

architectures that implement episodic control (Blundell et al.,

2016). These networks store specific experiences (e.g., actions

and reward outcomes associated with particular Atari game

screens) and select new actions based on the similarity between

the current situation input and the previous events stored in

memory, taking the reward associatedwith those previous events

into account (Figure 1B). As predicted from the initial, neurosci-

ence-based work (Lengyel and Dayan, 2007), artificial agents

employing episodic control show striking gains in performance

over deepRLnetworks, particularly early onduring learning (Blun-

dell et al., 2016). Further, theyareable toachievesuccesson tasks

that depend heavily on one-shot learning, where typical deep RL

architectures fail. Moreover, episodic-like memory systemsmore

generally have shown considerable promise in allowing new con-

cepts to be learned rapidly based on only a few examples (Vinyals

et al., 2016). In the future, it will be interesting to harness the

benefits of rapid episodic-like memory and more traditional

incremental learning in architectures that incorporate both of

these components within an interacting framework that mirrors

the complementary learning systems in mammalian brain. We

discuss these future perspectives below in more detail later, in

‘‘Imagination and planning.’’

Working Memory

Human intelligence is characterized by a remarkable ability to

maintain and manipulate information within an active store,

known as working memory, which is thought to be instantiated

within the prefrontal cortex and interconnected areas (Gold-

man-Rakic, 1990). Classic cognitive theories suggest that this

functionality depends on interactions between a central controller

(‘‘executive’’) and separate, domain-specific memory buffers

(e.g., visuo-spatial sketchpad) (Baddeley, 2012). AI research

has drawn inspiration from these models, by building architec-

tures that explicitly maintain information over time. Historically,

such efforts began with the introduction of recurrent neural

network architectures displaying attractor dynamics and rich

sequential behavior, work directly inspired by neuroscience
(Elman, 1990; Hopfield and Tank, 1986; Jordan, 1997). This

work enabled later, more detailed modeling of human working

memory (Botvinick and Plaut, 2006; Durstewitz et al., 2000), but

it also laid the foundation for further technical innovations that

have proved pivotal in recent AI research. In particular, one can

see close parallels between the learning dynamics in these early,

neuroscience-inspired networks and those in long-short-term

memory (LSTM) networks, which subsequently achieved state

of the art performance across a variety of domains. LTSMs allow

information to be gated into a fixed activity state and maintained

until an appropriate output is required (Hochreiter and Schmid-

huber, 1997). Variants of this type of network have shown some

striking behaviors in challenging domains, such as learning to

respond to queries about the latent state of variables after training

on computer code (Zaremba and Sutskever, 2014).

In ordinary LSTM networks, the functions of sequence control

and memory storage are closely intertwined. This contrasts with

classic models of human working memory, which, as mentioned

above, separate these two. This neuroscience-based schema

has recently inspired more complex AI architectures where con-

trol and storage are supported by distinct modules (Graves et al.,

2014, 2016; Weston et al., 2014). For example, the differential

neural computer (DNC) involves a neural network controller

that attends to and reads/writes from an external memory matrix

(Graves et al., 2016). This externalization allows the network

controller to learn from scratch (i.e., via end-to-end optimization)

to perform awide range of complexmemory and reasoning tasks

that currently elude LSTMs, such as finding the shortest

path through a graph-like structure, such as a subway map, or

manipulating blocks in a variant of the Tower of Hanoi task

(Figure 1C). These types of problems were previously argued

to depend exclusively on symbol processing and variable

binding and therefore beyond the purview of neural networks

(Fodor and Pylyshyn, 1988; Marcus, 1998). Of note, although

both LSTMs and the DNC are described here in the context of

working memory, they have the potential to maintain information

over many thousands of training cycles and so may thus be

suited to longer-term forms of memory, such as retaining and

understanding the contents of a book.

Continual Learning

Intelligent agents must be able to learn and remember many

different tasks that are encountered over multiple timescales.

Both biological and artificial agents must thus have a capacity

for continual learning, that is, an ability to master new tasks

without forgetting how to perform prior tasks (Thrun andMitchell,

1995). While animals appear relatively adept at continual

learning, neural networks suffer from the problem of catastrophic

forgetting (French, 1999; McClelland et al., 1995). This occurs as

the network parameters shift toward the optimal state for per-

forming the second of two successive tasks, overwriting the

configuration that allowed them to perform the first. Given the

importance of continual learning, this liability of neural networks

remains a significant challenge for the development of AI.

In neuroscience, advanced neuroimaging techniques (e.g.,

two-photon imaging) now allow dynamic in vivo visualization

of the structure and function of dendritic spines during

learning, at the spatial scale of single synapses (Nishiyama

and Yasuda, 2015). This approach can be used to study
Neuron 95, July 19, 2017 249
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neocortical plasticity during continual learning (Cichon and

Gan, 2015; Hayashi-Takagi et al., 2015; Yang et al., 2009).

There is emerging evidence for specialized mechanisms that

protect knowledge about previous tasks from interference

during learning on a new task. These include decreased syn-

aptic lability (i.e., lower rates of plasticity) in a proportion of

strengthened synapses, mediated by enlargements to den-

dritic spines that persist despite learning of other tasks

(Cichon and Gan, 2015; Yang et al., 2009) (Figure 1D). These

changes are associated with retention of task performance

over several months, and indeed, if they are ‘‘erased’’ with

synaptic optogenetics, this leads to forgetting of the task

(Hayashi-Takagi et al., 2015). These empirical insights are

consistent with theoretical models that suggest that memories

can be protected from interference through synapses that

transition between a cascade of states with different levels

of plasticity (Fusi et al., 2005) (Figure 1D).

Together, these findings from neuroscience have inspired the

development of AI algorithms that address the challenge of

continual learning in deep networks by implementing of a form

of ‘‘elastic’’ weight consolidation (EWC) (Kirkpatrick et al.,

2017), which acts by slowing down learning in a subset of

network weights identified as important to previous tasks,

thereby anchoring these parameters to previously found solu-

tions (Figure 1D). This allows multiple tasks to be learned without

an increase in network capacity, with weights shared efficiently

between tasks with related structure. In this way, the EWC algo-

rithm allows deep RL networks to support continual learning at

large scale.

The Future
In AI, the pace of recent research has been remarkable. Artificial

systems now match human performance in challenging object

recognition tasks (Krizhevsky et al., 2012) and outperform expert

humans in dynamic, adversarial environments such as Atari

video games (Mnih et al., 2015), the ancient board game of Go

(Silver et al., 2016), and imperfect information games such as

heads-up poker (Morav�cı́k et al., 2017). Machines can autono-

mously generate synthetic natural images and simulations of

human speech that are almost indistinguishable from their real-

world counterparts (Lake et al., 2015; van den Oord et al.,

2016), translate between multiple languages (Wu et al., 2016),

and create ‘‘neural art’’ in the style of well-known painters (Gatys

et al., 2015).

However, much work is still needed to bridge the gap between

machine and human-level intelligence. In working toward closing

this gap, we believe ideas from neuroscience will become

increasingly indispensable. In neuroscience, the advent of new

tools for brain imaging and genetic bioengineering have begun

to offer a detailed characterization of the computations occurring

in neural circuits, promising a revolution in our understanding of

mammalian brain function (Deisseroth and Schnitzer, 2013). The

relevance of neuroscience, both as a roadmap for the AI

research agenda and as a source of computational tools is

particularly salient in the following key areas.

Intuitive Understanding of the Physical World

Recent perspectives emphasize key ingredients of human intel-

ligence that are already well developed in human infants but
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lacking in most AI systems (Gilmore et al., 2007; Gopnik and

Schulz, 2004; Lake et al., 2016). Among these capabilities are

knowledge of core concepts relating to the physical world,

such as space, number, and objectness, which allow people to

construct compositional mental models that can guide inference

and prediction (Battaglia et al., 2013; Spelke and Kinzler, 2007).

AI research has begun to explore methods for addressing this

challenge. For example, novel neural network architectures have

been developed that interpret and reason about scenes in a

humanlike way, by decomposing them into individual objects

and their relations (Battaglia et al., 2016; Chang et al., 2016;

Eslami et al., 2016) (Figures 2A and 2B). In some cases, this

has resulted in human-level performance on challenging

reasoning tasks (Santoro et al., 2017). In other work, deep RL

has been used to capture the processes by which children

gain commonsense understanding of the world through interac-

tive experiments (Denil et al., 2016). Relatedly, deep generative

models have been developed that are able to construct rich

object models from raw sensory inputs (Higgins et al., 2016).

These leverage constraints first identified in neuroscience,

such as redundancy reduction (Barlow, 1959), which encourage

the emergence of disentangled representations of independent

factors such as shape and position (Figure 2C). Importantly,

the latent representations learned by such generative models

exhibit compositional properties, supporting flexible transfer to

novel tasks (Eslami et al., 2016; Higgins et al., 2016; Rezende

et al., 2016a). In the caption associated with Figure 2, we provide

more detailed information about these networks.

Efficient Learning

Human cognition is distinguished by its ability to rapidly learn

about new concepts from only a handful of examples, leveraging

prior knowledge to enable flexible inductive inferences. In order

to highlight this human ability as a challenge for AI, Lake and col-

leagues recently posed a ‘‘characters challenge’’ (Lake et al.,

2016). Here, an observer must distinguish novel instances of

an unfamiliar handwritten character from other, similar items af-

ter viewing only a single exemplar. Humans can perform this task

well, but it is difficult for classical AI systems.

Encouragingly, recent AI algorithms have begun to make

progress on tasks like the characters challenge, through both

structured probabilistic models (Lake et al., 2015) and deep

generative models based on the abovementioned DRAW

model (Rezende et al., 2016b). Both classes of system can

make inferences about a new concept despite a poverty of

data and generate new samples from a single example concept

(Figure 2D). Further, recent AI research has developed networks

that ‘‘learn to learn,’’ acquiring knowledge on new tasks by

leveraging prior experience with related problems, to support

one-shot concept learning (Santoro et al., 2016; Vinyals et al.,

2016) and accelerating learning in RL tasks (Wang et al., 2016).

Once again, this builds on concepts from neuroscience: learning

to learn was first explored in studies of animal learning (Harlow,

1949), and has subsequently been studied in developmental

psychology (Adolph, 2005; Kemp et al., 2010; Smith, 1995).

Transfer Learning

Humans also excel at generalizing or transferring generalized

knowledge gained in one context to novel, previously unseen do-

mains (Barnett and Ceci, 2002; Holyoak and Thagard, 1997). For



Figure 2. Examples of Recent AI Systems that Have Been Inspired by Neuroscience
(A) Intuitive physics knowledge. Illustration of the ability of the interaction network (Battaglia et al., 2016) to reason and make predictions about the physical
interaction between objects in the bouncing ball problem (top) and spaceship problem (bottom: Hamrick et al., 2017). The network takes as input objects and their
relations and accurately simulates their trajectories by modeling collisions, gravitational forces, etc., effectively acting as a learned physics engine.
(B) Scene understanding through structured generative models (Eslami et al., 2016). Top: iterative inference in a variational auto-encoder architecture. The
recurrent network attends to one object at a time, infers its attributes, and performs the appropriate number of inference steps for each input image (x). Scenes are
described in terms of groups of latent variables (Z) that specify presence/absence (zpres), properties such as position (zwhere), and shape (zwhat). Inference network
(black connections), and the generator network (red arrow), which produces reconstructed image (y). Bottom: illustration of iterative inference in multiple MNIST
images (green indicates the first step and red the second step). Right: inference about the position/shape of multiple objects in realistic scene (note that inference
is accurate, and hence it is difficult to distinguish inferred positions [red line] from ground truth). Latent representations in this network speed learning on
downstream tasks (e.g., addition of MNIST digits) (not depicted; see Eslami et al., 2016).
(C) Unsupervised learning of core object properties (Higgins et al., 2016) is shown. Left: schematic illustrating learning of disentangled factors of sensory input by
deep generative model (left: variational auto-encoder [VAE]), whose representations can speed learning on downstream tasks (Eslami et al., 2016), as compared
to relatively entangled representation learned by typical deep network (e.g., DQN: right). Right panel illustrates latent representation of VAE; latent units coding for
factors of variation, such as object position, rotation, and scale, are shown by effect of independently changing the activity of one latent unit. Such networks can
learn intuitive concepts such as ‘‘objectness,’’ being able to support zero-shot transfer (i.e., reasoning about position or scale of an unseen object with a novel
shape; Higgins et al., 2016).
(D) One-shot generalization in deep sequential generative models (Rezende et al., 2016b) is shown. Deep generative models specify a causal process for
generating the observed data using a hierarchy of latent variables, with attentional mechanisms supporting sequential inference. Illustrated are generated
samples from the Rezende et al. model, conditioned on a single novel character from a held-out alphabet from the Omniglot dataset (Lake et al., 2015),
demonstrating abilities that mirror human abilities to generalize from a single concept.
(E) Imagination of realistic environments in deep networks (Chiappa et al., 2017) is shown. Generated (left) and real (right) frames from procedural mazes (i.e., new
maze layout on each episode) produced by an action-conditional recurrent network model �150 and 200 frames after the last observed image, respectively.

Neuron

Review
example, a human who can drive a car, use a laptop computer,

or chair a committee meeting is usually able act effectively when

confrontedwith an unfamiliar vehicle, operating system, or social

situation. Progress is being made in developing AI architectures

capable of exhibiting strong generalization or transfer, for

example by enabling zero-shot inferences about novel shapes

outside the training distribution based on compositional repre-

sentations (Higgins et al., 2016; Figure 2C). Others have shown

that a new class of architecture, known as a progressive

network, can leverage knowledge gained in one video game to
learn rapidly in another, promising the sort of ‘‘far transfer’’ that

is characteristic of human skill acquisition (Rusu et al., 2016a).

Progressive networks have also been successfully employed

to transfer knowledge for a simulated robotic environment to a

real robot arm, massively reducing the training time required

on the real world (Rusu et al., 2016b). Intriguingly, the proposed

architecture bears some resemblance to a successful computa-

tional model of sequential task learning in humans (Collins and

Koechlin, 2012; Donoso et al., 2014). In the neuroscience litera-

ture, one hallmark of transfer learning has been the ability to
Neuron 95, July 19, 2017 251
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reason relationally, and AI researchers have also begun to make

progress in building deep networks that address problems of this

nature, for example by solving visual analogies (Reed et al.,

2015). More generally however, how humans or other animals

achieve this sort of high-level transfer learning is unknown, and

remains a relatively unexplored topic in neuroscience. New

advances on this front could provide critical insights to spur AI

research toward the goal of lifelong learning in agents, and we

encourage neuroscientists to engage more deeply with this

question.

At the level of neural coding, this kind of transfer of abstract

structured knowledge may rely on the formation of conceptual

representations that are invariant to the objects, individuals, or

scene elements that populate a sensory domain but code instead

for abstract, relational information amongpatterns of inputs (Dou-

mas et al., 2008). However, we currently lack direct evidence for

the existence of such codes in the mammalian brain. Neverthe-

less, one recent report made the very interesting claim that neural

codes thought to be important in the representation of allocentric

(map-like) spaces might be critical for abstract reasoning in more

general domains (Constantinescu et al., 2016). In the mammalian

entorhinal cortex, cells encode the geometry of allocentric space

with a periodic ‘‘grid’’ code, with receptive fields that tile the local

space in a hexagonal pattern (Rowland et al., 2016). Grid codes

may be an excellent candidate for organizing conceptual knowl-

edge, because they allow state spaces to be decomposed

efficiently, in a way that could support discovery of subgoals

and hierarchical planning (Stachenfeld et al., 2014). Using func-

tional neuroimaging, the researchers provide evidence for the

existence of such codes while humans performed an abstract

categorization task, supporting the view that periodic encoding

is a generalized hallmark of human knowledge organization

(Constantinescu et al., 2016). However, much further work is

required to substantiate this interesting claim.

Imagination and Planning

Despite their strong performance on goal-directed tasks, deep

RL systems such as DQN operate mostly in a reactive way,

learning the mapping from perceptual inputs to actions that

maximize future value. This ‘‘model-free’’ RL is computationally

inexpensive but suffers from twomajor drawbacks: it is relatively

data inefficient, requiring large amounts of experience to derive

accurate estimates, and it is inflexible, being insensitive to

changes in the value of outcomes (Daw et al., 2005). By contrast,

humans can more flexibly select actions based on forecasts of

long-term future outcomes through simulation-based planning,

which uses predictions generated from an internal model of the

environment learned through experience (Daw et al., 2005; Dolan

and Dayan, 2013; Tolman, 1948). Moreover, planning is not a

uniquely human capacity. For example, when caching food,

scrub jays consider the future conditions under which it is likely

to be recovered (Raby et al., 2007), and rats use a ‘‘cognitive

map’’ when navigating, allowing inductive inferences during

wayfinding and facilitating one-shot learning behaviors in

maze-like environments (Daw et al., 2005; Tolman, 1948). Of

course, this point has not been lost on AI researchers; indeed,

early planning algorithms such as Dyna (Sutton, 1991) were

inspired by theories that emphasized the importance of ‘‘mental

models’’ in generating hypothetical experiences useful for
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human learning (Craik, 1943). By now, a large volume of literature

exists on AI planning techniques, including model-based RL

methods, which seek to implement this forecast-based method

of action selection. Furthermore, simulation-based planning,

particularly Monte Carlo tree search (MCTS) methods, which

use forward search to update a value function and/or policy

(Browne et al., 2012), played a key role in recent work in which

deep RL attained expert-level performance in the game of Go

(Silver et al., 2016).

AI research on planning, however, has yet to capture some of

the key characteristics that give human planning abilities their

power. In particular, we suggest that a general solution to this

problem will require understanding how rich internal models,

which in practice will have to be approximate but sufficiently ac-

curate to support planning, can be learned through experience,

without strong priors being handcrafted into the network by the

experimenter. We also argue that AI research will benefit from

a close reading of the related literature on how humans imagine

possible scenarios, envision the future, and carry out simulation-

based planning, functions that depend on a common neural

substrate in the hippocampus (Doll et al., 2015; Hassabis and

Maguire, 2007, 2009; Schacter et al., 2012). Although imagina-

tion has an intrinsically subjective, unobservable quality, we

have reason to believe that it has a conserved role in simula-

tion-based planning across species (Hassabis and Maguire,

2009; Schacter et al., 2012). For example, when paused at a

choice point, ripples of neural activity in the rat hippocampus

resemble those observed during subsequent navigation of the

available trajectories (‘‘preplay’’), as if the animal were ‘‘imag-

ining’’ each possible alternative (Johnson and Redish, 2007;

Ólafsdóttir et al., 2015; Pfeiffer and Foster, 2013). Further, recent

work has suggested a similar process during non-spatial plan-

ning in humans (Doll et al., 2015; Kurth-Nelson et al., 2016).

We have discussed above the ways in which the introduction

of mechanisms that replay and learn offline from past experi-

ences can improve the performance of deep RL agents such

as DQN (as discussed above in Episodic Memory).

Some encouraging initial progress toward simulation-based

planning has been made using deep generative models (Eslami

et al., 2016; Rezende et al., 2016a, 2016b) (Figure 2). In partic-

ular, recent work has introduced new architectures that have

the capacity to generate temporally consistent sequences of

generated samples that reflect the geometric layout of newly

experienced realistic environments (Gemici et al., 2017; Oh

et al., 2015) (Figure 2E), providing a parallel to the function of

the hippocampus in binding together multiple components to

create an imagined experience that is spatially and temporally

coherent (Hassabis and Maguire, 2007). Deep generative

models thus show the potential to capture the rich dynamics of

complex realistic environments, but using these models for

simulation-based planning in agents remains a challenge for

future work.

Insights from neuroscience may provide guidance that facili-

tates the integration of simulation with control. An emerging

picture from neuroscience research suggests that the hippo-

campus supports planning by instantiating an internal model of

the environment, with goal-contingent valuation of simulated

outcomes occurring in areas downstream of the hippocampus
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such the orbitofrontal cortex or striatum (Redish, 2016). Notably,

however, the mechanisms that guide the rolling forward of an

internal model of the environment in the hippocampus remain

uncertain and merit future scrutiny. One possibility is that this

process is initiated by the prefrontal cortex through interactions

with the hippocampus. Indeed, this notion has distinct parallels

with proposals from AI research that a separate controller inter-

acts with an internal model of the environment in a bidirectional

fashion, querying the model based on task-relevant goals and

receiving predicted simulated states as input (Schmidhuber,

2014). Further, recent efforts to develop agents have employed

architectures that instantiate a separation between controller

and environmental model to effect simulation-based planning

in problems involving the interaction between physical objects

(Hamrick et al., 2017).

In enhancing agent capabilities in simulation-based planning,

it will also be important to consider other salient properties of

this process in humans (Hassabis and Maguire, 2007, 2009).

Research into human imagination emphasizes its constructive

nature, with humans able to construct fictitious mental scenarios

by recombining familiar elements in novel ways, necessitating

compositional/disentangled representations of the form present

in certain generative models (Eslami et al., 2016; Higgins et al.,

2016; Rezende et al., 2016a). This fits well with the notion that

planning in humans involves efficient representations that sup-

port generalization and transfer, so that plans forged in one

setting (e.g., going through a door to reach a room) can be lever-

aged in novel environments that share structure. Further,

planning and mental simulation in humans are ‘‘jumpy,’’ bridging

multiple temporal scales at a time; for example, humans seem to

plan hierarchically, by considering in parallel terminal solutions,

interim choice points, and piecemeal steps toward the goal

(Balaguer et al., 2016; Solway et al., 2014; Huys et al., 2012).

We think that ultimately these flexible, combinatorial aspects of

planning will form a critical underpinning of what is perhaps the

hardest challenge for AI research: to build an agent that can

plan hierarchically, is truly creative, and can generate solutions

to challenges that currently elude even the human mind.

Virtual Brain Analytics

One rather different way in which neuroscience may serve AI is

by furnishing new analytic tools for understanding computation

in AI systems. Due to their complexity, the products of AI

research often remain ‘‘black boxes’’; we understand only poorly

the nature of the computations that occur, or representations

that are formed, during learning of complex tasks. However, by

applying tools from neuroscience to AI systems, synthetic equiv-

alents of single-cell recording, neuroimaging, and lesion tech-

niques, we can gain insights into the key drivers of successful

learning in AI research and increase the interpretability of these

systems. We call this ‘‘virtual brain analytics.’’

Recent work has made some progress along these lines. For

example, visualizing brain states through dimensionality reduc-

tion is commonplace in neuroscience, and has recently been

applied to neural networks (Zahavy et al., 2016). Receptive field

mapping, another standard tool in neuroscience, allows AI

researchers to determine the response properties of units in a

neural network. One interesting application of this approach in

AI is known as activity maximization, in which a network learns
to generate synthetic images by maximizing the activity of

certain classes of unit (Nguyen et al., 2016; Simonyan et al.,

2013). Elsewhere, neuroscience-inspired analyses of linearized

networks have uncovered important principles that may be of

general benefit in optimizing learning these networks, and under-

standing the benefits of network depth and representational

structure (McClelland and Rogers, 2003; Saxe et al., 2013).

While this initial progress is encouraging, more work is

needed. It remains difficult to characterize the functioning of

complex architectures such as networks with external memory

(Graves et al., 2016). Nevertheless, AI researchers are in the

unique position of having ground truth knowledge of all compo-

nents of the system, together with the potential to causally

manipulate individual elements, an enviable scenario from the

perspective of experimental neuroscientists. As such, we

encourage AI researchers to use approaches from neuroscience

to explore properties of network architectures and agents

through analysis, visualization, causal manipulation, not forget-

ting the need for carefully designed hypothesis-driven experi-

ments (Jonas and Kording, 2017; Krakauer et al., 2017). We think

that virtual brain analytics is likely to be an increasingly integral

part of the pipeline of algorithmic development as the complexity

of architectures increases.

From AI to Neuroscience
Thus far, our review has focused primarily on the role of neurosci-

ence in accelerating AI research rather than vice versa. Histori-

cally, however, the flow of information between neuroscience

and AI has been reciprocal. Machine learning techniques

have transformed the analysis of neuroimaging datasets—for

example, in the multivariate analysis of fMRI and magnetoence-

phalographic (MEG) data (Cichy et al., 2014; Çukur et al., 2013;

Kriegeskorte and Kievit, 2013)—with promise for expediting con-

nectomic analysis (Glasser et al., 2016), among other techniques.

Going further, we believe that building intelligent algorithms has

the potential to offer new ideas about the underpinnings of intel-

ligence in the brains of humans and other animals. In particular,

psychologists and neuroscientists often have only quite vague

notions of themechanisms that underlie the concepts they study.

AI research can help, by formalizing these concepts in a quanti-

tative language and offering insights into their necessity and suf-

ficiency (or otherwise) for intelligent behavior.

A key illustration of this potential is provided by RL. After ideas

from animal psychology helped to give birth to reinforcement

learning research, key concepts from the latter fed back to

inform neuroscience. In particular, the profile of neural signals

observed in midbrain dopaminergic neurons in conditioning

paradigms was found to bear a striking resemblance to TD-

generated prediction errors, providing neural evidence that the

brain implements a form of TD learning (O’Doherty et al., 2003;

Schultz et al., 1997). This overall narrative arc provides an excel-

lent illustration of how the exchange of ideas between AI

and neuroscience can create a ‘‘virtuous circle’’ advancing the

objectives of both fields.

In another domain, work focused on enhancing the perfor-

mance of CNNs has also yielded new insights into the nature

of neural representations in high-level visual areas (Khaligh-

Razavi and Kriegeskorte, 2014; Yamins and DiCarlo, 2016). For
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example, one group systematically compared the ability of more

than 30 network architectures from AI to explain the structure of

neural representations observed in the ventral visual stream of

humans and monkeys, finding favorable evidence for deep

supervised networks (Khaligh-Razavi and Kriegeskorte, 2014).

Further, these deep convolutional network architectures offer a

computational account of recent neurophysiological data

demonstrating that the coding of category-orthogonal properties

of objects (e.g., position, size) actually increases as one pro-

gresses higher up the ventral visual stream (Hong et al., 2016).

While these findings are far from definitive as yet, it shows how

state-of-the-art neural networks fromAI can be used as plausible

simulacra of biological brains, potentially providing detailed ex-

planations of the computations occurring therein (Khaligh-Ra-

zavi and Kriegeskorte, 2014; Yamins and DiCarlo, 2016). Relat-

edly, properties of the LSTM architecture have provided key

insights that motivated the development of working memory

models that afford gating-based maintenance of task-relevant

information in the prefrontal cortex (Lloyd et al., 2012; O’Reilly

and Frank, 2006).

We also highlight two recent strands of AI research that may

motivate new research in neuroscience. First, neural networks

with external memory typically allow the controller to iteratively

query or ‘‘hop through’’ the contents of memory. This mecha-

nism is critical for reasoning over multiple supporting input state-

ments that relate to a particular query (Sukhbaatar et al., 2015).

Previous proposals in neuroscience have argued for a similar

mechanism in human cognition, but any potential neural sub-

strates, potentially in the hippocampus, remain to be described

(Kumaran and McClelland, 2012). Second, recent work high-

lights the potential benefits of ‘‘meta-reinforcement learning,’’

where RL is used to optimize the weights of a recurrent network

such that the latter is able to implement a second, emergent RL

algorithm that is able to learn faster than the original (Duan et al.,

2016; Wang et al., 2016). Intriguingly, these ideas connect with a

growing neuroscience literature indicating a role for the prefron-

tal cortex in RL, alongside more established dopamine-based

mechanisms (Schultz et al., 1997). Specifically, they indicate

how a relatively slow-learning dopaminergic RL algorithm may

support the emergence of a freestanding RL algorithm instanti-

ated with the recurrent activity dynamics of the prefrontal cortex

(Tsutsui et al., 2016).

Insights from AI research are also providing novel perspec-

tives on how the brain might implement an algorithmic parallel

to backpropagation, the key mechanism that allows weights

within multiple layers of a hierarchical network to be optimized

toward an objective function (Hinton et al., 1986; Werbos,

1974). Backpropagation offers a powerful solution to the prob-

lem of credit assignment within deep networks, allowing efficient

representations to be learned from high dimensional data (LeCun

et al., 2015). However, until recently, several aspects of the back-

propagation algorithm were viewed to be biologically implau-

sible (e.g., see Bengio et al., 2015). One important factor is that

backpropagation has typically been thought to require perfectly

symmetric feedback and feedforward connectivity, a profile that

is not observed in mammalian brains. Recent work, however,

has demonstrated that this constraint can in fact be relaxed

(Liao et al., 2015; Lillicrap et al., 2016). Random backward con-
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nections, even when held fixed throughout network training, are

sufficient to allow the backpropagation algorithm to function

effectively through a process whereby adjustment of the forward

weights allows backward projections to transmit useful teaching

signals (Lillicrap et al., 2016).

A second core objection to the biological plausibility of back-

propagation is that weight updates in multi-layered networks

require access to information that is non-local (i.e., error signals

generated by units many layers downstream) (for review, see

Bengio et al., 2015). In contrast, plasticity in biological synapses

depends primarily on local information (i.e., pre- and post-syn-

aptic neuronal activity) (Bi and Poo, 1998). AI research has begun

to address this fundamental issue. In particular, recent work has

shown that hierarchical auto-encoder networks and energy-

based networks (e.g., continuous Hopfield networks) (Scellier

and Bengio, 2016; Whittington and Bogacz, 2017)—models

that have strong connections to theoretical neuroscience ideas

about predictive coding (Bastos et al., 2012)—are capable of

approximating the backpropagation algorithm, based on weight

updates that involve purely local information. Indeed, concrete

connections have been drawn between learning in such net-

works and spike-timing dependent plasticity (Scellier and Ben-

gio, 2016), a Hebbian mechanism instantiated widely across

the brain (Bi and Poo, 1998). A different class of local learning

rule has been shown to allow hierarchical supervised networks

to generate high-level invariances characteristic of biological

systems, including mirror-symmetric tuning to physically sym-

metric stimuli, such as faces (Leibo et al., 2017). Taken together,

recent AI research offers the promise of discovering mecha-

nisms by which the brain may implement algorithms with the

functionality of backpropagation. Moreover, these develop-

ments illustrate the potential for synergistic interactions between

AI and neuroscience: research aimed to develop biologically

plausible forms of backpropagation have also been motivated

by the search for alternative learning algorithms. Given the

increasingly deep networks (e.g., >20 layer) used in AI research,

factors such as the compounding of successive non-linearities

pose challenges for optimization using backpropagation (Bengio

et al., 2015).

Conclusions
In this perspective, we have reviewed some of the many ways

in which neuroscience has made fundamental contributions to

advancing AI research, and argued for its increasingly impor-

tant relevance. In strategizing for the future exchange between

the two fields, it is important to appreciate that the past con-

tributions of neuroscience to AI have rarely involved a simple

transfer of full-fledged solutions that could be directly re-im-

plemented in machines. Rather, neuroscience has typically

been useful in a subtler way, stimulating algorithmic-level

questions about facets of animal learning and intelligence of

interest to AI researchers and providing initial leads toward

relevant mechanisms. As such, our view is that leveraging in-

sights gained from neuroscience research will expedite prog-

ress in AI research, and this will be most effective if AI re-

searchers actively initiate collaborations with neuroscientists

to highlight key questions that could be addressed by empir-

ical work.
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The successful transfer of insights gained from neuroscience

to the development of AI algorithms is critically dependent on

the interaction between researchers working in both these

fields, with insights often developing through a continual hand-

ing back and forth of ideas between fields. In the future, we

hope that greater collaboration between researchers in neuro-

science and AI, and the identification of a common language

between the two fields (Marblestone et al., 2016), will permit a

virtuous circle whereby research is accelerated through shared

theoretical insights and common empirical advances. We

believe that the quest to develop AI will ultimately also lead to

a better understanding of our own minds and thought pro-

cesses. Distilling intelligence into an algorithmic construct and

comparing it to the human brain might yield insights into

some of the deepest and the most enduring mysteries of the

mind, such as the nature of creativity, dreams, and perhaps

one day, even consciousness.
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