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ScienceDirect
Computational neuroscience has focused largely on the

dynamics and function of local circuits of neuronal populations

dedicated to a common task, such as processing a common

sensory input, storing its features in working memory, choosing

between a set of options dictated by controlled experimental

settings or generating the appropriate actions. Most of current

circuit models suggest mechanisms for computations that can

be captured by networks of simplified neurons connected via

simple synaptic weights. In this article I review the progress of

this approach and its limitations. It is argued that new

experimental techniques will yield data that might challenge the

present paradigms in that they will (1) demonstrate the

computational importance of microscopic structural and

physiological complexity and specificity; (2) highlight the

importance of models of large brain structures engaged in a

variety of tasks; and (3) reveal the necessity of coupling the

neuronal networks to chemical and environmental variables.
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Introduction
The last decade witnessed impressive expansion in the

scope of the systems and questions studied by theoretical

neuroscience. Models became increasingly more complex

and more realistic, and analysis methods more sophisti-

cated. These theoretical investigations advanced the un-

derstanding of the function of neuronal circuits in several

ways. Studies of the neural code developed quantitative

measures of the processing accomplished by early sensory

stages. Comparing the neural code with bounds set by

optimality criteria revealed underlying design principles.

Other studies focused on structural and dynamic mech-

anisms for computations performed by specific local cir-

cuits, including sensory processing, working memory,

decision-making, motor control, and neural learning

and memory. In most of these models, computation is
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the outcome of appropriate patterns of connectivity,

rather than complex cellular or molecular properties;

the latter are considered as determining the few ‘control

parameters’ that govern the functionality of the entire

circuit.

In this article, I will review some of the progress made in

past decades and will highlight some of the limitations in

present approaches. I will suggest directions for extending

the scope of current theories of neuronal computations in

the context of recent and future experimental efforts in

systems neuroscience.

Neural codes and neural mechanisms
The study of the neural code is perhaps the most devel-

oped field of theoretical neuroscience. Information theory

and advanced statistical inference methods provide

new frameworks for quantitative assessments of the sen-

sory information represented and processed by neuronal

systems from single neurons and synapses to large popu-

lations [1–3]. By comparing these results with psycho-

physical performance, one gains insight into the selective

contributions of specific circuits to the behavioral out-

come. At a higher level, efficient coding theory addresses

the why question. Using a variety of optimality criteria, the

theory explores the conditions under which observed

performance at both the neuronal and behavioral levels

is close to optimal. Optimality theories have successfully

explained salient features of the neural code in primary

sensory systems. In particular they have elucidated the

forms of the receptive fields and their adaptive properties,

as well as the underlying constraints such as the sources

of noise, and wiring and metabolic costs [4,5]. These

theories highlight the statistical nature of information

processing and the importance of testing performance

using stimulus ensembles that closely mimic the natural

environment of the organism. Recently, Bayesian optim-

ality theories have been developed for cognition and

behavior [6] (see also [7]), but at present, their neuronal

correlates are unclear [8].

The central goal of theoretical neuroscience remains to

answer the how question, namely to elucidate the mech-

anisms underlying brain function, linking structure,

dynamics, and computation in neuronal circuits. Trans-

lating hypotheses into well-defined mathematical models

that incorporate the relevant details of the studied system

allows their scrutiny by mathematical analysis and simu-

lations, and provides a framework for making predictions

for further experimental testing. While theoretical neuro-

science has generated proposals of interesting and some-

times profound potential mechanisms for many brain
l circuit, Curr Opin Neurobiol (2014), http://dx.doi.org/10.1016/j.conb.2014.02.002
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functions, proving that these mechanisms are actually
implemented by the brain, or rejecting this scenario

has been difficult. This is partly because of the lack of

sufficient information about the underlying circuitry, and

partly because the brain often uses a mixture of mech-

anisms and pathways. Hopefully, new technologies such

as multi-electrode recordings, optogenetics and connec-

tomics will provide highly specific probes and pertur-

bation methods that will enhance significantly the ability

to test and revise proposed mechanisms.

Detailed theoretical investigations may reveal the

limitations of potential mechanisms, reducing the like-

lihood of their relevance  to the real brain. One example

is the Hopfield model for associative memory [9]. While

for random memorized patterns the theoretical estimate

of the model’s memory capacity scales reasonably with

the number of synapses, the theory revealed a dramatic

drop in capacity when memorized patterns are struc-

tured, strongly suggesting that the circuits for long term

memory differ from the model either in their architec-

ture or in their learning rule [10]. A Hopfield network

exhibits a discrete set of fixed-point attractors. Other

circuits exhibit continuous manifolds of stable states

called attractor manifolds. Such manifolds have been

proposed in the context of sensory processing [11],

spatial working memory [12,13], neural integrators

[14], and spatial navigation systems [15]. While the

theory demonstrates the functional utility of attractor

manifolds, such as line and ring attractors, it also predicts

that they require fine-tuning of certain critical

parameters [16,17]. Interestingly, in some cases (e.g.,

grid cells [18], oculomotor integrator, the head direction

system), these mechanisms seem the only feasible ones,

suggesting that the presence of a robust (as yet

unknown) mechanism of maintaining the relevant

critical parameters at their required values.

The network paradigm: theory of everything?
The recent massive increase in the power of low cost

computers allowed the simulations of larger and more

realistic neuronal networks. In addition, theoretical

analysis yielded increasingly sophisticated and finessed

understanding of the dynamics and information proces-

sing of circuits with complex features such as spiking

neurons, short-term synaptic plasticity, and multiple

types of synaptic conductance. Nevertheless, with a

few notable exceptions [19–21], the majority of present

theories continue to adhere to the network paradigm,

which attributes the computing power of neuronal sys-

tems mostly to the clever patterns of connectivity, rather

to the complexity of the individual ‘nodes’ and connec-

tions. Thus, receptive fields are determined by specific

patterns of feedforward connections; the balance between

excitatory and inhibitory feedback, as well as the specific

topographic and functional patterns of these connections,

shape computation performed by recurrent networks; and
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information acquired through learning and memory is

stored in the strength of individual synapses (the synaptic

efficacies). In many cases, it has been demonstrated that

the function of realistic circuits remains largely intact

when they are reduced to rate-based dynamics of ‘point

neurons’ with scalar input-output nonlinearity, connected

by simple synaptic ‘weights’. Reduced network models of

N such units are typically similar in form to the following

equations,

ti
dri

dt
¼ �r i þ g

XN

j¼1

wi jr j þ Ii

  !
(1)

where ti and Ii are, respectively, the time constant and the

external input of the ith neuron, wij is the synaptic

connection matrix between pairs of neurons, and g is

the nonlinear function relating the neuron’s synaptic

input at time t, and its output rate variable, ri(t). Slightly

more complex models describe networks of intercon-

nected Integrate-and-Fire ‘point neurons’, which incorp-

orate discrete spiking events at threshold crossings of the

membrane potential, and possibly including synaptic

conductances and simplified short-term synaptic

plasticity [22]. Clearly, such models do not capture many

of the salient features of brain dynamics, most notably, its

rich cohort of rhythmic patterns, which characterize the

different global states of the brain [23,24]. However, their

role in ongoing information processing remains unknown.

Will the solution of a set of differential equations govern-

ing the dynamics of a network of 100 billion simple units

with architecture similar to the human brain and driven

by the appropriate sensory input, exhibit something

resembling thought, visual cognition, language, or con-

sciousness? There are several reasons to be cautious.

First, the demonstrated computing capabilities of current

network models are still far from that of the brain. To cite

a few examples, we do not have yet plausible network

models for language processing, for representing and

manipulating conceptual knowledge, for flexible learn-

ing, for high level perceptual or social cognition, or for

planning and monitoring complex behavior. Thus, we

cannot rule out the possibility that to achieve more

powerful performance, models will have to incorporate

the vast richness of the structural and physiological prop-

erties of real neurons and synapses.

A fundamental deficiency of the network paradigm is the

representation of the environment in terms of a set of

external inputs. In natural behaving scenarios, the brain is

not a passive receiver of sensory sensations, but actively

seeks information, implying that a full theory of brain

function must incorporate the dynamic interaction be-

tween the neuronal network and the environment, from

the organism’s sensors and actuators, through its naviga-

tion in the environment, to its interactions with other

animals [20,25,26].
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A similar problem exists with regards to the brain’s

molecular environment. Numerous molecular processes

control brain electrical signaling [21]. For instance, neuro-

modulatory transmitters control the global brain state but

also affect specific circuits and functions, and in turn are

partially controlled by neuronal activity [19]. These sig-

nals propagate often via volume transmission, rather than

one-to-one synaptic contacts, some are mediated by glial

cells; hence their dynamics is not captured by the network

synaptic communications. Some of these modulatory

effects are slow relative to the time scale of the electrical

signaling, allowing one to lump these effects into the

static structure of the network, in a separation-of-time-

scale approach. However, the range of time scales of some

of these processes overlaps with the spectrum of time

scales of slow synaptic receptors such as NMDA and

short-term synaptic plasticity. The reciprocal dynamic

interaction between electrical and chemical degrees of

freedom implies that the latter cannot be fully captured

by simply representing them as external inputs or other

network parameters.

The abundance of action-perception cycles and electro-

chemical loops imply that the neuronal networks should

be viewed as part of a large ensemble of interacting

networks of vast complexity.

Lastly, incorporating learning, a key factor in the com-

putational power of the nervous system, requires model-

ing the plasticity dynamics of synapses. A minimal

approach would add to Eq. (1) a set of rules for experience

dependent changes in the wij, in the general form of

dwi j

dt
¼ f ðr i; r j ; wi j; ei jÞ (2)

where eij is an input that carries information about reward

and other types of feedback from the environment or from

other brain systems. More refined versions (STDP rules)

include dependences on the spike times of the presyn-

aptic and postsynaptic neurons [27]. At the moment, we

do not have a concrete version of these equations that

exhibits the power of learning of the nervous system.

Translating some of the impressive advances in machine

learning algorithms to neuronal networks has been suc-

cessful, so far, only in simple architectures and tasks [28].

Most importantly, eij reflects the interaction between the

synaptic dynamics and the external as well as the bio-

chemical environment. Molecular and cellular studies

have begun to map the vast molecular pathways under-

lying synaptic plasticity [21,29]. From the present

perspective, the important issue is whether, at the circuit

level, these molecular computations can be abstracted in

terms of specific forms of plasticity rules, such as Eq. (2),

or need to be accounted for as additional dynamical

degrees of freedom, which would again imply that a

circuit-level theory based only on the electrical degrees

of freedom is inadequate.
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Single circuits and single functions
Given the enormous challenges associated with an

attempt to understand brain function in its totality, it is

no wonder why most of neuroscience research, exper-

imental as well as theoretical, focuses on understanding

subfunctions measured in neuronal subsystems in care-

fully controlled environments. This parcellation of brain

function and structure is done largely on practical bases,

raising questions about which are the natural compu-

tational modules of the nervous system. Anatomically

discrete structures such as neurons, synapses, and nuclei,

are natural candidates. The local functional organization

and connectivity of many systems suggest additional

candidates, such as a patch of retina of a (linear) size of

a few hundred microns, a ‘barrel’ column in rodents S1,

spanning a few hundred microns in cortical surface, or a

1 mm patch of V1 (called a cortical hypercolumn). While

some of these circuits are part of a continuum, they are

singled out as functional modules in that their neurons are

co-activated by the same localized sensory stimulus.

Theoretical research over the past decades made signifi-

cant headway in understanding the dynamic repertoire of

local neuronal circuits, primarily in cortex, and its func-

tional consequences. Circuits dominated by excitatory

synaptic recurrence may exhibit sustained signal ampli-

fication, multiple attractors and attractor manifolds [30].

Dominant recurrent inhibition may give rise to enhanced

selectivity, sparse coding [31], signal normalization [32],

inhibitory-mediated transient amplification [33], and

balanced states [34]. In addition, randomly connected

circuits may give rise to complex, slow dynamics, in-

cluding chaos [35], and have been recently proposed as

cortical generators of spatio-temporal signals [36]. Appli-

cations of these properties include sensory feature selec-

tivity, working and long-term memory, spatial navigation,

decision-making, and motor control. Learning models

have been applied to explain rule learning, adaptive

behavior, and motor learning such as birdsong

[28,37,38]. Common to most studies is the focus on a

(loosely defined) local circuit, consisting of a population of

103–106 neurons responding to the same stimulus and

participating in solving a common task.

Experiments on neuronal functions focus on single

neurons and local neuronal populations probed with

highly constrained sets of stimuli and tasks. These studies

often lead to the assignment of simple roles to single

neurons in terms of their receptive or motor fields, or

preferred stimuli and actions. Experiments using more

complex stimuli and tasks reveal a plethora of nonlinear,

contextual, and even cross-modal effects in particular in

behaving animals [39–43]. These provide strong evidence

that the notion of local processing in cortex and other

structures has restricted utility, which is consistent with

the abundance of long-range cortico-cortical connections

and interactions through subcortical structures. Thus, it is
l circuit, Curr Opin Neurobiol (2014), http://dx.doi.org/10.1016/j.conb.2014.02.002
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not surprising that concepts and dynamic models based

on the notion of purely local processing are difficult to

match against experimental data.

Beyond the local circuits
New methods for imaging and recording from multiple

areas simultaneously as well as new virtual reality

methods for behavioral paradigms open new possibilities

for observing brain activity at large spatial and temporal

scales and in natural environments. Data accumulated

with these methods pose new challenges for theoretical

neuroscience, including the task of replacing concepts

and models based on local circuits dedicated to single

functions, by frameworks suitable for dealing with com-

putations in integrated large-scale systems performing

multiple computations.

Efforts to meet this challenge will benefit from several

encouraging developments. On the theoretical side,

spatial averaging methods [44] based on statistical phy-

sics, and temporal averaging [45] based on dynamic

theory, have been successful in bridging the scale from

single neurons to homogenous populations. Develop-

ment of more sophisticated multi-scaling techniques,

similar to those developed in material science and fluid

dynamics [46,47], may help in developing the theory of

the dynamics of larger, more heterogeneous neuronal

circuits. Multi-scaling methods will also allow more sys-

tematic determination of which microscopic details are

sufficient for the understanding of a given set of compu-

tations.

While efficient coding theory has been largely confined to

early sensory stages, recent models of object recognition

in vision have begun to shed light on how cascades of

sensory processing stages can modify the ‘format’ of

sensory representation, making it readily accessible by

downstream systems [48]. The recent advances in

machine learning applications of Deep Networks

[49,50] provide new evidence for the computing power

of multilayer systems, although devising biologically

plausible learning algorithms for these systems remains

an important challenge. Other interesting large-scale

studies include generative models, predictive coding,

and Bayesian networks [51–53]. Neuroscientists may also

gain useful lessons from the design principles adopted in

the construction of autonomous agents and intelligent

robotic systems [54,55].

Several works suggest ways in which neuronal systems

can multiplex a range of tasks and efficiently and rapidly

store and read embedded information. Valiant [56] has

shown how appropriate graph properties of sparse cortical

networks may enable the solution of multiple random

access tasks including forming representations of new

concepts, establishing relations between existing con-

cepts, and learning threshold linear rules. These tasks
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may be considered primitives of cognitive abilities [56].

Neuronal global workspace models studied by Dehaene

and colleagues [57,58] propose architectures that enable

conscious processing, i.e., the routing and sharing of

information, as well as nonlinear amplification and selec-

tions of signals, across large networks of interacting local

modules. Eliasmith and Trujillo [59] have explored the

implementation of integrated cognitive functions in

large-scale brain simulations.

Computational neuroscience of disease is a new growth

area of multi-scale research. The wide dissatisfaction

from DSM-type classifications of mental disorders [60],

the realization of the multiplicity and complexity of the

genetic and molecular causal chains leading to specific

diseases, and the discovery that many of these pathways

are shared by clusters of diseases, drew attention to

systems approaches in disease research, triggering new

statistical and modeling efforts [61,62]. Indeed several

models have begun to address the circuit dysfunctions

associated with neurological and psychiatric diseases, for

example epilepsy, schizophrenia, autism, Parkinson’s dis-

ease, and disorders of consciousness [23,24,63]. These

models typically link cellular and molecular events to

aberrations in the local circuit dynamics (e.g., abnormal

oscillations, altered gains of neurons and synapses, and

excitation-inhibition imbalance) and then to changes in

patterns of large-scale brain dynamics, ultimately leading

to cognitive deficits.

Theories of Reinforcement Learning have been success-

fully applied to data from human imaging and multi-site

recording in primates and rodents, shedding light on

mechanisms that link sensory processing, decision-ma-

king and reward, in normal and in pathological conditions

[64], and making an important contribution to compu-

tational psychiatry [65].

Structural and functional imaging of the human brain,

including the discovery of resting state networks [66],

opened new vistas to the large-scale organization of the

human brain and its relations to cognitive functions and

states. These and data from nonhuman primates led to

important computational work on graph theoretic analysis

of large-scale neuronal systems, as well as models that

probe spatio-temporal activity patterns in these systems

[67–69].

Finally, advances in experimental techniques have led to

research initiatives designed to densely map the structure

and function of entire sensory-motor pathways as well of

the whole nervous systems of simple organisms, such as

the nematode worm C. elegans [70–72], and larval zebra

fish [73]. These endeavors will provide excellent model

systems for developing and testing theories of the

dynamics and computations of integrated neuronal sys-

tems. Recordings of the behaviors of these animals in
l circuit, Curr Opin Neurobiol (2014), http://dx.doi.org/10.1016/j.conb.2014.02.002
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realistic conditions across long time spans will hopefully

also elucidate the nature of the interaction between the

neuronal networks and the chemical and sensory-motor

environments.

Conclusions
The new technologies that appear in the horizon of brain

research, promise to yield information about the structure

and function of neuronal circuits with unprecedented detail

and to allow their manipulations with exquisite specificity

in real time within realistic behavioral settings. These

exciting developments together with advances in human

brain structural and functional imaging, present new oppor-

tunities and challenges for theoretical neuroscience. New

databases can be used to study biologically realistic circuit

models and test the relevance of the microscopic complex-

ity to computations at the level of local circuits. These

studies might demonstrate that the molecular specificity of

cell and synaptic types with their complex biophysics plays

a major role in neuronal computations.

Data from recordings and imaging of entire pathways in

complex sensory and behavioral environments will

require expansion of our theories and models to include

integrated heterogeneous neuronal systems that can mul-

tiplex a spectrum of sensory, motor and cognitive tasks.

Mapping of the modulatory networks of the brain and the

perception–action loops will challenge the currently

dominant computational paradigm that focuses entirely

on electrical degrees of freedom.

It will be interesting to see if future developments will

lead not only to more accurate neuronal network models

but also to a paradigm shift in which the neuronal circuits

are considered part of a web of interacting molecular and

environmental networks that together shape brain func-

tion. If this turns out to be the case, then brain theory

must develop new sorts of abstractions for the

‘embedded’ system. Ultimately, the success of brain

theory hinges upon its ability to carve nature at its joints.
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