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An important task that molecular biology faces today is the characterization and

annotation—recognition and cataloging—of genes from various genomes. It

contributes to our general knowledge and understanding of the functioning of various

organisms’ genetic makeup. Bioinformatics gene search methods either are based on 

homology analysis of the potential gene product or
on the analysis of signals that indicate gene presence.
One of the latest gene search methods uses promoter
recognition.1 A promoter, the DNA region encom-
passing a gene’s transcription start site (TSS),
largely controls the biological activation of the gene.2

Promoters contain docking sites for specialized pro-
teins that synergistically initiate gene transcription.
One gene has at least one promoter region, although
one promoter can participate in regulating several
genes’ transcription. In eukaryotes, a promoter usu-
ally appears near the beginning of the gene whose
transcription it regulates. Moreover, promoter recog-
nition allows searching for specific groups of tran-
scriptionally coregulated genes (see the “Promoter
Recognition” sidebar). Although a class of coregu-
lated genes might have a similar regulation pattern,
their products might not share any homology.

Until recently, efficient gene hunting using pro-
moter recognition was impossible. All techniques
developed for promoter recognition for any level of
true positive recognition also produced a high num-
ber of false positive recognition.2 In a TP recogni-
tion, the predictor correctly indicates a promoter’s
presence, and in an FP recognition, the predictor
indicates a promoter’s presence where a promoter
does not exist.

However, the PromoterInspector3 system allows
a promoter-based gene search and produces consid-
erably reduced levels of FPs compared to other pub-
licly available promoter recognition programs. Moti-
vated by this method of gene hunting, we developed
a new system, the Dragon Promoter Finder (DPF,

http://sdmc.krdl.org.sg/promoter), for general pro-
moter finding. It combines a novel, nonlinear pro-
moter recognition model, signal processing, artifi-
cial neural networks (ANNs), and newly developed
sensors. We based the sensors on the statistical con-
cept of oligonucleotide positional distributions in
specific functional regions of DNA and modeled
these distributions as a set of position weight matri-
ces of the most significant oligonucleotides. We eval-
uated DPF version 1.2 on a sequence-set containing
146 human and human-viral DNA sequences. DPF
appears to be several times more accurate than the
best publicly available general promoter recognition
systems,3–5 including PromoterInspector.

Dragon Promoter Finder
Figure 1 shows DPF’s conceptual structure. The

overall model is a composite collection of individ-
ual models that possess identical structures. We
trained each individual model for a narrow speci-
ficity range. Users can request a specific accuracy
from the list provided to activate the corresponding
model. Data processing in each model is analogous.
A data window slides along the DNA sequence, each
time shifting one bp ahead (see the “Notation” side-
bar). The recognition system analyzes the data win-
dow’s content. First, the data passes through three
parallel sensors. Each sensor models a particular
functional region of a gene: promoter, coding-exon,
and intron. The system further processes these sen-
sors’ outputs and feeds them into an ANN, which
performs multisensor integration. We trained each
model to separate promoter from nonpromoter
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regions. We consider all scores that make the
ANN output greater than the selected thresh-
old to be positive predictions in the promoter
region.

We derived models of a gene’s functional
regions as positional distributions of over-
lapping pentamers (all sequences of five con-
secutive nucleotides) in a region. We used
only those pentamers that most significantly
contribute to the separation between the pro-
moter and nonpromoter regions. We deter-
mined the pentamers’ significance using
their statistical relevance. For each of the
1,024 possible pentamers pj, we calculated
the relevance function as J = (µp – µn)/( τp +
τn + 1), where µp was the percentage of pro-
moters in which pj appeared and µn was the
percentage of nonpromoters where pj

appeared. The numbers τp and τn represent
pj’s average number of occurrences in
sequences in which pj appears in promoters
and nonpromoters, respectively. We ranked
pentamers according to the relevance func-
tion value and selected the highest 256 for
inclusion in the model. Selected pentamers’
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A DNA molecule is composed of two complementary strands
consisting of four bases: adenine, cytosine, guanine, and
thymine (A, C, G, and T). Genes are functional segments of
DNA, encoding mainly protein products in a cell. Different
genes get activated under different specific physiological condi-
tions. Transcription is the first step in protein production, in
which an enzyme RNA polymerase must bind to a gene’s pro-
moter region to initiate its transcription. We focus on genes
transcribed by RNA polymerase II. This class of eukaryotic genes
contains all genes known to code for proteins. Polymerase II
cannot directly bind to the promoter region; it requires
numerous other proteins (called general transcription factors,
or TFs) to first bind at transcription factor binding sites (TFBSs).
The TFs together with RNA polymerase II form a transcription
preinitiation complex, which starts the transcription process.
The transcription start site (TSS) is where transcription starts on
DNA. You can find more detailed introductions to the role of
promoters in transcriptional regulation elsewhere.1,2

One approach for promoter recognition attempts to recog-
nize different TFBSs. However, numerous problems exist with
this:

• You can associate a huge number of potential TFBSs with a
promoter, but only a handful play a regulatory role.

• TFBSs can appear in different combinations on different pro-
moters.

• The order of TFBSs in promoters varies.
• Relative distances of TFBSs in various promoters differ.

Eukaryotic promoter structures in larger promoter groups
do not share many common features, making promoter recog-

nition difficult with TFBS recognition. However, this approach
mimics the inherent biological regulatory mechanism of pro-
moter regions. You can find typical examples of systems that
use such techniques elsewhere.3,4

Another data-driven approach attempts to determine statis-
tical regularities of promoter and other functional sections of
DNA. This statistical approach does not pinpoint the TSS loca-
tion as precisely as the TFBS signal recognition approach. How-
ever, this approach allows for recognition of broader promoter
groups. PromoterInspector and Dragon Promoter Finder are
based on this approach. Additional approaches are discussed
elsewhere.2
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positional distributions were represented by
their positional weight matrices. We gener-
ated the PWMs from the training set for each
of the three functional groups, by counting
frequencies of all selected pentamers at each
position. The PWM of overlapping selected
pentamers has dimensions 256 x (L – 4) for
a data window of length L. The “very high”
specificity model used L = 250 nucleotides,
and all other models used L = 200 nucleo-
tides. This data window slid along the se-
quence one nucleotide at a time. We com-
pared the data window’s content to the
weight matrix to calculate the content’s rep-
resentational score:

A data window is considered as containing
the sequence W = n1n2 … nL–1nL, where nj ∈
{A, C, G, T} are nucleotides from the DNA
sequence. The corresponding sequence P of
successive overlapping pentamers pj ob-
tained from this data window W is P = p1p2

… pL–5pL–4. The following formula produces
the score for each data window:

,

where pi
j is the jth pentamer at position i, and

fi,j is the frequency of the jth pentamer at
position i. These scores take values between
0 and 1. We worked assuming that the higher

the score value, the more likely the data win-
dow represents the respective functional
region. We denoted the scores (signal values)
of the promoter, coding-exon, and intron sen-
sors as σp, σe, and σi. We used these scores as
inputs to the nonlinear signal processing
block. The inputs to the SPB entered the non-
linear block, producing three signals zE, zI,
and zEI that we defined as

zE = blin(σp – σe, ae, be, ce, de),
zI = blin(σp – σi, ai, bi, ci, di),
zEI = blin(σe – σi, aei, bei, cei, dei),

where the function blin was defined by

Parameters ak, bk, ck, dk, k = e, i, ei, are part
of the system’s tuning parameters. Then, we
normalized the signals zE, zI, and zEI by
whitening, producing three signals sE, sI, and
sEI as the SPB’s output. We fed these signals
as inputs to the ANN system. The threshold
that best separated promoters from nonpro-
moter sequences on the model’s tuning set
was used. We considered that all ANN out-
puts greater than the threshold indicate both
the promoter region’s presence in the data
window and the TSS at a position 50 bp
before the data window’s end. Each sub-
model’s ANN was a simple feed-forward net-
work combined with the nonlinear SPB. The
Bayesian regularization method trained the
ANNs for the best separation between
classes of input signals.

DPF training and testing
We compared the DPF with three general

promoter recognition programs (see the
“Compared Programs” sidebar). We selected
these because of their Web accessibility and
because they can analyze long sequences.
Promoter 2.04 and NNPP 2.1 (Neural Net-
work Promoter Prediction)5 use ANNs.
PromoterInspector (www.genomatix.de)
doesn’t use ANNs but was reported to sig-
nificantly outperform five other promoter
recognition systems.3 We thus felt it repre-
sented the most efficient stand-alone pro-
moter recognition system.

Training set
DPF was trained on a collection of pro-

moter and nonpromoter sequences. We

obtained the promoter sequences from the
Eukaryotic Promoter Database.6 We used
793 different vertebrate promoter sequences
of length 250 bp contained in EPD Release
65 and covering a region of 200 bp for very
high specificity models (150 bp for other
models) before and 50 bp after the TSS,
denoted by [−200, +50]. These 250-bp
sequences represent positive training data.
We also collected a set of nonoverlapping
human coding-exon and intron sequences,
250 bp each, from the Genebank Release
121.7 In total, we used 800 exon and 4,000
intron sequences.

Tuning set
To tune the adjustable system parame-

ters—such as the sensor signals’ bounds or
threshold levels for sensors and ANNs—we
extended the training set by 400 nonover-
lapping sequences from the so-called 3’
untranslated regions (3’UTR) of humans,
200 new nonoverlapping human coding-exon
sequences, and 500 new nonoverlapping
human intron sequences (each sequence was
250 bp long). Additionally, we added 20 gene
sequences of full sequence length with
known TSSs, where the TSSs were not over-
lapping with the EPD data. We used this
extended data set as the tuning set because

• We did not have enough diverse promoter
sequences to make two large, separate
sets—one for training and one for tuning

• Adding the 3’UTR sequences and new
exon and intron sequences extended the
negative data

• Adding 20 full-length gene sequences pro-
vided a more realistic operational envi-
ronment for the final tuned system

Tuning is aimed at minimizing the num-
ber of FPs for the preselected sensitivity lev-
els. We built different models, each tuned
separately for a preselected sensitivity. For
the higher specificity range (0.8 to 1), we
used a data window of 250 bp. For the lower
specificity ranges (0.2 to 0.7), we used a data
window of 200 bp because our previous
experiments showed that with this window
length we could achieve higher sensitivity
(0.66) than with the 250-bp data window. We
selected five different models for DPF’s pub-
lic version.

Test set A
We compiled evaluation set A from a larger

set of human and human-viral sequences that
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ANN: artificial neural network
bp: base pair
Mbp: one million bp
DNA: deoxyribonucleic acid
EPD: Eukaryotic Promoter 

Database
FP: false positive
PWM: position weight matrix
RNA: ribonucleic acid
SPB: signal processing block
TFBS: transcription factor binding

site
TP: true positive
TSS: transcription start site

Notation



other researchers compiled and used in vari-
ous gene recognition and promoter-finding
projects. We used these criteria for including
sequences in the evaluation set:

• The sequence should be from a relatively
large collection of human sequences (not
fewer than 20) used previously either to
evaluate promoter recognition systems or
to train and evaluate gene recognition sys-
tems. This reduces possible bias in
sequence selection, preserves the diversity
of the promoter regions used, and ensures
a more representative evaluation set. Gen-
eral gene recognition programs are trained
to recognize broad classes of genes. So,
they are trained on diverse sets of gene
sequences that are excellent candidates for
evaluating promoter recognition systems.
We included sequences used to train the
gene-finding and analysis programs
Genie,8 Genescan, and NetGene and
sequences used to test, among other

things, a promoter recognition program.9

The sequences used for training Genie
constituted most of our evaluation set.

• No sequence in the evaluation set can have
any part used for either training or tuning
our system. This condition eliminated all
sequences in the EPD’s current release and
other sequences whose exon, intron, or
3’UTR parts were used for DPF’s training
or tuning.

• The sequences should have a sufficiently
detailed and complete annotation of the
gene’s 5’ flanking region, enabling iden-
tification of the TSS location and, there-
fore, promoter location.

• Finally, we checked the sequences that sat-
isfied the above three criteria against the
literature and GenBank annotation. We
excluded those with ambiguous or con-
flicting annotation regarding the gene start
and possible promoter location.

The final evaluation set contained 159 TSSs,

146 human and human-viral sequences, and
a cumulative length of more than 1.1 Mbp.
Table 1 summarizes the set’s contents.

Test set B
We also evaluated DPF performance on

test set B,3 first introduced to assess the per-
formance of PromoterInspector and several
other promoter recognition programs. This
set contains six sequences with 35 TSSs and
has a length of approximately 1.38 Mbp. This
set’s analysis indicates biases, so you should
interpret the results with caution.

First, 26 of 35 (74 percent) promoters in
this set are CpG island-related. CpG islands
are unmethylated DNA segments longer than
200 bp, have at least 50 percent C+G con-
tent, and have at least 60 percent the number
of CpG dinucleotides that you might expect
from the segment’s C+G content; CpG
islands are found around TSSs in approxi-
mately one-half of the vertebrate promoters.2

Second, only five promoters have the rel-
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Table 1. The composition of evaluation set A.

Sets Number of sequences Number of TSSs Total length (bp)

Subset from Niels Mache and colleagues10 29 29 175,436

Subset of the Genie training set9 97 98 873,563

Subset from other gene recognition programs 20 32 103,909
(see http://sdmc.lit.org.sg/promoter/promoter1_2/DPFV12.htm) 

The whole evaluation set 146 159 1,152,908

PromoterInspector is a region-predicting general promoter
recognition program. It uses models of four functional regions
of genes: promoter, exon, intron, and 3’UTR. It derives models
as generalized IUPAC (International Union of Pure and Applied
Chemistry) groups of region characteristic oligomers1 obtained
from 100-bp sequence segments (see the “Notation” sidebar).
For promoter modeling, Matthias Scherf and his colleagues
derived these segments from the EPD data, using regions of
[–500, +50] relative to the TSS. For nonpromoter models, they
derived 100-bp segments from sequences collected randomly
from the GenBank database (totaling 1 Mbp for each nonpro-
moter group).1 The system uses a data window of 100 bp that
slides along the DNA strand, shifting 4 bp ahead each time.
The four region sensors compete, and the promoter sensor sig-
nal must be stronger than the other three sensors’ signals. Pro-
moterInspector predicts a promoter on the occurrence of a
minimum of 24 successive positive predictions. 

Promoter 2.0 is based on ANNs and trained to recognize
four specific signals most commonly present in eukaryotic pro-
moters—TATA box, initiator (Inr), GC-box, and CCAAT-box—as

well as their mutual distances. However, DPF makes 27 times
fewer FP recognitions than this system with the same level of
TP recognition. 

NNPP 2.1 is based on the recognition of two specific signals
within the promoter region—the TATA box and the initiator—as
well as their mutual distances. This system uses three time-delay
ANNs, one for recognition of the TATA box, one for the Inr, and
one that combines the outputs of the two and accounts for the
spatial distance between these signals. NNPP 2.1 has been
trained on promoter data from the EPD and nonpromoter data
from the Genie training set. Although set A contains a signifi-
cant portion of sequences from Genie training set, DPF outper-
forms NNPP 2.1 by roughly 3 to 5.3 times in accuracy. 
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atively common TATA box element in the
correct promoter context. So, promoter pre-
diction programs such as Promoter 2.0,
NNPP 2.1, TSSG, and TSSW,3 in which a
TATA box sensor forms a component of their
recognition systems, perform poorly on set
B. This also partly explains the poor perfor-
mance of several other programs on set B and
shows that set B might not be a good choice
for the assessment of promoter prediction
programs. Table 2 summarizes the charac-
teristics of sets A and B.

Human chromosome 22
Finally, we evaluated DPF’s performance

on Release 2.3 of the human chromosome 22
and annotation data produced by the Chro-
mosome 22 Gene Annotation Group at the
Sanger Institute (www.sanger.ac.uk/HGP/
Chr22). Chromosome 22 has a much higher
C+G content than most other human chro-
mosomes. Approximately 65 percent of the
339 annotated known genes are CpG island-
related.

Results
We illustrate our system’s performance

against other promoter-prediction programs
in the following sections.

Set A
The first of the four criteria used in creat-

ing set A, as we discussed earlier, helped min-

imize the unintentional bias in the dataset’s
composition. Moreover,Anders Pedersen and
his colleagues estimate that about one-half of
all vertebrate promoters are CpG island-
related;2 also, approximately 70 percent of
promoters have a TATA box element. Set A’s
composition roughly resembles these esti-
mates. Table 3 summarizes the evaluation
results on set A for the compared programs.

Set A hits criteria
We adopted the criterion for assigning cor-

rect or incorrect prediction from James Fick-
ett and Artemis Hatzigeorgiou’s work.10 We
considered the predicted TSS correct if it fell
within 200 nucleotides upstream or 100
nucleotides downstream of the real (experi-
mentally determined) TSS. We used this cri-
terion for assessing programs that predict
TSSs as “pinpointed” locations, such as DPF,
Promoter 2.0, and NNPP 2.1. NNPP 2.1
gives the region around the predicted TSS
location in the range [−40, +10], so that you
can take the TSS location as 40 bp down-
stream of the region’s predicted 5’boundary.

For PromoterInspector, which predicts the
promoter as a region, we considered the pre-
diction correct if the region contained a real
TSS. Otherwise, we considered the prediction
false. We based this on the generally accepted
concept that a promoter must contain a TSS.
Moreover, the average length of the promoter
regions predicted by PromoterInspector is 420

bp on set A. So, the prediction range consid-
ered by PromoterInspector as a TP guess is
approximately 40 percent greater than the 300
bp (200 bp upstream and 100 bp downstream
of the real TSS) boundary criterion afforded to
all other prediction programs studied here,
including DPF.

The DNA molecule exists in vivo as a dou-
ble-stranded molecule, and a gene can be
found on either the so-called positive or neg-
ative strand. Predictions of NNPP 2.1, Pro-
moter 2.0, and DPF are strand-specific, so they
can identify the gene’s start on the respective
strand. PromoterInspector identifies only the
promoter’s general location on the genomic
sequence, disregarding the strand orientation.
In PromoterInspector,3 TPs are counted as cor-
rect irrespective of the strand on which a real
TSS is found, which is different from the way
we counted it. You should really consider each
prediction that PromoterInspector makes as
two predictions (one for each strand) to assess
the prediction program’s performance. For the
same sensitivity, DPF produced three to 26
times less FP predictions than the compared
programs (see Table 3). 

Set B
Table 2 reflects set B’s compositional fea-

tures, which poorly resemble the general
characteristics of vertebrate promoters. How-
ever, you can use it to assess the prediction
ability of promoters that are CpG island-
related and have no TATA box elements.
Because of these limitations, we can’t draw
conclusions about any program’s ability to
find general promoters based on the results
obtained on this set. Tables 4a and 4b sum-
marize the achieved results. The evaluation
results on set B indicate that DPF generalizes
well because its prediction accuracy is con-
sistent with those on other evaluation sets.

Set B hits criteria
To compare PromoterInspector and DPF,

we considered a DPF prediction as correct if
a predicted TSS fell within an interval of 500
bp (average length of the promoter region pre-
dicted by PromoterInspector on set B), with
all other conditions the same as those used for
PromoterInspector.3 The number of FP pre-
dictions on set B made by PromoterInspector
is 54 by our criteria because strand-nonspe-
cific predictions were counted twice (once for
each DNA strand). The different criteria
Matthias Scherf and his colleagues used for
PromoterInspector and for TSS-finding pro-
grams3 prevent direct comparison of the
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Table 3. Results on evaluation set A with matched sensitivity levels.  The results for
NNPP 2.1 are given for two thresholds.*

Program Se #TP #FP #FP/#FPdpf 

DPF 0.22 35 35

PromoterInspector 0.22 35 117 3.36

DPF 0.25 41 64

Promoter 2.0 0.25 41 1,764 27.56

DPF 0.28 45 78

NNPP 2.1 (th = 0.99) 0.28 45 415 5.32

DPF 0.66 106 994

NNPP 2.1 (th = 0.8) 0.66 106 3,070 3.08 

* Se is the sensitivity; #TP is the number of correct predictions; #FP is the number of false pos
itive predictions. #FPdpf is the number of false positive predictions made by DPF. #FP/#FPdpf
shows the fold reduction of DPF false positive predictions compared with other programs.

Table 2. Promoter characteristics in set A and set B.

Promoter Test Sets Set A Set B

CpG island-related promoters 90 (56.6%) 26 (74.3%)

TATA box in correct context 106 (66.7%) 5 (14.3%)



reported results3 of NNPP 2.1 and Promoter
2.0 (used in Tables 4a and 4b). However, we
present them for the sake of completeness. 

Human chromosome 22
To show the performance of DPF on larger

genomic contigs, we also tested its behavior
on human chromosome 22.

Chromosome 22 hits criteria
For PromoterInspector, TP predictions

were determined according to criteria
detailed elsewhere,1 and FP predictions were
those that fell along the length of a known
gene but were not counted as TP predictions.
For DPF, we counted the predicted TSS posi-
tion as correct if it fell within a length inter-
val equal to the average length of the pro-
moter region predicted by PromoterInspector
on human chromosome 22 (555 bp), with all
other conditions the same as those used for
PromoterInspector.1 This makes the criteria
for comparison between the two programs
equivalent. Table 5 compares the perfor-
mances on set A and human chromosome 22.

CpG island-related promoters and
DPF’s performance

DPF recognizes well CpG island-related
(CpG+) and nonrelated (CpG–) promoters.
#CpG+ denotes the number of TPs that rec-
ognize CpG+ promoters, and #CpG– denotes
the number of TPs that recognize CpG– pro-
moters. The ratio of #CpG– to #CpG+ pro-
moters in set A is 0.7667. Table 6 summa-
rizes the results of DPF for set A, relative to
CpG island-related promoters.

DPF is a general TSS-finding program,
not specialized to particular vertebrate

promoter groups. It can successfully recog-

nize both CpG island-related and CpG island-
nonrelated promoters. Its performance on sev-
eral large sets (A, B, and human chromosome
22) is reasonably consistent even though these
sets have a different composition of promoter
types, and it outperforms other TSS-finding
programs. It achieves sensitivities of over 77
percent on set B, but on average, its expected
maximum sensitivity is approximately 66 per-
cent. In general, the DPF produces many times
fewer FP predictions than comparative sys-
tems at the same sensitivity level. Approxi-
mately 30 percent of TP predictions are within
several bp of the real TSS, another 30 percent
are 20 to 50 bp upstream of the real TSS, 30
percent are within 50 to 150 bp shifted
upstream of the real TSS, and 10 percent are
downstream (data not shown). 

PromoterInspector is a program with a
considerably improved #TP/#FP ratio com-
pared to several other promoter recognition
programs.3 Although PromoterInspector is a
general promoter finding program, its per-
formance varies on the different test sets. It
achieves a sensitivity of approximately 0.46
on set B. 56.6 percent of promoters in set A
are CpG island-related. PromoterInspector
predicts 39 percent of CpG island-related
promoters in set A: This represents 22 per-
cent of all promoters in set A, which, coinci-
dently, is PromoterInspector’s sensitivity on
set A. The performance of each promoter pre-
diction program (DPF, PromoterInspector,
and so on) will vary to some extent on dif-
ferent test sets depending on these sets’com-
positional characteristics.
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Table 6. DPF predictions of CpG island-related (CpG+) and nonrelated (CpG–) promoters
from set A. The last row indicates the ratio of recognized CpG-nonrelated to 

CpG-related promoters.

Sensitivity 66 % 50 % 40 % 30 % 22 %

#CpG+ 67 47 33 24 19

#CpG– 39 32 31 25 16

Total TP 106 79 64 48 35

#CpG–/ #CpG+ 0.5821 0.6809 0.9391 1.0417 0.8421

Table 4. Results on set B: (a) NNPP 2.1, Promoter 2.0, and PromoterInspector results and (b) DPF results. #TP is the number of correct
predictions; #FP is the number of false positive predictions.

Set B performance NNPP 2.1 Promoter 2.0 PromoterInspector

#TP 23 8 16

#FP 3,533 1,751 54

(a)

Set B performance DPF Se = 0.22 DPF Se = 0.30 DPF Se = 0.37 DPF Se = 0.40 DPF Se = 0.50 DPF Se = 0.66

#TP 8 9 16 19 20 27

#FP 22 53 79 144 227 543

(b)

Table 5. The performance Comparison on set A and human chromosome 22. #TP is the
number of correct predictions; #FP is the number of false positive predictions.

Program Scores set A Human chromosome 22 (known genes)

DPF, Se = 0.22 TP (%) 22 20.06
#FP/#TP 1 0.75

DPF, Se = 0.3 TP (%) 30 30.67
#FP/#TP 2.06 2.798

DPF, Se = 0.4 TP (%) 40 60.177
#FP/#TP 3.64 3.5637

PromoterInspector TP (%) 22 45
#FP/#TP 3.3439 1.975



On set A, DPF makes 3.34 times fewer FP
predictions than PromoterInspector while mak-
ing the same number of TPs. Furthermore, the
consistency of DPF’s performance on all data
sets used here demonstrates that the model we
used provides reliable identification of a wider
promoter group and does not favor a specific
promoter type (such as CpG island-related pro-
moters). PromoterInspector’s performance sup-
ports our observation that it predicts different
classes of promoters, although it favors CpG
island-related ones. Theoretically, owing to

nonstrand-specific predictions, PromoterIn-
spector cannot achieve a positive predictive
value greater than 0.5, because it produces one
FP prediction for each TP prediction. Further-
more, PromoterInspector cannot pinpoint the
TSS but only indicates a region that might over-
lap or be in proximity with the promoter region.

You can use DPF’s algorithm for promoter
search in large contigs of anonymous DNA to
make gene hunting easier because, in the
search for general vertebrate promoters, it pro-
duces fewer FPs compared to other systems.
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