
article

412 nature genetics • volume 29 • december 2001

Computational identification of promoters
and first exons in the human genome
Ramana V. Davuluri1,2, Ivo Grosse1 & Michael Q. Zhang1

Published online: 26 November 2001, DOI: 10.1038/ng780

The identification of promoters and first exons has been one of the most difficult problems in gene-finding. We

present a set of discriminant functions that can recognize structural and compositional features such as CpG

islands, promoter regions and first splice-donor sites. We explain the implementation of the discriminant func-

tions into a decision tree that constitutes a new program called FirstEF. By using different models to predict CpG-

related and non-CpG-related first exons, we showed by cross-validation that the program could predict 86% of

the first exons with 17% false positives. We also demonstrated the prediction accuracy of FirstEF at the genome

level by applying it to the finished sequences of human chromosomes 21 and 22 as well as by comparing the pre-

dictions with the locations of the experimentally verified first exons. Finally, we present the analysis of the pre-

dicted first exons for all of the 24 chromosomes of the human genome.
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Introduction
The publication and preliminary analysis of the human genome
sequence1,2 marks a significant milestone in the field of biology.
One of the main goals of the Human Genome Project is to provide
a complete list of annotated genes to serve as a ‘periodic table’ for
biomedical research3. The National Center for Biotechnology
Information (NCBI), Ensembl and Golden Path have provided the
initial annotations, but the process of annotation is expected to go
on for many years. Most of the current gene annotations refer to
protein-coding regions and do not provide much information
about the noncoding and regulatory regions of genes. Although
programs for delineating the internal coding exons of a gene
(including Genscan4, FGENES5 and MZEF6) have reached a high
degree of sophistication and accuracy, with a sensitivity and speci-
ficity higher than 90% at the nucleotide level7, finding first
exons—particularly noncoding exons—and promoters still
remains a challenge, except where the true full-length mRNA
sequences are available8,9. Unfortunately, most of the available
mRNA sequences are incomplete at their 5′ ends and do not pro-
vide information about the first exons and promoter regions.

Traditional gene-finding programs treat the translation start
site as the 5′ boundary of a gene, and there are currently no com-
putational tools to predict the noncoding first exons or noncod-
ing portion of a first exon. Based on our current first-exon data,
approximately 40% of the human genes have completely non-
coding first exons. For most of these genes, the promoter region
occurs well upstream of the translation start codon (ATG)
because the first intron tends to be longer than average10. More-
over, if the start codon occurs very close to the splice-donor site,
the coding portion may be too small to be identified by currently
available gene-finding programs. In these cases, we have no way
of knowing where the promoter is located or where the 5′ end of
the gene is likely to reside without experimental data such as full-

length 5′ UTR sequences. Existing computational tools that pre-
dict DNA polymerase II promoters, such as PromoterInspec-
tor11, are far from satisfactory, typically averaging one false
positive per several thousand base pairs, with a sensitivity of
approximately 50%. To fill this gap, we have developed a new
program, FirstEF, dedicated to the task of identifying promoter
regions and first exons in the human genome, which may also be
useful for the annotation of other mammalian genomes.

Results
First-exon database
An important requirement for building a classification model
using statistical pattern recognition methods is a high-quality
dataset for training the model. Because there were not many
GenBank records with experimentally verified first-exon annota-
tions, we had to adopt an indirect approach to build a first-exon
database. We created a collection of first exons and promoters of
2,139 known genes by mapping full-length 5′′ UTRs1212 to their
genomic sequences. Each of the first-exon sequences is flanked by
a 5′′ region (proximal promoter) 500 bp in length and a 3′′ region
(largely introns) 500 bp in length. Of these first-exon sequences,
1,315 (61%) were partially coding, the remaining 824 (39%)
being completely noncoding. The mean length of partially cod-
ing first exons is 348 bp, whereas that of completely noncoding
first exons is 151 bp.

First exons and CpG islands
Stretches of DNA sequences greater than 200 bp in length with a
high G+C content and a frequency of CpG dinucleotides close to
the expected value based on the mononucleotide frequencies are
known as CpG islands1313. As many human promoters are located
near CpG islands1414, we classified these sequences as CpG-related
and non-CpG-related based on a CpG score defined as follows:

©
20

01
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/g

en
et

ic
s.

n
at

u
re

.c
o

m
© 2001 Nature Publishing Group  http://genetics.nature.com



article

nature genetics • volume 29 • december 2001 413

we used a sliding window 201 bp in length and
calculated the CpG dinucleotide percentage for
each window, defining the maximum of these
CpG percentages as the CpG score and the cor-
responding window as the CpG window.

The CpG score has a bimodal distribution
(Fig. 1) that divides the set of first exons into CpG-related (with a
mode of 14, a mean (µ1) of 13.5 and a standard deviation (σ1) of
3.4) and non-CpG-related (with a mode of 3, a mean (µ2) of 3.1
and a standard deviation (σ2) of 1.7). By assuming a bimodal
normal distribution and an overlap of 10%, 5% from each group,
we selected 6.5 as a cutoff value because it satisfied the condition
µ1+2σ1<6.5< µ2–2σ2. We classified those sequences with a CpG
score of 6.5 or more as CpG-related and those sequences with a
CpG score of less than 6.5 as non-CpG-related; approximately
70% of the first exons in the first-exon database were therefore
CpG-related.

For the CpG-related first exons, the histogram of the relative dis-
tance between the 5′′ end of the CpG windows and the splice-donor
site (Fig. 2) is unimodal with a mean of approximately 0.5 kb and a
standard deviation of approximately 0.3 kb. The CpG window
overlapped with the first exon of 76.3% of the genes in the first-
exon database. If we extended the first exon by 200 bp at the 5′′ end,
the CpG window overlapped with the extended region ranging
from –200 bp upstream of the transcription start site (TSS) to the
splice-donor site of 93.8% of the genes in the first-exon database.
This indicates that, in general, the CpG window overlaps with
either the first exon or the proximal promoter region, even though

the CpG island, typically 0.5 to 2 kb in length, may extend well
upstream and/or downstream of the first exon.

First-exon finder
We developed the program FirstEF to predict the first exons and
promoter regions in the human genome. FirstEF consists of dif-
ferent discriminant functions structured as a decision tree. The
probabilistic models are designed to find potential first splice-
donor sites and CpG-related and non-CpG-related promoter
regions based on discriminant analysis. For every potential first
splice-donor site and upstream promoter region, FirstEF decides
whether the intermediate region could be a potential first exon
based on a set of quadratic discriminant functions. For training
and testing the different discriminant functions, we used the first
exons and promoter regions from the first-exon database.

We tested the accuracy of FirstEF in two ways. First, we per-
formed a systematic cross-validation analysis, using the data in the
first-exon database; second, we ran the program on the complete
sequences of human chromosomes 21 and 22 (refs. 15,16). For the
cross-validation analysis, we trained the algorithm on 90% of the
randomly selected data and tested it on the remaining 10%. We
then estimated the sensitivity, specificity and correlation coefficient

(Table 1) by repeating this process ten
times. We counted predicted first exons
as true positives if the predicted first
splice-donor sites were identical to the
real first splice-donor sites and the pre-
dicted TSSs fell within the region
between –500 and +200 around the real
TSS. Pseudo-exons (see Methods) pre-
dicted as first exons were counted as false

Fig. 2 Histogram of the relative distance between
the 5′ end of the CpG window and the splice-
donor site for CpG-related first exons. A negative
value for the relative distance (plotted along the
abscissa) indicates that the 5′ end of the CpG win-
dow lies upstream of the splice-donor site,
whereas a positive value indicates that it lies
downstream of the splice-donor site. We found
that 76.3% of the first exons overlapped with the
CpG window, and that for 93.8% of the first
exons, the CpG window overlapped with the
region ranging from –200 kb of the transcription
start site to the splice-donor site.

Fig. 1 Histogram of CpG scores for all of the 2,139 first exons
of our first-exon database. We move a sliding window 201
bp in length along the first exon region, ranging from –500
bp upstream of the transcription start site to +500 bp down-
stream of the first splice-donor site. For each position of the
sliding window, we compute the CpG dinucleotide percent-
age and define the maximum of all of the percentages as
the CpG score. The CpG score has a bimodal distribution, the
left mode at 3 and the right at 13 being separated by a val-
ley at approximately 6.5. This bimodal distribution suggests
that the set of first exons may stem from two distinct classes,
which we denote as CpG-related and non-CpG-related. On
average, CpG-related first exons have a CpG score of 13.5,
whereas that of non-CpG-related first exons is 3.1. If the col-
lection of first exons from the first-exon database were rep-
resentative of the entire human genome, we could
extrapolate that approximately 70% of the first exons in the
human genome might be CpG-related.
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positives, missed first exons
were counted as false negatives
and missed pseudo-exons were
counted as true negatives. We
found that FirstEF predicted
92% of the CpG-related first
exons with 4% false positives
and 74% of the non-CpG-
related first exons with 40% false
positives. Overall, FirstEF pre-
dicted 86% of all of the first
exons with 17% false positives.

To study the performance of
FirstEF on the genome scale, we
ran it on human chromosomes
21 and 22 and compared the predictions with the experimentally
verified first exons. We first performed extensive searches of Gen-
Bank and collected all full-length mRNAs and promoter sequences
of the genes on chromosomes 21 and 22. Next, we downloaded the
assembled sequences (both the original and the repeat-masked
sequences from the 12 December 2000 dataset) of chromosomes 21
and 22 from the UCSC genome server (http://genome.ucsc.edu).
We define ‘repeat-masked sequences’ as those in which known fam-
ilies of repeats were masked by the computer program Repeat-
Masker (http://ftp.genome.washington.edu). We aligned the
mRNA sequences to the chromosomes by using the local alignment
program BLAT (http://genome.ucsc.edu/). We identified 121 first
exons and promoter regions on both chromosomes (42 on chro-
mosome 21 and 79 on chromosome 22). FirstEF predicted 106
(88%) of these first exons (37 on chromosome 21 and 69 on chro-
mosome 22); (Web Tables A and B). The novel feature of FirstEF is
its ability to identify completely noncoding first exons, some of
which occur well upstream of the annotated translation start
codon. Of the 121 experimentally verified first exons, 42 were com-
pletely noncoding; FirstEF predicting 33 (79%) of these.

Because FirstEF also predicts a proximal promoter 570 bp in
length (see Methods) as the 5′′ boundary of the first exon, we
compared the promoter-prediction accuracy of FirstEF with that
of PromoterInspector, the best currently available promoter
recognition program11. As PromoterInspector is a commercial
software package and its use is restricted, we could analyze only a
set of 58 randomly selected genomic sequences. Each genomic
sequence consisted of an experimentally verified first exon
flanked by sequences of 20 kb at both ends. Using the same crite-
ria as Scherf et al.11, we counted a predicted promoter region as
true positive if the transcription start site was located within or
up to 200 bp downstream of the predicted promoter region; oth-
erwise, we considered the promoter region to be a false positive.
PromoterInspector predicted the location of promoters with
48% sensitivity and 43% specificity (Table 2), which is consistent
with the published results11. Using the same criteria, the sensitiv-
ity and specificity of FirstEF were 79% and 54%, respectively.

Annotation of first exons on human chromosomes 21
and 22
Although extensive gene annotations are available from the EBI
and UCSC human genome servers, most annotations do not
contain information about
noncoding exons and regula-
tory regions. To demonstrate
the efficacy of FirstEF in find-
ing first exons and to provide
the annotation of potential
first exons and promoters, we
used the finished sequences of

chromosomes 21 and 22. We downloaded release 2.3 (6 March
2001) of the annotated gene transcripts from the Sanger Center
Chromosome 22 web server (http://www.sanger.ac.uk/HGP/
Chr22) and Chromosome 21 Sequencing Consortium
(http://eri.uchsc.edu/chromosome21). We aligned these tran-
scripts to their respective chromosomes using BLAT and identi-
fied the coding regions of the genes.

We scanned a 15-kb region upstream of each gene and local-
ized putative first exons and promoter regions using FirstEF pre-
dictions. FirstEF reports all those first exons with a donor
probability of 0.4 or greater, a promoter probability of 0.4 or
greater and a first-exon probability of 0.5 or greater (see Meth-
ods). We post-processed the output of FirstEF by selecting the
first exon that had the maximum a posteriori probabilities of
exon, donor and promoter in that order. For chromosome 21,
FirstEF predicted first exons for 141 of 218 known genes, 3 of 5
pseudogenes and 36 of 46 predicted genes (Table 3). For chromo-
some 22, FirstEF predicted 322 of the 341 known mRNA genes,
103 of the 152 pseudogenes, 88 out of 112 related genes, 88 out of
109 predicted genes and 18 out of 118 gene segments (Table 3).
FirstEF missed more first exons on chromosome 21 than on
chromosome 22, which may be because there are fewer CpG-
related first exons on chromosome 21 than on chromosome 22.
The relative locations of promoters from the annotated transla-
tion start codon are shown in Fig. 3.

Annotations of first exons in the human genome
We ran FirstEF on the assembled sequences (1 April 2001 Gen-
Bank freeze) of each of the 24 chromosomes that we downloaded
from the UCSC Human Genome Project working draft
(http://genome.ucsc.edu). FirstEF can predict alternative first
exons and ranks them based on a posteriori probabilities; if two
consecutive predictions are separated by fewer than 1,000
nucleotides, FirstEF treats them as one cluster of alternative first
exons that belong to the same gene. FirstEF predicted 68,645
first-exon clusters in the human genome (32,786 on the Watson
strand and 35,859 on the Crick strand), of which 39,643 were
CpG-related and the remaining 29,002 non-CpG-related. The
chromosomal positions of the predictions of first exons, promot-
ers and associated CpG windows are available at http://www.
cshl.org/mzhanglab.

Table 1 • Accuracy of FirstEF based on cross-validation

Exon type Sn
a Sp

b CCc

CpG-related 0.92 0.97 0.94
not CpG-related 0.74 0.60 0.65
all exons 0.86 0.83 0.83

aSn (sensitivity) = TP/(TP+FN), bSp (specificity) = TP/(TP+FP),

where TP, TN, FP and FN denote number of true positives, true negatives, false positives and false negatives, respec-
tively. We find that the accuracy of FirstEF is significantly higher for CpG-related than non-CpG-related genes.

TP×TN – FP×FN

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
CC (correlation coefficient) =c

Table 2 • Promoter prediction accuracy of PromoterInspector and FirstEF

Program True positives False positives Sensitivity (%) Specificity (%)

PromoterInspector 28 37 48.3 43.1
FirstEF 46 40 79.3 53.5

Comparison of the promoter prediction accuracy of PromoterInspector and FirstEF on 58 randomly chosen first exons
with experimentally verified TSS. Approximately 70% of those 58 first exons are non-CpG-related.
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Discussion
The human genome contains a vast number of cis-regulatory
elements responsible for directing the spatial and temporal
patterns of gene expression in response to metabolic require-
ments, developmental programs and external stimuli17. The
localization of these regulatory regions is important for under-
standing large-scale gene expression data, such as those from
microarray experiments. Moreover, precisely identifying the 5 ′′
boundaries and noncoding exons of genes in higher eukaryotic
genomes has been a challenge of bioinformatics for years18.
Lack of high-quality data has delayed the development of com-
putational tools to predict first exons, especially noncoding
exons. The Eukaryotic Promoter Database19 (http://www.
epd.isb-sib.ch), which holds information on previously char-
acterized promoter sequences, contains only 273 human pro-
moters. The large collection of high-quality data for this study
enabled us to classify the set of first exons into CpG-related
and non-CpG-related first exons. We used this classification to
build a combination of multiple discriminant models for
FirstEF. Recent research results in statistical pattern recogni-
tion20 demonstrate the effectiveness of combining multiple
models of the same or different types for improving the accu-
racy of predictive modeling.

Owing to the phenomenon of CpG
suppression in mammalian genomes,
CpG dinucleotides account for only
about 1% of the human genome. There
are approximately 50,000 CpG islands
in the human genome and 29,000 in the
repeat-masked human genome, most of
which reside near the first exons of
genes. Earlier studies on CpG islands
used the definition of Gardiner-Garden
and Frommer13, which required the
G+C content to be greater than 50%.
Motivated by the fact that GC-poor
genomes maintain unmethylated CpG
islands21,22, we considered only the
CpG dinucleotide percentage and did
not put any restriction on the G+C con-
tent in classifying CpG-related versus
non-CpG-related first exons. Notably,
all of the CpG-related first exons in the

first-exon database have GC-rich (G+C content greater than
50%) CpG windows, except the first exon of LOH11CR2A (Gen-
Bank accession number NM_014622), which is a putative
tumor-suppressor gene.

We considered a first exon to be a genomic region bordered by
a promoter region (5′ boundary) 570 bp in length and the first
splice-donor site (3′ boundary). We have developed a set of dis-
criminant functions that recognize CpG islands, promoter
regions and first splice-donor sites, which we implemented in
FirstEF. Important features of FirstEF include: (i) the capacity to
predict both partially coding and completely noncoding first
exons; (ii) the use of distinct models to capture differences in
CpG-related and non-CpG-related first exons; and (iii) the use of
a specific model for identifying first splice-donor sites that was
exclusively trained on first-exon data.

The accuracy of FirstEF in predicting CpG-related first exons
(70% of the first exons in the human genome) was very high, with a
specificity and sensitivity greater than 90%. The CpG score and the
location of the CpG window relative to the first splice-donor site
contributed to the more accurate prediction of CpG-related first
exons. The accuracy is lower for non-CpG-related first exons
because the statistical composition of these is similar to that of

Fig. 3 Histograms of the relative distance
between the 5′ end of the predicted first exon
(TSS) and the annotated translation start codon
(ATG) for human chromosome 21 (Fig. 3a) and
human chromosome 22 (Fig. 3b). Negative values
for the relative distance (plotted along the
abscissa) indicate that the predicted TSS lies
upstream of the annotated ATG, whereas posi-
tive values indicate that it lies downstream of
the annotated ATG. Although positive values for
the relative distance should in principle not
occur (as the TSS should always lie upstream of
the translation start codon ATG), there are three
reasons why this could happen: (i) there might
be alternative transcription or translation start
sites; (ii) the prediction of the location of the
promoter region and hence the TSS is not 100%
accurate and may be wrong; and (iii) the annota-
tion of TSSs is not 100% accurate and may be
wrong. We find that nearly 60% of promoters lie
within the first 1,000 bp upstream of the anno-
tated start codon, with 5% lying more than 10
kb upstream of the annotated start codon. The
two bars around 0 indicate the number of the
predicted promoter regions 570 bp in length
that overlap with the annotated first exon.
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introns and intergenic DNA. The accuracy of FirstEF was also
demonstrated by its correct prediction of the experimentally veri-
fied first exons on chromosomes 21 and 22 (Web Tables A and B).
In addition, we found that FirstEF could predict promoters with
greater accuracy than PromoterInspector.

We annotated first exons and promoter regions on chromosomes
21 and 22 using FirstEF and the coding-region annotations of the
public consortium. We initially ran FirstEF on repeat-masked
sequences to avoid false positives, but this method missed several
first exons near the repeat regions. We then ran FirstEF on the orig-
inal (that is, non–repeat masked) sequences and analyzed the out-
put of FirstEF in the 15-kb region upstream of the translation start
codon. This strategy worked better, and we annotated most of the
first exons and promoter regions of chromosomes 21 and 22. In
practice, we recommend using a combination of gene-finding pro-
grams, such as Genscan and MZEF, on repeat-masked sequences to
identify potential coding regions, and then applying FirstEF to
sequences in which repeats have not been masked to annotate the
first exons and proximal promoter regions. In the final step, the
application of core-promoter recognition programs, such as Core-
Promoter23, may further localize potential transcription start sites.

The output of FirstEF (available at http://www.cshl.org/
mzhanglab) on the working draft of the entire human genome
could possibly stimulate the experimental exploration of putative
false-positive results. There are approximately 4% false positives
in CpG-related and 40% false positives in non-CpG-related first
exons predicted by FirstEF. We would therefore expect approxi-
mately 1,586 CpG-related and approximately 11,601 non-CpG-
related false predictions out of the total of 68,645 predictions in
the human genome. These values might be small enough for
experimentalists to test all of the false positives for expression.

Methods
First-exon database. We previously extracted, classified and characterized
human full-length 5′ UTR sequences12. Here, we aligned mRNAs with full-
length 5′ UTRs to the genomic sequences with the local alignment pro-
gram BLAST. We retrieved the first exons and their flanking regions 500 bp
in length for each gene from their respective genomic sequences. We elimi-
nated redundant and ambiguous sequences, thereby obtaining a set of
2,139 first exons flanked by upstream regions 500 bp in length containing
all or part of the proximal promoters and downstream regions 500 bp in
length containing all or part of the first introns.

FirstEF algorithm. Two major obstacles to detecting the first exons and
promoter regions are the low signal-to-noise ratio and the heterogeneous
nature of the data. Hence, not all first exons can be considered as a single
class, and a general model to differentiate real first exons from pseudo first
exons will not work. We have thus built different classification models for
different classes of first exons and incorporated these models into a deci-
sion tree. The major steps involved in the algorithm are as follows:

Table 3 • Predicted first exons for chromosomes 21 and 22

Gene type* Number of annotated genes Number of predicted first exons Number of CpG-related first exons

Chromosome 21

mRNA genes 218 141 (65%) 126 (58%)
pseudogenes 5 3 (60%) 1 (20%)
predicted genes 46 36 (78%) 32 (70%)
total genes 269 180 (67%) 159 (59%)

Chromosome 22

mRNA genes 341 322 (94%) 299 (88%)
pseudogenes 152 103 (68%) 92 (61%)
related genes 112 88 (79%) 71 (64%)
predicted genes 109 88 (81%) 75 (69%)
gene segments 118 18 (15%) 4 (3%)
total genes 832 619 (74%) 541 (65%)
*Based on chromosome 21 and 22 sequencing consortium classifications.

FirstEF scans the input sequence for potential first splice-donor sites
(GT). During this step, the program computes, for every GT, the a posteri-
ori probability of the splice-donor site given GT, P(donor site|GT), by a
quadratic discriminant function (donor QDF), which was trained on the
splice-donor sites of the first-exon database. If P(donor|GT)≥0.4, FirstEF
considers this to be a candidate splice-donor site.

For every candidate splice-donor site, FirstEF scans a region 2,000 bp in
length (1,500 bp upstream and 500 bp downstream of GT) for the exis-
tence of a CpG window with a CpG score of 6.5 or greater. Depending on
the presence or absence of a CpG window, FirstEF decides during this step
whether the first exon is CpG-related or non-CpG-related.

FirstEF uses a sliding window 570 bp in length (considering the first 500
bp (positions –500 to –1) to be proximal promoter region upstream of TSS
and the following 70 bp (positions +1 to +70) to be downstream of TSS)
within the region 1,500 bp upstream of the candidate splice-donor site.
FirstEF decides whether the sliding window might or might not be a pro-
moter based on the a posteriori probability of being a promoter given the
window, P(promoter|window). This was evaluated using two different
quadratic discriminant functions (promoter QDF), one for CpG-related
and the other for non-CpG-related first exons.

If P(promoter|window) > 0.4, FirstEF matches the promoter region
with the corresponding splice-donor site and evaluates the a posteriori
probability of being an exon given the promoter and splice-donor site,
P(exon|all), by using four different quadratic discriminant functions (first-
exon QDFs). FirstEF reports all those exons with P(exon|all) > 0.5, along
with the promoter region and, if it exists, the CpG window.

For a binary decision problem, it is a normal convention to select 0.5 as
the a posteriori probability cutoff value, but we selected 0.4 as the cutoff
probability for the donor in step 1 and for the promoter in step 4 in order
not to miss marginal cases. The main purpose of these two steps is to filter
the candidate donors and promoters for the first-exon QDF in order to
speed up the computer program. Because the first-exon QDF considers all
the feature variables of the donor, promoter and exon, the arbitrary selec-
tion of the donor and promoter a posteriori probabilities does not signifi-
cantly affect the output of FirstEF.

Quadratic discriminant analysis. We performed the characterization of
splice-donor sites, promoter regions and first exons by quadratic discrimi-
nant analysis6,24. FirstEF uses three different QDFs (donor QDF, promoter
QDF and first-exon QDF) with different sets of variables. The QDF vari-
ables were obtained by experimenting with many scoring measures based
on hexamer, pentamer and trimer frequencies, the CpG and G+C percent-
age and the presence of palindrome structures.

Discriminant functions for splice-donor site recognition. We tried
many different scoring functions that incorporated various characteris-
tics of first splice-donor sites and used the best scoring functions that dis-
criminated first-exon splice-donor sites from pseudo-sites for building
the QDFs. We assumed the position of GT in a sequence to be +1, using
two different QDFs depending on whether the sequence window (1–200)
was GC-rich (G+C 52% or greater) or GC-poor (G+C less than 52%).
The donor QDFs use the following four variables: (D1) splice-donor site
conditional weight matrix score; (D2) hexamer score in the window
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(1–200); (D3) hexamer score in the window (–200 to –1) and (D4) trimer
score in the window (1–64). All the n-mer scores are weighted averages of
the n-mer frequencies, the weights being the log-likelihood ratios of the
n-mer frequencies of the first exons divided by the n-mer frequencies of
the pseudo-exons. Conditional weight matrices of splice-donor sites were
calculated based on a subclassification of splice-donor sites similar to the
maximal dependence method explained in Burge and Karlin4, using a
larger window (–5 to +8) than the usual one (–3 to +6); +1 indicated the
position of G in the splice-donor site GT and –1 indicated the position of
the nucleotide just before GT.

Discriminant functions for promoter recognition. We used two differ-
ent QDFs to discriminate a promoter region 570 bp in length from other
genomic regions, one for CpG-related and the other for non-CpG-relat-
ed first exons. The promoter QDFs use six variables: (P1) hexamer score
in window (1–250); (P2) hexamer score in window (200–450); (P3)
hexamer score in window (1–450); (P4) pentamer score in window
(420–500); (P5) pentamer score in window (490–570); (P6a) G+C per-
centage in window (1–570) and (P6b) CpG percentage in window
(1–570). Variables P1–P5 are common to both of the QDFs, whereas
variable P6b is used in the CpG-related promoter QDF and P6a in the
non-CpG-related promoter QDF.

Discriminant functions for first-exon recognition. Four different QDFs
are used to discriminate first exons from other genomic regions depending
on whether or not the first intron region is GC rich and on whether or not
the first exon region is CpG related. The CpG-related first exon QDF uses
12 variables: D1–D4, P1–P6, exon length and the relative distance of the
CpG window starting position from the splice-donor site. The non-CpG-
related first exon QDF uses 11 variables: D1–D4, P1–P6 and exon length.
We used the first exons and promoters of the first-exon database for train-
ing and testing the QDFs. The training set consists of 1,949 first exons and
31,485 pseudo-exons. A pseudo-exon is defined as any region flanked by a
GT dinucleotide at the 3′ end. All of the pseudo-exons were collected from
inside the gene regions (the genomic regions from ATG to the stop codon)
of those genes that were annotated from experimental evidence. First exons
and pseudo-exons were preclassified as (i) CpG-related and GC-rich
(1,178 real and 4,945 pseudo-exons), (ii) CpG-related and GC-poor (165
real and 1,402 pseudo-exons), (iii) non-CpG-related and GC-rich (219 real
and 16,294 pseudo-exons) and (iv) non-CpG-related and GC-poor (387
real and 18,844 pseudo-exons). The different QDFs were trained using the
classified data.

Availability of FirstEF. FirstEF can be obtained at http://www.
cshl.org/mzhanglab/.
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