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TRANSCRIPTIONAL REGULATION IS
mediated, in part, by alteration of the
promoter activity by proteins that bind
to sites on DNA. Importantly, the sites that
are recognized by any one DNA-binding
protein are in general not a unique se-
quence (as one sees for some restriction
enzymes). Rather, the sites of recognition
are a family of similar sequences, and,
naturally, non-specific binding sites (non-
sites) for the protein are the collection
of sequences that do not fall into the
protein’s family of recognition sequences.
Since the vast majority of the genome
comprises non-site DNA sequences, and
since site-specific DNA-binding proteins
still have a weak affinity for the non-site
DNA, the protein must display a much
higher binding affinity for its own site(s)
than for non-site DNA in order for the
regulatory system to work.

Within the cell, or nucleus for eukary-
otic systems, the concentration of DNA
is so high that the protein will be bound
to DNA, site or non-site, essentially all of
the time. It is the ability of the protein to
distinguish its proper binding site(s) from
the rest of the non-site DNA that is essen-
tial for the proper functioning of the regu-
latory system: this ability to distinguish
site from non-site is called specificity. (An
excellent presentation on general issues
of specificity can be found in a paper by
von Hippel1.) Specificity in itself does

to some user-defined reference value. One
typical reference is the K

eq
of the ‘pre-

ferred’ sequence: that is, the highest
value of K

eq
over all the X

i
. In this way, the

reference sequence has a specificity of 1
by definition and the specificity of all the
other sequences falls between 1 and 0,
with the non-sites being very close to 0.

We also normalize binding constants to
an average of the set of K

eq
over all the

X
i
, yielding ‘specific binding constants’,

K
S
.* This is useful because it presents

specificity values with respect to the bind-
ing behavior of the genome as a whole.
Using specific binding constants, pre-
ferred sequences (i.e. bona fide binding
sites) will have a very large value of
specificity, perhaps 106. Most sequences
(e.g. non-sites), however, will have values
less than 1 because the average is com-
posed with a vast excess of non-site
terms. In Escherichia coli, with a genome
of about 53106 bp, a protein with a speci-
ficity of 106 for a particular sequence
would be bound to that site only about
20% of the time. Still, it would only take
about 20 copies of the protein in the cell
to maintain occupancy of the site at
about 99% (Ref. 12).

Our definition of K
S

is very convenient
for a thermodynamic analysis of regu-
lation, because the probability that a
protein will be bound at a particular site
is equal to the K

S
for the site divided by

the partition function, Z, which is the
sum of the K

S
s for all possible sites in

the genome. Since K
S

is defined to have
an average value of 1 for all sites in the
genome, the partition function is just the
size of the genome, G. Thus, the probabil-
ity that a protein is bound to a particular
site, X

i
, when it has the possibility of bind-

ing anywhere in the genome, is just
K

S
(X

i
)/G. (Note that this is only the prob-

ability of a single protein binding at a site,
and that calculation of the probability
that the site is occupied also depends
on the number of proteins in the cell12.)
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not require, as one might have thought,
that the protein display a large absolute
affinity for its binding site(s), although
having such a property does make the
binding reaction easier to study in vitro.

Several DNA-binding motifs2–5 have
been studied in depth, in part using crys-
tal structures of protein–DNA complexes.
This work has been complemented by
experiments that measure the affinity of
a DNA–protein interaction as the equi-
librium constant of a binding reaction6–8.
Taken together, some general principles
that govern DNA–protein interactions
have emerged9–11. In particular, the search
for a ‘DNA recognition code’, which sets
out rules for amino acid–base pair inter-
actions, has shown that the code is 
not like the deterministic genetic code.
Rather, the rules that are emerging specify
preferences for base pair–amino acid 
interaction and it is these preferences
that govern specificity. In this paper, we
do not discuss the recognition code per
se, but we do present the notion of
specificity in terms of equilibrium bind-
ing constants and information content.

Quantitative specificity
The simplest model of a DNA–protein

binding reaction is given by the equation:
T1X

i
↔ T•X

i
. Here T is free protein, X

i

is any one particular site or non-site
DNA, and T•X

i
is bound complex. A con-

venient way to quantify the specificity of
such a protein is to normalize the bind-
ing constant:
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*‘All the Xi’ may be defined differently, depending
on one’s purpose. For example, it may be useful to
consider all of the possible binding sequences for a
protein, even those that do not occur in a particular
genome. If the protein recognizes sites that are L
bases long, there are 4L possible sequences. A typi-
cal prokaryotic regulatory protein binds to sites
about 20 bases long, so there are 420 < 1012 such
sequences, many more than the size of even the
largest genomes. Measuring specificity with respect
to all possible sequences provides a convenient
means of comparing the specificity of different pro-
teins from different systems because there is an
absolute scale of comparison. However, for under-
standing how a regulatory system works in vivo, it is
more appropriate for ‘all the Xi’ to refer to the collec-
tion of sequences that occur in the genome of the
organism. That is the approach taken in this paper.
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The K
S

for a site could be determined
directly by experimentally measuring the
relative affinity of the protein for the site
compared with the whole genome. But for
many purposes one would like to know
how the affinity of the protein varies for
different sequences – ideally, the affinity
for all possible sites in the genome. How-
ever, this is impractical even for proteins
that recognize relatively short sequences.
But it is feasible to measure the binding
affinity for a collection of sequences that
are all similar to the known binding site(s)
(e.g. mutants of the wild-type or consen-
sus sequence), and then to extrapolate
these data to all the other sequences that
were not measured directly. For this ex-
trapolation process to be of use, one as-
sumes that the positions in the binding
site contribute independently to the bind-
ing energy. This means, for example, that
the change in the binding energy of a
double mutant of the binding site is just
the sum of the changes from each of the
two respective single mutants of the same
site. Under this independence assump-
tion, a table of the K

S
values (or, equiva-

lently, DG
S

5 –RT ln K
S
) for all the single

mutants of a binding site allows one to
estimate the affinity for any site or non-
site sequence. This independence as-
sumption is not likely to be exactly true
in general; however, it seems to be a rea-
sonable approximation in many cases13–16.
One way to monitor the assumption’s
validity is to perform an experiment12,17

in which the protein is allowed to select
its own binding site(s) from a random-
ized pool of DNA using SELEX (Ref. 18;
Box 1). It can then be readily determined
from the recovered sequences whether
or not there are correlations in the fre-
quencies of bases at positions in the
sites. Under the independence assump-
tion there should be no correlations.

The most likely non-independent inter-
actions will be between adjacent pos-
itions in the binding site. These near-
neighbor effects may occur because the
amino acid side-chains and the base pairs,
perhaps involving water or other sol-
vent molecules, can bind in a ‘network’
of interactions such that the energy of
interaction with one base pair depends
on the neighboring base pairs. Alterna-
tively, the local structure of the DNA it-
self depends on the local sequence, and
this may influence the binding in a way
that is not additive. In cases where the
additivity of single positions is not valid,
extension of the approach to the di-
nucleotide or trinucleotide level may suf-
fice. While this increases the complexity
of the problem, it is still a great reduction
of work when compared with the exami-
nation of all possible sequences. If the
site recognized is L bases long, analysis
of all single base changes requires the
study of 3L 1 1 sites. Using adjacent di-
nucleotides increases that number to
15(L – 1) 1 1, which is still much smaller
than all possible sites, 4L.

Experimental measurements
In 1989 Sarai and co-workers published

two papers examining the change in affin-
ity for all possible single base changes
away from the consensus lambda oper-
ator, for both of the proteins that bind to
those operators, cro and repressor15,16.
They also showed that the affinities of
multiple mutants were reasonably well
predicted based on the assumption of
additivity. More recently, several proteins
have been studied by measurement of
the binding affinity to variants of the
binding site, and also by selection of pre-
ferred sites from random sequences (see,
for example, Refs 13, 14, 17, 29, 20). These
results provide additional information

about the specificity of the protein, and
can be used in conjunction with the 
X-ray structures of the DNA–protein
complexes to help understand the rules
of recognition.

One standard method of measuring
binding affinities uses a ‘gel shift’ experi-
ment. Recall that:

The ratio of bound [T•X
i
] to unbound

[X
i
] DNA can be determined from the gel

shift experiment, among other possible
approaches. The concentration of free
(and active) protein, [T], is usually not
known and is in fact somewhat difficult
to measure. Thus, typically, the ratio of
bound to unbound DNA is determined at
several different protein concentrations
and then curve-fitting is employed to give
a best estimate of K(X

i
). Multiple deter-

minations of the same constant indicate
that this approach can give values that are
accurate to within a factor of about 2.

Focusing on the binding of the homo-
tetrameric Mnt protein of Salmonella
phage P22 to variants of its symmetric
17-base operator19, we recently developed
a new way to study how changes in se-
quence affect binding affinity that is both
more rapid and more accurate than pre-
vious methods12,21 (a similar approach was
developed independently by Luo et al.20).
Our method permits the simultaneous
measurement of the relative binding con-
stants of multiple variants of the binding
site. Central to this method is the place-
ment of multiple potential sites in the
same binding reaction to force a compe-
tition between the different binding sites
for the same pool of protein. Suppose
then that we have two variants of a bind-
ing site, X

1
and X

2
, and that we wish to

know which is a better binder and by
how much. If both DNAs are in the same
test tube, hence competing for the same
pool of protein, we can write the relative
binding constant as:

Note that the free protein concentration
has canceled out and that the binding
reaction only needs to be performed once
under a protein concentration that is
chosen so that none of the relevant DNA
concentrations, both free and in com-
plexes, is zero (or undetectable). Further-
more, as shown in the equation, the rela-
tive binding constants (and trivially from

Box 1. SELEX

SELEX stands for the Systematic Evolution of Ligands by EXponential enrichment [see Gold, L.
(1995) J. Biol. Chem. 270, 13581–13584]. In this cyclic process, a starting group of DNA or
RNA sequences is made with a variable region in the center, surrounded by constant regions
used for amplification by polymerase chain reaction (PCR). The sequence collection is then
passed through a procedure whereby some subset group is purified away from the initial
group, i.e. a subset is ‘selected’. The selected subset is then amplified by PCR and that can
again be subject to selection. This cyclic procedure can be repeated many times, until the 
purified subset meets some user-defined criteria. In our experiments with Mnt, the starting
DNA was a sample of synthetic DNA which included a completely randomized region of 
20 base pairs. That is, it included all possible 20-long sequences (about 1012 different 
sequences). The DNA was incubated with Mnt under DNA-binding conditions. The DNA se-
quences which bound were separated in a ‘gel shift’ from those that were not bound. The
bound fraction was amplified by PCR and the selection step repeated. We did this for a total
of nine rounds before cloning and sequencing the selected products; 62 sequences were ob-
tained that were all very similar to the wild-type operator, but displayed some variability, which
allowed us to determine the relative importance of each position, and the preference for each
base at most positions.
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this the K
S
) can be determined by ascer-

taining the ratios of the two DNAs in
both the bound and unbound samples.
In addition, while the equation is only
shown for two competing DNAs, any mix-
ture of multiple DNAs can be analyzed
simultaneously, provided only that each
of them is detectable in both the bound
and unbound fraction. In our study of Mnt,
the ‘multiple potential sites’ are actually
a single synthetic oligo-DNA sample of the
wild-type mnt operator bearing one or
two randomized positions. (To reduce
the effects of non-independence in the
operator, mutant operators never bear
adjacent changes.)

A binding reaction of Mnt protein with
this mixed oligo sample is performed and
the bound and unbound fractions are sep-
arated with a gel shift. The most difficult
part of the experiment is to determine
accurately the ratio of each variant of the
operator in the two fractions. Our first
experiments of this type were designed so
that the mixed oligo sample also con-
tained different restriction enzyme sites22.
In this way, we could determine the ratios
of the variant operators in both the bound
and unbound fractions with restriction
digestions. However, this approach is too
limited to be useful in general. Therefore
we took the tools of dideoxy-DNA se-
quencing and used them to examine di-
rectly the ratios of the variant operators
in both fractions. This ‘quantitative se-
quencing’ method12,21 is powerful because,
for a doubly randomized mutant of the
operator, it can return 15 different rela-
tive binding constants (using the assump-
tion of independence mentioned earlier)
from one experiment. Moreover, the mea-
sured values display a very good preci-
sion, and repeated experiments with Mnt
have shown that the values obtained are
usually consistent to within about 20%,
or 1.2-fold.

Table I shows our best estimates of K
S

and DG
S

of the Mnt protein for all poss-
ible single base changes from the wild-
type mnt operator determined mostly by
the ‘quantitative sequencing’ method12,21.
(The wild-type sequence of the mnt oper-
ator is shown in Fig. 1b.) The wild-type
base is the one with the highest affinity at
every position except 19, where a C dis-
played an increased binding by about
1.3-fold above the wild-type T. The over-
all range of changes in binding is quite
dramatic, from a 1.3-fold decrease for an
A to C change at position 16, to about a
70-fold decrease for a G to C change at
position 14.

As noted earlier, given a table of 
DG

S
values at each position, as in Table I,

and making the assumption
of additivity, we can calculate
a predicted DG

S
for any 

sequence. We use the no-
tation G

→
•X

i
for the calculation,

where G
→

is the matrix of the
DG

S
values for each base at

each position, and the se-
quence of X

i
indicates the

base to use at each position
in the sum. Figure 1 provides
an example using the wild-
type sequence. In this case,
the DG

S
is 28.2 kcal mol–1 for

the full site (the central pos-
ition 11 only contributes once,
but all other bold numbers
are used twice), which corre-
sponds to a K

S
of about

6 3105. This means that about
30 Mnt repressors are re-
quired within the cell to main-
tain about 99% occupancy of
the operator12.

In this same study, we also
selected Mnt binding sites
from random DNA using the
SELEX procedure mentioned
above. The sequences so se-
lected confirmed the relative
importance of the different positions in
the site, and also the relative preference
of the different bases at each position.
The SELEX data did reveal a statistically
significant correlation at two positions, 16
and 17, suggesting that non-independent
interactions occur there. Figure 2a shows
the number of occurrences from the
SELEX experiments for each base at pos-
itions 16 and 17. Note that the order of
frequencies for each base corresponds
closely to that expected from their spe-
cific binding constants in Table I. How-
ever, the occurrence of dinucleotide pairs
at those positions deviates significantly
from independence, as shown in Fig. 2b.
While AC is the preferred dinucleotide, as
expected from the mononucleotide pref-
erences, the occurrences of several other
pairs are quite unexpected. For example,
when position 16 is not an A, position 17
is still preferentially a C, but only by a
ratio of 24:7, compared to 93:0 when
position 17 is an A. Even more surpris-
ing, when position 17 is not a C, position
16 is never an A, even though that would
still be preferred if the positions were 
independent. It is clear that the very
strong preference for C at position 17, as
reported in Table I, depends on position
16 being an A, and that the slight prefer-
ence for A at position 16 depends on a C
at position 17. The exact magnitude of
the non-independent contributions to the

binding energy needs to be measured, and
experiments are now under way to do this.
We predict that those contributions will
be smaller than the independent contri-
butions because the preferences at each
position are consistent with independ-
ence. However, the non-independence is
certainly significant and needs to be
taken into account for an accurate de-
scription of the total regulatory system.

Information and specificity
The large-scale genome sequencing

projects currently under way, together
with experiments to monitor the expres-
sion of all the genes under a variety of con-
ditions, allow the use of pattern recog-
nition methods to identify regulatory sites
without doing binding experiments at all23.
Given a collection of regulatory sites, one
would like to obtain an estimate of the
specificity of the DNA-binding protein
directly from that sample of sites. Berg
and von Hippel24,25 first expressed the
relationship between the statistics of ex-
ample sites and the estimated binding
energy. In what follows, we provide a
somewhat different approach to the same
problem, and show how the information in
the aligned sites is used to estimate DG

S
.

Suppose that we are given an aligned set
of sequences, S

i
, where we know that each

S
i
is a regulatory site for our DNA-binding

protein. The set S
i
is a very small subset

REVIEWS

Table I. Specific binding constants for the Mnt proteina

Position Parameterb b = A b = C b = G b = T

11 KS(b) 0.66 1.30 1.30 0.66

DGS(b) 0.26 20.16 20.16 0.26

12 KS(b) 0.55 0.26 3.00 0.15

DGS(b) 0.37 0.87 20.68 1.20

13 KS(b) 0.23 0.39 0.56 2.80

DGS(b) 0.91 0.58 0.36 20.63

14 KS(b) 0.60 0.045 3.00 0.33

DGS(b) 0.31 1.90 20.68 0.68

15 KS(b) 0.91 0.30 2.50 0.25

DGS(b) 0.058 0.74 20.56 0.85

16 KS(b) 1.60 1.20 0.48 0.81

DGS(b) 20.29 20.11 0.45 0.13

17 KS(b) 0.41 3.20 0.13 0.30

DGS(b) 0.55 20.72 1.30 0.74

18 KS(b) 0.80 1.70 0.61 0.84

DGS(b) 0.14 20.33 0.30 0.11

19 KS(b) 0.53 1.70 0.48 1.30

DGS(b) 0.39 20.33 0.45 20.16

aThe mnt operator is symmetric about position 11, so
positions 12–19 serve to describe positions 3–10. Positions
1, 2, 20 and 21 are not included in the operator for this paper.
bUnits for DGS(b) are kcal mol21.
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of the set we have been denoting as X
i
,

but, because they are regulatory sites, we
can assume that each site in S

i
has a high

probability of being bound by the protein.
The goal is to determine a matrix W

→
,

based only on the sample of known sites,
which is a good estimate for the true G

→
of

the protein. Two simplifying assumptions
make this a straightforward process.

The first assumption is one we have
already been using, namely that the 
energy contributions are additive across
the positions of the site. This allows us
to represent the specificity by a mono-
nucleotide matrix. This also means that
we can summarize the information in the
aligned binding sites by a simple table of
the frequencies of each base at each pos-

ition, f(b, j). If we know G
→

, then
the average DG

S
for all of the

sites is just S
b,j

f(b, j)DG
s
(b, j)

(or f
→

•G
→

).
The second assumption is

that the genome as a whole
can be approximated as a ran-
dom sequence. Clearly gen-
omes are not random se-
quences, but the real issue
here is whether the com-
position of the binding-site-
sized non-sites is approxi-
mately random; that is, if the
site size is ten bases, do all
ten-base sequences occur
with the frequency expected
from the composition of the
genome? While there are some
clear biases in oligo com-
position, such as the CpG re-
duction in mammalian gen-
omes, this assumption is
usually a good approximation.
(This assumption simplifies
the estimate of the partition
function, but it can be re-
moved from the analysis with
a concomitant increase in the
complexity of the problem.)

Given any table of relative
(or specific) binding constants
K(b, j), where b is each base

and j the position in the site (see
Table I), then the assumptions of inde-
pendence and a random genome mean
that the average binding constant, over
all sequences, is just P

j
S

b
p(b)K(b, j),

where p(b) is the probability of each
base in the genome. The partition func-
tion is that average times the size of the
genome, G. Note that, if we use specific
binding constants, K

S
, as defined earlier,

then we have already normalized the 
individual values at each position such
that the average is 1 (consider Table I,
using the fact that in E. coli each of the
bases is at a probability of 0.25) and the
partition function is just G.

Remember that our goal is to estimate
G
→

by creating W
→

, which is based only on
a sample of the known sites. (Note: to
keep with convention, the sign is switched
between W

→
and G

→
. W

→
is a ‘weight matrix’

based on the example sites and, by con-
vention, sites that are preferred have
higher scores, usually large positive
numbers. Those same sites will have large
negative values of DG

S
.) The collection of

known sites, which can be summarized
in the table of frequencies for each base
at each position f(b, j), can be assumed
to each have a high probability of bind-
ing to the protein. We can easily find the
values for the matrix that maximizes the
probability of binding to all of the se-
quences in the collection26. It is just:

[An additional important consideration
is how to adjust for a limited sample of
sites, in which case the f(b, j) values may
be biased24,25.]

The information content of an aligned
set of sites is defined as:

These equations and the previous dis-
cussion emphasize that information con-
tent is an estimate of the average spe-
cific binding energy for the collection of
known binding sites, using as the esti-
mate of the binding function (W

→
) that

which maximizes the probability of
binding to those sites. For an efficient
regulatory system, the value of I

seq

should be close to log
2
G, as is often ob-

served, because otherwise too much of
the protein will be bound to non-site
DNA (Refs 12, 27). When using pattern
recognition methods to discover regu-
latory sites in co-regulated genes, I

seq
is

a very useful objective function23,26.
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Figure 2
(a) The number of occurrences of each base at pos-
itions 16 and 17 in the mnt binding sites generated 
in the SELEX experiments is shown in the first four
rows. The last two rows give the same information,
with the four bases categorized as wild-type (A for 16,
C for 17) and non-wild-type. (b) The number of occur-
rences of each dinucleotide combination at positions
16 and 17 in the mnt binding sites generated in the
SELEX experiments.
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(a) The collection of DGSs for the Mnt protein in Table I is presented as a matrix, G

→
. Since

the entire matrix is symmetric about column 11 only half is shown here. (b) A typical Xi: 
the wild-type mnt operator. In general, G

→
•Xi picks out the DGS in each column of G

→
that

matches the base of the corresponding position in Xi, followed with a summation of these
DGSs. That is, working with the half-site information, the sum over the bold-face entries in
(a) is performed.
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All of the analyses presented have 
assumed that the interaction under con-
sideration is governed by equilibrium
thermodynamics. A reaction that involves
a complicated kinetic process may not
have such a simple relationship between
the activity of different sites and their
degree of sequence conservation. For
example, the activity of a promoter, as
measured by the rate of RNA produc-
tion, depends on several kinetic reactions
following the initial binding of the polym-
erase, including the isomerization of the
DNA to an open complex, the initiation
of RNA polymerization and the release of
the promoter DNA during the elongation
phase. Given such a process it would not
be surprising to find that the bases in the
promoter-initiation region contributed
in complicated, non-additive ways. How-
ever, E. coli promoters appear to be fairly
well modeled by a simple relationship
between sequence and activity. In fact,
those were the sites first analyzed by
Berg and von Hippel24, and even earlier
Mulligan et al.28 had shown that a simple
statistical measure of sequence conser-
vation correlated well with promoter ac-
tivity. In this case, the promoter activity
was determined by an ‘abortive initiation’
assay which had been shown to be well
approximated by the product of the equi-
librium binding constant for the polym-
erase to the promoter, K

B
, and the rate

constant for isomerization of the DNA to
the open complex, k

2
(Ref. 29). Perhaps it

is because the activity is proportional to
the simple product K

B
k

2
that the relation-

ship to sequence is also simple, although
it would not be too surprising if somewhat
more complicated functions did some-
what better at modeling the activity. In
other cases, such as E. coli ribosome
binding sites, there are interactions be-
tween different rate constants that require
more complicated models to represent
accurately the relationship between se-
quence and activity30.

Conclusions and future directions
Understanding specificity in DNA–

protein interactions is essential for a
thorough understanding of gene regu-
lation. Much progress has been made in
recent years through a combination of
structure determination of DNA–protein
complexes and methods for assessing
differences in binding affinity for different
sequences. We have presented a new 
approach for measuring specific binding
interactions that is both rapid and accu-
rate. More information is still needed
about the validity of the additivity as-
sumption in general, and about how to

recognize cases when it is not valid. We
also need to know whether, in those
cases, it would be sufficient to use di-
nucleotide additivity models, or if even
higher levels would be required. We have
also shown that sets of example sites
can be used to estimate DG

S
for the pro-

tein recognizing those sites. We would
like to be able to relax the simplifying 
assumptions without increasing the com-
plexity of the problem too much, and we
would like to be able to handle more ef-
fectively cases with only a few example
sites. Improvements to the algorithms
as well as better experimental methods
can help reduce these limitations.

Finally, we need to delve more deeply
into complex regulatory systems. Our
approach up to now has been very reduc-
tionist, looking at individual components
of the system and analyzing how they 
interact. But in vivo the system can be
much more complicated. Often multiple
proteins are required for proper regu-
lation, and knowledge of how they inter-
act with each other, as well as with the
DNA, is essential to the total story. How
different proteins compete for the same,
or overlapping, sites and how chromatin
structure influences the binding activity
are important questions. These are active
areas of research that we have not
touched upon in this brief article. But it
is clear that a true understanding of regu-
latory systems requires analysis at all
these levels. Current large-scale sequenc-
ing projects, as well as new methods to
monitor gene expression, promise to pro-
vide us with many examples of regulat-
ory systems. Unraveling those, through
combinations of molecular biology and
mathematical algorithms, is a great chal-
lenge. It is certainly an exciting time to
be working in this field.
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REVIEWS

Can you contribute to Computer Corner?

Have you come across any applications (freeware or commercially available), CDs, servers
or tips recently that might be of interest to other biochemists and molecular biologists? 
If so, why not let us know so that we can review them in Computer Corner? 
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