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ABSTRACT
Microarray experiments can reveal useful information on the
transcriptional regulation. We try to �nd regulatory ele-
ments in the region upstream of translation start of coex-
pressed genes. Here we present a modi�cation to the original
Gibbs Sampling algorithm [12]. We introduce a probability
distribution to estimate the number of copies of the motif
in a sequence. The second modi�cation is the incorporation
of a higher-order background model. We have successfully
tested our algorithm on several data sets. First we show
results on two selected data set: sequences from plants con-
taining the G-box motif and the upstream sequences from
bacterial genes regulated by O2-responsive protein FNR. In
both cases the motif sampler is able to �nd the expected
motifs. Finally, the sampler is tested on 4 clusters of coex-
pressed genes from a wounding experiment in Arabidopsis

thaliana. We �nd several putative motifs that are related to
the pathways involved in the plant defense mechanism.

1. INTRODUCTION
Microarray technology allows biologists to monitor the mRNA
expression levels of several thousands of genes in one ex-
periment [6, 13, 26, 27, 29]. By measuring the mRNA at
consecutive time points during a biological experiment, it
is possible to construct an expression pro�le for each gene
on the array. This type of experiments has opened new re-
search directions in biology and genetics [28, 30, 36, 38]. It
is very interesting to �nd genes that have a similar behavior
under the same experimental conditions. Several clustering
algorithms are available to group genes that have a similar
expression pro�le [7, 8, 17, 28, 29, 31]. Given the clus-
ters of genes with a highly similar expression pro�le, we can
search for the mechanism that is responsible for their typi-
cal behavior. The basic assumption in the model states that
coexpression indicates coregulation.

Coregulated genes are known to share some common motifs,
that are binding sites for transcription regulators. A sensible
approach to detect these regulatory elements is to search for
over-represented motifs in the region upstream of translation
start in a set of coexpressed genes [3, 7, 24, 39].

Many researchers have been working on computational meth-
ods to detect regulatory elements. The algorithms to �nd
regulatory elements can be divided into two classes: word
analysis methods [10, 33, 34, 35] and methods based on
probabilistic sequence models [1, 9, 12, 14, 18, 24, 37]. The
word analysis methods are based on the frequency analysis
of oligonucleotides in the upstream region and on intelligent
word counting strategies. A common motif is then compiled
by grouping over-represented similar words. When using a
probabilistic sequence model the motif is represented by a
position probability matrix. The basic model assumes that
the motif is hidden in a noisy background sequence. To
�nd the parameters of this model, maximum likelihood es-
timation is used. Most used methods are Expectation Max-
imization (EM) and Gibbs Sampling. EM is a deterministic
algorithm and Gibbs Sampling is a stochastic equivalent of
EM.

In this paper a modi�cation of the original Gibbs Sampling
algorithm by Lawrence et al. [12] is presented. A probabilis-
tic framework is used to estimate the expected number of
copies of a motif in a sequence. We introduce also the use of
a higher order background model based on an Markov chain.
We describe the incorporation of these modi�cations in the
Gibbs Sampling algorithm to �nd the parameters and have
successfully tested our implementation on di�erent data sets
of intergenic sequences.

2. ALGORITHM AND IMPLEMENTATION
2.1 Finding multiple copies
Applying clustering to the gene expression pro�les of a mi-
croarray experiment gives several groups of coexpressed genes.
Following the basic assumption, we can assume that coex-
pression indicates coregulation, but it is expected that only
a subset of the coexpressed genes are actually coregulated.
When searching for possible regulatory elements in such a
set of sequences, this idea has to be taken into account.
It is important to have an algorithm that can distinguish
between sequences in which there is motif and the ones in
which there is not.



In higher organisms regulatory elements can have several
copies to increase the in
uence of the element in the process
of transcriptional regulation. We reformulate the probabilis-
tic sequence model in such a way that we can estimate the
number of copies of the motif in the sequence. The number
of copies of a motif in each sequence is represented by cre-
ating a new missing value Qk, the number of copies of the
motif in sequence Sk. Qk varies between 0 en Cmax. Cmax

is a user de�ned parameter to set the maximal number of
copies of motifs in a sequence.

First, we de�ne the motif model. The motif is represented
by a position probability matrix �W :

Motif �W =

0
BB@

qA1 qA2 � � � qAW
qC1 qC2 � � � qCW
qG1 qG2 � � � qGW
qT1 qT2 � � � qTW

1
CCA ;

withW the �xed length of the motif. The background model
is represented by Bm, with m the order of the model (see
next section). Using Qk and Bayes' theorem we can write an
equation to calculate the probability 
k;c of �nding c copies
of the motif in sequence Sk given the motif and background
model:


k;c = P (Qk = cjSk; �W ; Bm)

=
P (SkjQk = c; �W ; Bm)P (Qk = cj�W ; Bm)

P (Skj�W ; Bm)

=
P (SkjQk = c; �W ; Bm)P (Qk = cj�W ; Bm)PCmax

c=0 P (SkjQk = c; �W ; Bm)P (Qk = cj�W ; Bm)


k;c describes a discrete probability distribution. The pa-
rameters are estimated in each iteration of the algorithm.
Finally, the expected number of copies of the motif in se-
quence Sk is calculated as E(Qk) =

PCmax
c=1 c
k;c.

2.2 Background model
The second modi�cation is the use of a higher order back-
ground model. The most popular motif detection methods
accessible on the net, AlignACE [9] and MEME [1], use a
simple background model. The background model is de-
scribed only by the single nucleotide frequency distribution.
But if we look more closely at most state-of-the-art gene
detection software: Glimmer [5], HMMgene [11] and Gene-
Mark.hmm [15], they all use higher order Markov processes
to model coding and non-coding sequences. Starting from
the ideas behind these gene prediction algorithms, we de-
veloped a background model based on a Markov Process of
order m. This means that the probability of the nucleotide
bl at position l in the sequence depends on the m previous
bases in the sequence. Such a model is described with a
transition matrix. Given a background model of order m,
Bm, the probability of sequence S being generated by the
background model can be written as:

P (SjBm) = P (b1; : : : ; bl)
LY
l=1

P (bljbl�1; : : : ; bl�m)

An elaborate evaluation and discussion of the in
uence of
the use of a higher-order background model on motif detec-
tion by Gibbs Sampling has been described elsewhere [32].

Important to know is that the background model can be

either constructed from the original sequence data or from
an independent data set. The latter approach is the more
sensible one if the independent data set is carefully created.
Carefully created means in this case that there are only se-
quences in the training set that are in the intergenic region
and that do not overlap with coding sequences. At the mo-
ment only an independent background model for Arabidop-
sis thaliana is constructed based on the sequences in Araset
[19]. Nevertheless the algorithm can also be used for other
organisms. In the results section we show some results with
upstream sequences selected from plants and also on inter-
genic sequences from bacteria.

2.3 Algorithm
Both modi�cations have been included in the iterative pro-
cedure of the Gibbs sampling algorithm. First the number
of copies is sampled according to the distribution �. In
the next step the motif model is updated based on the cur-
rent alignment vector and the probability distribution of the
motif positions is reestimated. An alignment vector is then
selected by sampling according to this updated distribution
�. Given the new alignment vector we can reestimate the
distribution �. Here follows a high level description of the
algorithm.

1. Select or compute the background model Bm.

2. Compute the probability P 0

x for all segments x of length
W in every sequence. Since the background model is
�xed, it is not necessary to recalculate these values in
each iteration.

3. Initialization of the alignment vector A = fAkjk =
1 : : : Ng and the weighting factors � = f�kjk = 1 : : : Ng:

Ak = fak;1; : : : ; ak;Cg and �k = f
k;1; : : : ; 
k;Cg

4. Sample each Qk from the corresponding distribution
�k.

5. For each sequence Sz, z = 1; : : : ; N

(a) Create subsets ~S = fSiji 6= zg and ~A = f ~Aiji 6=

zg, with ~Ai = fai;1; : : : ; ai;Qig

(b) Calculate �W and �0 based on ~S and ~A.

(c) Assign to each segment x from Sz the weight
Wx = Px=P

0

x

Px = P (xj�W ); P 0

x = P (xjBm)

(d) Sample new position az from probability distri-
bution Wx.

(e) Update the distribution �z.

6. Repeat from 4 until convergence is reached.

2.4 Implementation
The core algorithm of the motif sampler is implemented us-
ing the mathematical programming environmentMatlab. To
manipulate DNA sequence we use Perl and the modules
from BioPerl, [http://bio.perl.org/]. The algorithm is ac-
cessible through a web interface:
http://www.esat.kuleuven.ac.be/~thijs/Work/MotifSampler.html.

There are 5 parameters to be set:



� Background model (Bm): As the background model
either one of the pre-compiled models fromArabidopsis
thaliana can be selected or the background model can
be computed from the sequence data themselves.

� Length (W ): The length of the motif is �xed. Reason-
able values range from 5 to 15.

� Motifs (N): The number of di�erent motifs to be searched
for. The motifs will be searched for in consecutive runs
while the positions of the previously found motifs are
masked.

� Copies (C): This number sets the maximum number
of copies of a motif in every sequence. If this number
is set too high, noise will be introduced in the motif
model.

� Overlap (O): This parameter de�nes the allowed over-
lap between the di�erent motifs.

The �nal result of the motif sampler consists of three parts:
the position probability matrix �W , the alignment vector A
and the weighting factors �. Based upon these values di�er-
ent scores with their own chararcteristics can be calculated:
consensus score, information content and log-likelihood.

The consensus score is a measure for the conservation of the
motif. A perfectly conserved motif will have a score equal
to 2 while a motif with a uniform distribution will have a
score equal to 0.

Consensus Score = 2�
1

W

WX
l=1

TX
b=A

qbl log(q
b
l )

The information content or Kullback-Leiber distance be-
tween motif and the single nucleotide frequency tells how
much the motif di�ers from the background. This score will
be maximal if the motif is well-conserved and di�ers consid-
erably from the background distribution.

Information Content =
1

W

WX
l=1

TX
b=A

qbl log
�qbl
qb
0

�

As a �nal score we consider the log-likelihood. The mo-
tif and corresponding positions are the results of maximum
likelihood estimation. Therefore the log-likelihood is a good
measure for the quality of the motif. In this case we are
especially interested in the positive contribution of the mo-
tif to the global log-likelihood. If we write the probability
of the sequence being generated by the background model,
P (SjBm), as P0, the log-likelihood can be calculated:

log
�
�(S;A;Qj�W ; Bm)

�
=

log
�PCmax

c=0 
cP (SjAc; �W ; Bm)P (Acj�W ; Bm)
�
=

log(P0) + log(C) + log
�CmaxX

c=0


c
P (SjAc; �W ; Bm)

P0

�

| {z }
motif contributions
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Figure 1: Weighting factors 
k;c when searching for 1
copy, associated with kmCACGTG. Each subplot corre-

sponds to a number of copies c, with c = 0; : : : ; Cmax

and indicates the probability of �nding a motif c
times in each sequence. The stars indicate the ex-

pected number copies of the motif.

3. RESULTS
3.1 G-box sequences
We exhaustively tested the performance of our implemen-
tation of the motif sampler. To validate the motif sampler
we constructed two data sets: one with a known regula-
tory element involved in light regulation in plants, G-box
and one of so-called random sequences in which no G-box
is reported. The G-box data set consists of 33 sequences
selected from PlantCARE [23] containing 500bp upstream
of the translation start. This data set is well suited to give
a proof of concept and to test the performance of the motif
sampler, since we exactly know the consensus of the motif
and also the positions of the motif in the sequences. The
random set consists of 87 sequences of 500bp. This set was
used to introduce noise to the test sets. Here we show the re-
sults of two di�erent tests. The �rst test shows the in
uence
of the number of copies and the second test illustrates the
improvement due to the use of a higher-order background
model when noise is added to the data set.

First we experimented with 33 G-box sequences together
with 10 sequences from the random set. This set was used to
test the in
uence of the number of copies. When the number
of copies is set to 1, a more conserved motif will be found,
but a number of occurrences will be missed. Increasing the
number of copies will allow to better locate the true number
of copies of a motif but more noise is introduced to the
initial model and the �nal model will be more degenerate.
This trade-o� has to be taken into account when �ne-tuning
the algorithm. The results shown are based on parameter
settings to search for a motif of length 8bp that can have
either 1 or 4 copies with the Arabidopsis background model
of order 3. In both cases a motif was found with a consensus
resembling the G-box consensus CACGTG. These motifs are
also the motifs with the highest scores.

Figure 1 and 2 show the weighting factors 
k;c associated
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Figure 2: Weighting factors 
k;c when searching for 4
copies, associated with kCCACGTG. Each subplot corre-

sponds to a number of copies c, with c = 0; : : : ; Cmax

and indicates the probability of �nding a motif c
times in each sequence. The stars indicate the ex-

pected number copies of the motif.

with 1 copy and 4 copies respectively. The weighting fac-
tors 
k;c are ordered from top to bottom in ascending order
of c. The X-axis corresponds to the sequence numbers: the
�rst 33 sequences are the G-box sequences and the last 10
are the random sequences. The expected number of copies
in a sequence is indicated by a star in the corresponding row
of the plots. The �rst subplot (top) corresponds to c = 0
and shows the probability of not �nding the motif in the
sequences. The probability distribution of each individual
sequence shows that when searching for 1 copy this distri-
bution tends to be rather extreme (Fig. 1). When allowing
4 copies on the other hand the distribution will be smoother
(Fig. 2). Based on the reported motifs in the G-box data
set, we know that there are several sequences in which multi-
ple copies of the G-box occur. So when limiting the number
of copies to 1 some of the information to construct the motif
model will be discarded.

All random sequences are expected to have 0 copies of the
motif, however in a few sequences a motif is found. In the
case of 1 copy only 2 sequences out of 10 have a single copy of
the motif, but with a high probability. If we allow 4 copies, 3
random sequences out of 10 are indicated as having 1 copy
of the motif but the probability of �nding this copy has
decreased.

Let us now consider the G-box sequences. When searching
for 1 copy, 7 sequences out of 33 are indicated as not having
the motif. In case of 4 copies there are still 4 out of 33 G-box
sequences that are indicated as not having a G-box. If we
check those 4 sequences in PlantCARE, we �nd that the G-
boxes are not found experimentally but only by homology
search. It might be that these motifs are false positives,
but this can not be concluded decisively without biological
evidence.

Another important issue is the in
uence of noise on the per-

Figure 3: Total number of times the G-box consen-

sus is found in 10 repeated runs of the tests for three

di�erent background models. The data set consists

of the 33 G-box sequences and a �xed number of

added noisy sequences.

formance of the motif sampler. Noise is due to the presence
of upstream sequences that do not contain the motif. To
introduce noise in the data set we added in several consecu-
tive tests each time 10 extra sequences, in which no G-box
is reported, to the G-box data set. We exhaustively tested
several con�guration to see how the noise in
uences the per-
formance of the motif sampler. To test the signi�cance of
the results each test was repeated 10 times. Figure 3 shows
the total number of times the G-box consensus in 10 runs for
three di�erent background models and an increasing num-
ber of added sequences. As can be expected, the number
of times the G-box is detected decreases when more noise is
added to the original set of 33 G-box sequences. This in
u-
ence is more dramatic for the single nucleotide background
model then for the third order background model.

3.2 Bacterial Sequences
As another test a data set with intergenic sequences from
bacteria was created. The selected data set contains a subset
of bacterial genes all shown to be regulated by the bacterial
O2-responsive protein FNR [16]. The genes were selected
from several bacterial species: Azospirillum brasilense, Para-
coccus denitri�cans, Rhodobacter sphaeroides, Rhodobacter
capsulatus, Sinorhizobium meliloti and Escherichia coli. The
data set contains 10 intergenic sequences with varying length.
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Figure 4: FNR binding site logo

In this case there was no precompiled background model



available, therefore a background model of order 1 was com-
piled from the sequence data. The order of the background
model is limited by the number of nucleotides in the data set.
The motif sampler could retrieve the consensus sequence of
the FNR-consensus sequence, described in literature as an
interrupted palindrome of 14 bp. The motif is shown in
Figure 4. Table 1 gives a more descriptive overview of the
results. The �rst two columns identify the gene by their
accession number and gene name. The given position is
the position in the input sequence. The next column is
the site as found in the sequences and �nally there is a
the probability of �nding this motif in the sequence. We
can see that the motif is found in all 10 sequence with a
high probability score. This means that the motif sampler
is very con�dent on �nding the motif in the sequences. We
searched for more motifs but only two, unknown, motifs were
found: sGGyCGAATGGTCG and TTCATGACAGTCCT. They both
occur only in 3 sequences out of 10.

Accn Gene Position Site Prob.
af016223 ccoN 60 TTGACGCGGATCAA 1.0000
af054871 cytN 255 TTGACGTAGATCAA 1.0000
pdu34353 ccoN 131 TTGACGCAGATCAA 1.0000
pdu34353 ccOt 210 TTGACGCAGATCAA 1.0000
af195122 bchE 82 TTGACATGCATCAA 0.9998
af016236 dorS 8 TTGACGTCAATCAA 1.0000
ae000220 narK 267 TTGATTTACATCAA 0.9986
rl�xnc �xNc 104 TTGATGTAGATCAA 1.0000
rl�xnd �xNd 240 TTGACGCAGATCAA 1.0000

pdu34353 fnr 36 TTGACCCAAATCAA 0.9999

Table 1: Bacterial O2-responsive protein FNR. The

�rst two column describe the gene. The given po-

sition is the position of the motif in the input se-

quences. The fourth column gives the motif in the

sequence and the last column gives the probability

score of the motif.

3.3 Microarray experiment
The previous examples can be seen as proof of concept data
sets to test the performance of the motif sampler. We also
used the motif sampler to �nd motifs in clusters of coex-
pressed genes. As a test case we use the data from Reymond
et al., where the gene expression in response to mechanical
wounding was measured [22]. mRNA was extracted from
leaves at 8 time points up to 24 hours after the wound-
ing and an expression pro�le was constructed. To �nd the
groups of coexpressed genes we use a clustering algorithm
developed in our group [4]. As input parameters to the clus-
tering, we use a small radius of 1 and the minimal number
of genes in a cluster is set to be at least 3. This results in 8
small clusters of coexpressed genes.

To analyze the cluster we select the sequence 500bp up-
stream of translation start for every gene present in one of
the clusters. We looked for 10 di�erent motifs of length 8 and
12bp. To distinguish between stable motifs and motifs that
are found just by chance, we repeated each experiment 10
times. The results with the Arabidopsis background model
of order 3 are shown since they gave the most promising re-
sults. Four of the clusters contained only 3 genes and we did

not found any interesting motif in these small clusters. The
most interesting motifs were only detected in the clusters
containing more than 3 genes. Table 2 gives an overview of
the most important results. The consensus sequences are a
compilation of the consensus sequences of length 8 and 12
bp. Only the relevant part of the consensus is displayed.
Together with the consensus the number of times the con-
sensus was found in 10 runs is indicated. The most frequent
motifs are shown here.

To assign a functional interpretation to the motifs, the con-
sensus of the motifs was compared with the entries described
in PlantCARE. Several interesting motifs are found: methyl
jasmonate(MeJa) responsive elements, elicitor-responsive el-
ements and the abcissic acid response element (ABRE). It
is not surprising to �nd these elements in gene promoters
induced by wounding, because there is a clear cross-talk
between the di�erent signal pathways leading to inducible
defense gene expression [2, 21, 25, 20]. Depending on the
nature of a particular aggressor (wounding/insects, fungi,
bacteria, virus) the plant is able to �ne-tune the induction
of defense genes either by employing a single signal molecule
or by a combination of the 3 regulators jasmonic acid (JA),
ethylene and salicylic acid (SA). In the third and fourth
cluster there are also some strong motifs found that do not
have a corresponding motif in PlantCARE. These motifs
look promising but they need some further investigation.

4. DISCUSSION
We have introduced a modi�ed version of the original Gibbs
Sampler algorithm to detect regulatory elements in the up-
stream region of DNA sequences. The �rst change is the use
of a probability distribution to model the number of copies of
a motif in each sequence. We propose an iterative sampling
scheme to �nd the most likely motif alignment. The second
contribution is the inclusion of an higher order background
model instead of using single nucleotide frequencies as the
background model. The use of a carefully selected indepen-
dent data set to construct a background model improves the
performance and robustness of the motif sampler.

In this study we showed that our implementation of the
Gibbs Sampler is able to �nd over-represented motifs in a
well described test set of upstream sequences. Finally the
motif sampler was also used to �nd motifs in a sets of coex-
pressed genes.

The algorithm is accessible through a web interface, where
a limited number of parameters is user de�ned. The pa-
rameter de�nitions are kept simple and easy to interpret.
There is no need for the users to go through the details of
the implementation to understand the reasonable parameter
settings.

However the implementation is far from �nal and needs some
further extensions to improve the usability and performance.
In this perspective, we will work on several add-ons. First
we would like to implement a method to automatically de-
tect the optimal length of the motif. At the moment the
length of the motif is still a user-de�ned and �xed param-
eter. Also the optimization of the procedure to �nd the
number of copies is important. This is of course closely re-
lated to the improvement of the motif scores. The ultimate



Cluster Consensus Runs PLantCARE Function

1 TAArTAAGTCAC 7/10 TGAGTCA tissue speci�c GCN4-motif
(11 seq.) CGTCA MeJA-responsive element

ATTCAAATTT 8/10 ATACAAAT element associated to GCN4-motif
CTTCTTCGATCT 5/10 TTCGACC elicitor responsive element

2 TTGACyCGy 5/10 TGACG MeJa responsive element
(6 seq.) (T)TGAC(C) Box-W1, elicitor responsive element

mACGTCACCT 7/10 CGTCA MeJA responsive element
ACGT Abcissic acid response element

3 wATATATATmTT 5/10 TATATA TATA-box like element
(5 seq.) TCTwCnTC 9/10 TCTCCCT TCCC-motif, light response element

ATAAATAkGCnT 7/10 - -

4 yTGACCGTCCsA 9/10 CCGTCC meristem speci�c activation of H4 gene
(5 seq.) CCGTCC A-box, light or elicitor responsive element

TGACG MeJA responsive element
CGTCA MeJA responsive element

CACGTGG 5/10 CACGTG G-box light responsive element
ACGT Abcissic acid response element

GCCTymTT 8/10 - -
AGAATCAAT 6/10 - -

Table 2: Results of the motif search in 4 clusters for the third order background model. In the second column

the consensus of the found motif is given together with the number of times this motif was found in the 10

runs. Finally the corresponding motif in PlantCARE and a short explanation of the described motif is given.

goal is to develop a robust algorithm with as few as possible
user parameters. When the parameters are handled well, we
will focus on the development of more speci�c motif models,
like short palindromic motifs that are separated by a small
variable gap or the combined occurrence of motifs. More-
over the probabilistic framework in which the motif sampler
is implemented is well suited to incorporate prior biological
knowledge in the sequence model.
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