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Elucidating the human transcriptional regulatory network1 is a
challenge of the post-genomic era. Technical progress so far is
impressive, including detailed understanding of regulatory mech-
anisms for at least a few genes in multicellular organisms2–4, rapid
and precise localization of regulatory regions within extensive
regions of DNA by means of cross-species comparison5–7, and de
novo determination of transcription-factor binding specificities
from large-scale yeast expression data8. Here we address two
problems involved in extending these results to the human
genome: first, it has been unclear how many model organism
genomes will be needed to delineate most regulatory regions;
and second, the discovery of transcription-factor binding sites
(response elements) from expression data has not yet been gen-
eralized from single-celled organisms to multicellular organisms.
We found that 98% (74/75) of experimentally defined sequence-
specific binding sites of skeletal-muscle-specific transcription fac-

tors are confined to the 19% of human sequences that are most
conserved in the orthologous rodent sequences. Also we found
that in using this restriction, the binding specificities of all three
major muscle-specific transcription factors (MYF, SRF and MEF2)
can be computationally identified.
Regulatory regions of individual genes can be located using tran-
sient transfection with deletion mutants, but the large number,
diverse distribution and combinatorial interactions of these regions
renders unlikely a successful expansion of laboratory studies to a
genome-scale. Pattern-based computational approaches9–11 can
suggest possible transcription-factor binding sites and regulatory
modules, but false-positive prediction rates are high12,13. Because
patterns of gene regulation and the corresponding regulatory con-
trols are often conserved across species, cross-species sequence
comparison, so called ‘phylogenetic footprinting’, may identify reg-
ulatory sequences7,14–16. Due to the high similarity of both biology
and sequence between human and mouse, the mouse genome is
receiving considerable attention as a tool for cross-species compar-
isons17. This strong similarity, however, has raised doubts regarding
the general usefulness of human-mouse sequence comparison for
distinguishing functionally conserved features against a back-
ground of recently evolved sequence5,14,15.

Qualitative comparisons using existing algorithms18,19 indi-
cate that comparison of orthologous human and rodent
sequences is useful7, but quantitative comparisons are lacking.
Here we use the recently developed Bayes block aligner (BBA),
which focuses on aligning highly conserved, ungapped blocks in
which regulatory elements are most likely to reside20.

We have altered the BBA, originally developed for the analy-
sis of proteins, to permit the analysis of genomic DNA. The
alignment algorithm first produces data represented by a two-
dimensional histogram reporting the probability that each pair
of nucleotides from two subject sequences are located within a
conserved block (Fig. 1a). Summation of all cells correspond-
ing to each human nucleotide, for example base j (collapsing
all bars onto the human axis), produces a histogram (Fig. 1b)

Fig. 1 Probability of alignment for the sequences flanking the 5´ end of the
first exon of natriuretic propeptide (NPPA). a, Two-dimensional histogram out-
put of the Bayesian block aligner indicates the probability that any given base j
in the human sequence aligns to any given base k in the rat sequence. Proba-
bilities are determined from a set of alignments representative of all possible
alignments of the two sequences. b, Probability that a nucleotide j in the
human NPPA 5´ flanking sequence is aligned to any nucleotide in the rat
sequence in the set of representative alignments reported in (a).

Table 1 • Phylogenetic footprinting statistics

Percentage of human genomic sequence aligned to rodent

Per cent Aligned Length of
aligned positions human sequences

18.6 7,540 40,548

Percentage of identical nucleotides observed in conserved regions

Conserved Identical Percentage
positions to rodent

7,540 7,029 93.2%

The numbers above are for sequences in which the ratio of rodent length to
human length is greater than 0.5. The most conservative estimate of percentage
aligned is obtained by comparing the number of conserved positions with the
minimum sequence length in each pair. The per cent aligned increases to 22.8.
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that depicts the probability that a human base j is contained in
some aligned block, Paligned(j).

To explore the usefulness of human-rodent sequence compari-
son using this approach, we compared a set of 28 orthologous
gene pairs that are specifically upregulated in skeletal muscle, and
for which there is considerable genomic sequence available. A
total of 99 experimentally defined binding sites exist in the data
set, including 24 Sp1 sites (G/C-rich sites) and 75 sequence-spe-
cific sites, categorized as follows: (i) myogenin-family (Myf) bind-
ing sites (E-boxes); (ii) Mef2 sites (A/T-rich sequences); (iii) SRF
sites (CArG boxes); (iv) Tef sites (MCAT boxes); and (v) other
experimentally defined, but incompletely characterized, sites.

Our human-rodent comparisons, using the new footprinting
algorithm, indicate that only
19% of the human bases have
greater than a 50% chance of
being placed into an aligned
block with a rodent base (Table
1). In other words, 81% of the
non-coding genomic sequence
is outside the footprinted
blocks, a substantial reduction
in the sequence ‘space’. Even
greater reduction may be
achieved in the context of the
complete genome, as the longer
genomic regions, where avail-
able, have a somewhat lower
percentage of nucleotides in
aligned blocks (Fig. 2). Within
blocks identified as conserved,
93% of human nucleotides
match with identity to the cor-
responding rodent sequence
(Table 1). Excluding binding
sites for Sp1, 74 of 75 (98%)
binding sites are within the
regions shared between
humans and rodents (Table 2).

As a result, sequence-specific regulatory sites are over 320 times
more likely to occur within footprinted blocks. Sp1 sites, which
are G/C-rich patches of sequence, have a lower level of conserva-
tion (18/24 in footprinted blocks), consistent with the binding
characteristics of Sp1 (ref. 21).

Discovery of new transcription-factor binding sites from large-
scale expression data can result from the alignment of regulatory
regions of co-expressed genes. Such discovery has been feasible in
the case of single-celled organisms because most regulatory ele-
ments are located within 200–500 bp of the 5´ end of ORFs. In
multicellular organisms, however, regulatory elements may be
found upstream or downstream of the gene, as well as in introns,
and may be spread over tens or even hundreds of kilobases. Exper-
imental evidence suggests that regulatory elements are more prob-
able within a few thousand base pairs 5´ of the transcription start
site, but current algorithms are able to locate only some of these
regions12,22. Phylogenetic footprinting with the BBA provides a
way forward by reducing the amount of sequence to be searched.

An alignment algorithm based on a Gibbs sampling
approach23,24 has successfully been used to identify regulatory
sites in sets of experimentally determined vertebrate regulatory
regions16, as well as in yeast presumptive promoters8,25. We
applied this algorithm to the muscle gene set described above.
When applied to contextual non-coding sequence of many kilo-
bases around the human genes, the algorithm produces biologi-
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Fig. 2 Conservation of genomic sequence between humans and rodents for
alignments where lengthRodent/lengthHuman ≥0.5. Fraction of human nucleotides
identified as conserved in the comparison of human and rodent sequences.
Point labels correspond to the following genes: 1, DES; 2, SLC2A4; 3, MYOG; 4,
MYL4; 5, MYL4 (intron); 6, TNNC1 (intron); 7, TNNI1; 8, MYH7; 9, MYH6; 10,
ACTA1; 11, CHRNB1; 12, CRYAB; 13, COX6A2; 14, MYL3; 15, MYL2; 16, MB; 17,
PGAM2; 18, CHRNG; 19, RB1; 20, TAGLN; 21, CHRND; 22, ALDOA (intron); 23,
NPPA; 24, DMD; 25, CHRNE; 26, ENO3 (intron); 27, ACTC1; 28, CKM.

Table 2 • Localization of binding sites to conserved blocks

Factor Sites within Total number
name conserved blocks of sites

MEF2 20 20
MYF 23 23
SRF 15 15
Tef 7 8
other 9 9
total 74 75

We have pooled nine experimentally defined transcription-factor binding sites for
which the mediating transcription factors have not been conclusively identified,
therefore this is a heterologous category. Excluded are the binding sites for the
Sp1 TF that binds preferentially to G/C-rich sequences and has limited sequence
specificity16. Of the 24 reported Sp1 sites, 18 (75%) occur within conserved blocks.

Fig. 3 Three patterns identified in the 5´ flanking sequences of genes selectively expressed in skeletal muscle. Patterns were
determined with a Gibbs sampling algorithm that took into consideration the probability of alignment output from the
phylogenetic footprinting analysis and the heterogeneous background model. A label (+) indicates the sites with experi-
mental evidence of function. Gene labels correspond to those given Fig. 2. Mef2-Cons, SRF-Cons and Myf-Consensus
sequences were taken from ref. 16.
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cally meaningless patterns (data not shown). The regulatory pat-
terns emerge, however, when the algorithm is extended to take
conservation into account (that is, when the algorithm is applied
to the 19% of sequence found by phylogenetic footprinting; Fig.
3). The consensus patterns of SRF, Mef2 and Myf binding sites,
common to a large number of muscle genes, were identified.
Excluding a single site, all Tef and incompletely characterized sites
were positioned within conserved blocks of sequence, but were
not consistently detected by the Gibbs sampling. As anticipated,
the GC-rich patches to which Sp1 binds were also not detected.

These results indicate that comparison of human and rodent
genomic sequence for a set of co-regulated genes can substan-
tially reduce the size of the sequence space to be searched for
functional sites, and make it possible to computationally deduce
the binding specificities of critical transcription factors. Our ini-
tial data set included only muscle-specific genes, so, although we
know of no reason why these results should not apply to other
types of genes, broad applicability of this approach awaits further
study of additional expression conditions and experimental vali-
dation of any new site predictions. Additionally, the tolerance for
noise (genes incorrectly classified) in the data set of coordinately
regulated genes must be investigated. Previous reports5,14 indi-
cated that greater evolutionary distances from humans may be
required for phylogenetic footprinting. The correct identification
of orthologous genes can be difficult for more distantly related
species, however, and the biological roles and expression patterns
are more likely to be altered. Fortunately, mouse-human com-
parisons reduce these difficulties and our results indicate that
such comparisons may be of considerable value in deciphering
the regulatory specifications encoded in the human genome.

Methods
Muscle regulatory regions and sites data set. We assembled a collection of
experimentally defined regulatory regions from the literature. Each includ-
ed sequence has been demonstrated to direct transcription of a promoter
in a selective manner in skeletal muscle or a suitable cell-culture model sys-
tem, and each contained experimentally reported transcription-factor
binding sites that were sequence specific. The term ‘selective’ indicates that
transcription does not occur in most tissues or cell models, although
expression is observed in one or two additional tissues for many of the
genes analysed (most commonly cardiac muscle or brain). An earlier ver-
sion of this collection was used in an analysis of muscle regulatory
regions16, and an annotated skeletal muscle regulatory region database is
available (http://www.cbil.upenn.edu/MTIR/HomePage.html). For every
such human regulatory region contained in genomic sequence of over 500
bp and for which orthologous rodent genomic sequence over 500 bp was
available, the longest available syntenic sequence pair was included in our
study set. Subsequent removal of exon sequence truncated 2 of these
sequences to under 500 bp: region 5 is a full-length intron and region 27 is
a 485-bp 5´ flanking segment.

Sets of genes expressed in muscle may have little else in common. Our
data set includes, for example, genes that determine cell fate in develop-
ment (for example MYOG), energy metabolism genes (for example ENO3)
and genes specifying the contractile apparatus (for example MYH7).

BBA algorithm adapted for phylogenetic footprinting. The BBA has been
described for the analysis of protein sequences20. The probability of a con-
served base is the sum of the probabilities of all alignments containing the
base. Individual alignments are constructed using a Bayesian sampling
algorithm whose underlying recursion is based on the alignment
method26, which uses a maximum number of gaps, rather than the more
commonly used word hashing methods of BLAST (ref. 27) or match/mis-

match/gap penalty minimization19.
This focuses the alignment on con-
served blocks and is well suited to
the Bayesian formalism. The recur-
sive sampling algorithm yields a
representative sample of alignments
which can be used to calculate the
probability that any given base in
the first sequence aligns with a spe-
cific base in the second sequence.
The program was modified to accept a DNA-similarity matrix. To bias the
output towards alignments with short blocks of high similarity, we used the
PAM1 similarity matrix28 (Table 3), that is, a substitution matrix based on
the assumption of only one accepted mutation per 100 bp. In this matrix,
the probability of a transition is three times that of a transversion.

Gibbs sampling procedure for binding-site detection. We applied a pattern
detection algorithm to the conserved sequences to identify motifs likely to
represent the binding sites of transcription factors contributing to skeletal-
muscle-specific gene expression. The Motif Sampler23,24 iterates between
refining a description of the motif and aligning sites in the sequences that
may represent instances of the motif. Variation in local base composition
adversely affects sequence alignment27. Because such variation can be com-
plex in untranscribed sequence29, and because binding motifs are often
AT- or GC-rich, these adverse effects can be difficult to control using exist-
ing masking algorithms30. The motif alignment algorithm used here uses
an alternative approach that uses a heterogeneous background model of
sequence composition to account for these variations. The individual input
sequence is analysed for heterogeneity in composition using a recently
developed Bayesian segmentation algorithm29. This algorithm returns the
probabilities of observing each of the four bases for each position in the
sequence p0i,b i=1,…, I b={A,T, C, G}, where I is the length of the sequence.
These probabilities are based on compositional heterogeneity of the
sequence and the uncertainty in this heterogeneity. The extended Gibbs
sampling algorithm used here incorporates this information as a local
background model. Specifically, the probability that the sequence Ra,
Ra+1,…,Ra+w where Rv is the base at position v in the sequence, is sampled
as a binding site is proportional to the ratio of the probabilities of the seg-
ment under the site model, pmv, verses the background, that is,

where w is the width of the site model.

Phylogenetic footprinting results are incorporated into the sampling algo-
rithm by forbidding a site from being sampled whenever paligned for the
centre location of the site is less than 0.5.

A web server for phylogenetic footprinting analysis and the Gibbs sam-
pling algorithm is available (http://www.wadsworth.org/res&res/bioinfo/).
Summaries of the public literature on most of the genes in the data set are
available on the muscle regulation site (http://www.cbil.upenn.edu/MTIR/
HomePage.html). Accession numbers for the analysed sequences, and the
compilation of experimentally defined binding sites, are also available
(http://www.cgr.ki.se/cgr/groups/wasserman/muscle).
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Table 3 • PAM1 matrix for
DNA comparisons

A C G T

A 0.99 0.002 0.006 0.002

C 0.002 0.99 0.002 0.006

G 0.006 0.002 0.99 0.002

T 0.002 0.006 0.002 0.99
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