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The ability to determine the location and relative strength of all
transcription-factor binding sites in a genome is important both for
a comprehensive understanding of gene regulation and for effec-
tive promoter engineering in biotechnological applications. Here
we present a bioinformatically driven experimental method to
accurately define the DNA-binding sequence specificity of tran-
scription factors. A generalized profile1 was used as a predictive
quantitative model for binding sites, and its parameters were esti-
mated from in vitro–selected ligands using standard hidden
Markov model training algorithms2,3. Computer simulations
showed that several thousand low- to medium-affinity sequences
are required to generate a profile of desired accuracy. To produce
data on this scale, we applied high-throughput genomics methods
to the biochemical problem addressed here. A method combining
systematic evolution of ligands by exponential enrichment
(SELEX)4 and serial analysis of gene expression (SAGE)5 proto-
cols was coupled to an automated quality-controlled sequence
extraction procedure based on Phred quality scores6. This allowed
the sequencing of a database of more than 10,000 potential DNA
ligands for the CTF/NFI transcription factor. The resulting binding-
site model defines the sequence specificity of this protein with a
high degree of accuracy not achieved earlier and thereby makes it
possible to identify previously unknown regulatory sequences in
genomic DNA. A covariance analysis of the selected sites revealed
non-independent base preferences at different nucleotide posi-
tions, providing insight into the binding mechanism.

The reliability and accuracy of existing computer tools for identify-
ing transcription-factor DNA-binding sites are largely unknown but
commonly believed to be rather low. Experimental biologists have
often studied the binding specificity of transcription factors qualita-
tively, without attempting to estimate the parameters of a quantita-
tive method for predicting target sites. Consequently, computational
biologists have often had to rely on data inappropriate for develop-
ing such software tools7. In the work presented here, we combined

experimental techniques with bioinformatics and proceeded in the
opposite direction. First we chose a computational prediction
method and determined the type and amount of experimental data
needed using computer simulations. We then devised and applied
experimental protocols for producing the required data in a cost-
effective manner. Finally, we generated a binding-specificity model
from the data in a highly automated fashion.

The experimental system chosen for developing and testing this
approach was the transcription factor CTF/NFI, a protein that binds
DNA as a homodimer and recognizes palindromic sequence motifs
resembling TTGGC(N5)GCCAA. An approximate quantitative
model of its binding specificity was available from a previous study8

in which we represented its binding specificity by a sequence profile
(Fig. 1A), which is an extension of a weight matrix, the most 
commonly used descriptor for transcription-factor binding sites. It
consists of two reverse-complementary weight matrices that charac-
terize the half-site motifs recognized by each of the two subunits.
Five additional parameters relate to different binding modes suggest-
ed to be relevant by previous experiments. Those include various
spacer lengths between the two half-sites and alternative modes of
interaction in which only one of the subunits is in contact with the
DNA. A binding score can be computed for any potential binding
site simply by adding up the corresponding weights.

According to the statistical mechanical theory of sequence-
specific DNA–protein interactions9, the parameters of a profile
represent negative free-energy contributions to the total binding
energy (Fig. 1B). Each column in the half-site matrices character-
izes a hypothetical base-pair acceptor site on the protein surface.
The weights for different binding modes represent relative free
energies of different conformations. Therefore, the binding score
defined by the profile should be inversely proportional to the total
free energy of the protein–DNA complex. Note however that the
absolute scale of the parameters in the profile is arbitrary (see leg-
end to Fig. 1). As a consequence, only the differences between alter-
native weights are proportional to differences in free energy.

Several methods have been used to estimate profile parameters from
experimental binding data. In our earlier study, these were estimated by
measuring the effects of a series of mutations in a high-affinity binding
site using band-shift assays8. Alternatively, binding sites can be selected
from libraries of random sequences using an in vitro selection–
amplification approach known as SELEX4. The latter approach allows
the generation of larger data sets that can include up to 200 distinct
sequences but that, more typically, contain 20–70 sites10,11. However, it
has the disadvantage that the model parameters cannot be directly read
out from the data, since the model-building process necessitates
sequence alignments as an intermediate step. The relationship between
the type and amount of such data and the accuracy of the model has
never been investigated either theoretically or experimentally.
Consequently, the number and affinity of the binding sequences
required to generate a model of a given precision are not known. We
addressed this question first by a computer simulation experiment.

Some underlying assumptions of the model building process need
to be introduced to explain the simulation experiment. A profile
(Fig. 1A) can be calculated from a base-frequency model (Fig. 1C).
In computational sequence analysis, the latter is sometimes called a
hidden Markov model (HMM)2. Profiles and HMMs of the same
architecture are interconvertible1, and the position-specific base
probabilities p(i,b) can be transformed into corresponding profile
weights w(i,b) by a logarithmic function:

w(i,b) = ci + loga p(i,b)

where ci is a column-specific free constant that can be exploited for
scaling purposes (see Fig. 1A legend). To simulate SELEX data, we
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proceeded in the opposite direction, converting the CTF/NFI profile
parameters first into several corresponding HMMs using the inverse
of the above formula:

p(i,b) = ci aw(i,b)

Note that ci serves here as a normalization factor ensuring that the base
probabilities add up to 1. Frequencies and free-energy values of differ-
ent binding modes are related by a similar formula, implied by the gen-
eral conversion recipe for profiles and HMMs1. The logarithmic base a
sets the average score of the sequences described by the resulting fre-
quency model. The Berg–von Hippel theory9 of sequence-specific pro-
tein–DNA interactions proposes that DNA ligand collections selected
under different conditions can be described by frequency matrices
related to the same energy–weight matrix via different logarithmic
bases. Both temperature and substrate concentration influence the
parameter a. The above formulae are approximations, as the theory

makes some simplifying assumptions, most notably that
the observed position-specific base frequencies depend
only on the mean and not on the exact shape of the affini-
ty distribution of the selected sites.

In a SELEX experiment, DNA ligand collections
selected for ever higher affinities after each cycle corre-
spond to frequency models (HMMs) obtained with
increasing exponential bases a (see ref. 12 for a mathe-
matical model of the SELEX process). We exploited
this feature to generate frequency models of binding
sites corresponding to low, medium, and high average
affinities (Fig. 1C). To simulate corresponding SELEX
data sets, we generated DNA sequences from these fre-
quency models and added random bases on either side
to reach a total length of 25 bp. New frequency models
were then trained from such simulated data sets of
various sizes and average affinities, using the
Baum–Welch expectation-maximization algorithm, as
described previously for the STAT DNA-binding 
proteins3. The precision of a new frequency model was
then measured by computing the average difference
between the re-estimated and original log frequencies.
The results (see Supplementary Table 1 online) indi-
cate that more precise models can be obtained from
collections of lower-affinity binding sites, presumably
because these exhibit unfavorable bases more often,
providing more precise frequency estimates.

We next proceeded to the selection of CTF/NFI bind-
ing sites by SELEX, which consists of the selection of
protein-bound oligonucleotides by native gel elec-
trophoresis and PCR amplification of gel-extracted
sequences (Fig. 2A). Typically, multiple selection cycles
are required to separate binding sites from random
library sequences, a process that usually enriches for a
few high-affinity sites. However, the results of the com-
puter simulations suggest that at least 2,000 low- to
medium-affinity binding sites are needed to achieve an
average log ratio error of 0.1, or 10% in terms of base
frequencies. To be able to generate a data set with such
properties, we had to modify the SELEX method in two
important ways (Fig. 2A). To prevent the selection of
only high-affinity binding sites, we monitored the strin-
gency of the binding conditions at each selection cycle
by including a radiolabeled 25-bp oligonucleotide
probe of moderate affinity that does not hybridize with
the PCR primers. The concentration of the DNA
library, added to the reaction mixture as a competitor,

was adjusted such that 50% of the radiolabeled probe complex was
competed away, ensuring the selection of medium-affinity sites from
the library. The second modification—concatenating the in
vitro–selected binding sites in an adaption of the SAGE5 protocol—
served to increase the sequencing throughput.

We analyzed the enriched CTF/NFI sites in the oligonucleotide
populations recovered after each of the four SELEX cycles (referred to
as the Selex1 to Selex4 libraries) by analytical band-shift assays (see
Supplementary Fig. 1 online). This indicated that the Selex3 library
was of the desired average affinity, and we therefore subjected this
library and representative samples from the other libraries to high-
throughput sequencing. Because accurate estimation of base frequen-
cies as low as 0.5% requires sequencing error rates of at least one
order of magnitude lower, we developed a perl script that exploits the
base quality scores computed by the Phred program6 for sequence
quality control. This allowed the extraction of 1,088 high-quality
sequences from Selex1, 1,475 from Selex2, 6,912 from Selex3, and 361
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Figure 1. CTF/NFI sequence-specific DNA–protein interaction profiles. (A) Previously
published profile8. The position-specific weights associated with the four possible
nucleotides are indicated within boxes. Arrows indicate alternative paths corresponding to
different binding modes. The score of a potential binding site is computed as the sum of
the corresponding weights. The scale is such that a decrease of ten units corresponds to a
tenfold decrease in apparent DNA binding affinity8. Maximal weight at each matrix
position, 10; highest possible score, 100 (arbitrary scaling conventions). (B) Physical
interpretation of a transcription-factor binding site profile. Following Berg and von Hippel9,
the parameters represent free-energy contributions attributed to interactions between
base pairs and base pair–acceptor sites, or to different conformations corresponding to
different binding modes. (C) HMMs for high-, medium-, and low-affinity binding sites
computed from the CTF/NFI profile shown in (A) and used to generate the training sets for
the computer simulation experiment.
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from Selex4. A total of 1,201 sequences were also determined from
the unselected Selex0 library. We estimated the overall error rate in
the extracted data sets to be lower than 0.02% per base pair.

We confirmed that the sequences from the Selex0 library were not
biased in a way that would affect the modeling procedure.
Individual base frequencies in the supposedly random part of the
oligonucleotides ranged from 24.4% to 26.4%, and the dinucleotide
frequency distribution was also close to uniform. Next, we tried to
confirm that the sequences from the Selex3 library were indeed in
the targeted affinity range by scoring the sequences from all five
libraries with the CTF/NFI profile. We observed a steady enrich-
ment in CTF/NFI binding sites but virtually no change in the affini-
ty distribution, as intended by the SELEX protocol modifications
(Fig. 2B). The major peak of the Selex3 population is centered at a
score around 80, only slightly above 77, the score of the radiolabeled
oligonucleotide used for controlling the selection conditions. The
minor peak coincides with the maximum of the distribution of the
unselected Selex0 library and presumably represents contamination
by unbound DNA. This was not a matter of concern as the algo-
rithm chosen for building binding-site models can tolerate a certain
amount of noise in the data. Overall, these analyses confirmed that
the modified SELEX–SAGE protocol produced the required type
and quantity of sequence data. To our knowledge, this constitutes
the largest database of DNA binding sites ever produced, being
almost two orders of magnitude larger than any previously reported
SELEX database. The database is publicly available at
http://www.isrec.isb-sib.ch/selex_nf1/.

We then built a new model from the Selex3 data using the same
algorithm as in the simulations except that we added four match
positions to the model, one on either side of each half-site block, to
test whether bases adjacent to the TTGGC consensus motif could
also have an influence on binding affinity. The 3′-flanking position
showed a clear preference for adenine bases and was thus incorporat-
ed into the new model. The 5′-flanking position did not show any
bias in base composition and was thus omitted from the model. The
new profile computed from the frequency model (see
Supplementary Fig. 2 online) is shown in Figure 2C.

The accuracy of the new model was assessed by cross-validation,
yielding an average error rate of 7.1% between independent profiles,
as expected from the simulation data (see Supplementary Fig. 3
online). We next tested the new model by computing binding scores
for a set of CTF/NF1 binding sequences for which absolute affinities
had previously been determined experimentally by another labora-
tory using Scatchard plots13. The predicted and experimentally
determined binding affinities were in excellent correlation (Fig. 2D).

Several significant differences were noted between the new and
old profiles. For instance, the new model is much less permissive for
half-site spacing variants. Such variants have been consistently found
to be inactive in transfected cells8. There were also specific changes in
base frequencies. For example, the introduction of adenine bases at
positions 2 and 4 is much less deleterious with the new profile, which
again correlates well with the previously unexplained mild effects of
these substitutions in transfection assays8. Thus, these differences
clearly represent an improvement over the old model.

Finally, we scanned the Eukaryotic Promoter Database (EPD)14

using the new profile for human promoters with high-scoring
CTF/NFI binding sites. The promoters of the vimentin, interleukin-
3, tissue plasminogen activator, and cytochrome P450-17 genes were
identified as likely physiological targets and therefore selected for
transfection in a cell line naturally devoid of CTF/NFI protein. The
former two promoters were indeed induced upon co-expression of
CTF/NFI protein (data not shown). Remarkably, we observed activa-
tion by CTF/NFI protein from single binding sites on transfected
promoters. Other sequences correspond to previously identified
functional CTF/NFI sites (data not shown). These three independent
tests demonstrate that our new binding-site model derived from a
high-throughput SELEX–SAGE experiment reliably and accurately
predicts in vitro and in vivo binding sites.

The Selex3 data set is perhaps the first binding-site collection large
enough to challenge some of the inherent assumptions of profile-
based models. A question debated at length is whether individual base
pairs of a binding site interact independently with the protein surface.
A clear case of non-independent interactions was recently demon-
strated for two adjacent positions in phage P22 Mnt repressor binding

sites15. To investigate whether such effects
also occur in CTF/NFI target sequences, we
subjected 3,602 sites of the major spacer-
length class to covariance analysis (Table 1).
Not surprisingly, the strongest dinucleotide
correlations were found at adjacent posi-
tions within the same half-site. For
instance, the dinucleotide AT at positions 4
and 5 is strongly over-represented relative
to AC, with highly significant P values. A
strong covariance was also noted between
positions 5 and 11. This explains well the
previously observed non-additive effects of
substitutions at these positions8. Even
though some of the weaker correlations
may reflect PCR artifacts (such as selection
against perfect palindromes), these results
make clear that the assumption of indepen-
dent base-pair interactions represents an
oversimplification of the CTF/NFI DNA-
binding mechanism. More sophisticated
binding-site models such as weight-array
matrices16 or maximal-dependence decom-
position models17 would be more appropri-
ate from a physical perspective. The overall
gain in prediction accuracy expected from
such models should be relatively minor, but
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Table 1. Strongly correlated dinucleotide pairs in sequences of the major spacing class of
CTF/NFI binding sites

Dinucleotide pairs fI fj fj
exp fij

obs nij
exp nij

obs P value Mij nij
obs/nij

exp

Within half-sites
C1 A2 0.252 0.053 0.013 0.006 94.9 41 <10–10 0.005 0.4
G2 A4 0.096 0.036 0.004 0.000 24.9 0 9.4 × 10–8 0.005 0.0
A4 C5 0.036 0.661 0.024 0.010 171.1 71 <10–10 0.017 0.4
A4 T5 0.036 0.036 0.001 0.006 9.3 44 <10–10 0.008 4.7
A5 C6 0.263 0.165 0.043 0.066 308.7 469 <10–10 0.013 1.5
C5 C6 0.661 0.165 0.109 0.082 775.6 580 <10–10 0.017 0.7

Across half-sites
A1 T14 0.130 0.053 0.007 0.001 49.0 10 8.3 × 10–10 0.005 0.2
A2 T11 0.053 0.263 0.014 0.006 99.1 45 <10–10 0.005 0.5
G2 C14 0.096 0.096 0.009 0.003 65.5 20 5.2 × 10–10 0.005 0.3
A4 G11 0.036 0.661 0.024 0.034 171.1 244 <10–10 0.013 1.4
A4 T11 0.036 0.263 0.010 0.002 68.1 14 <10–10 0.008 0.2
A5 T11 0.263 0.263 0.069 0.047 491.2 332 <10–10 0.010 0.7

Three alternative measures were taken to assess the strength of a correlation: a P value based on a χ2 test, mutu-
al information (Mij) in bits, and the ratio between the observed and expected number of occurrences (nij

obs/nij
exp).

fi, fj, Frequencies of the first and the second base of the dinucleotide pair at their respective binding site positions;
fij

exp, fij
obs, expected and observed frequencies of the dinucleotide ij as computed from fi, fj. Mutual information

measures the global increase of nonrandomness in a binding-site population induced by a dinucleotide correla-
tion. High values can thus be achieved only by pairs of bases that frequently occur at the corresponding positions.
In contrast, the ratio values may directly relate to free energies of cooperative interactions and thus are more
interesting from a physicochemical viewpoint. This list includes all correlated dinucleotide pairs satisfying one of
the following conditions: (i) Mij > 0.01 and nij

obs/nij
exp > 1.2; (ii) Mij > 0.005 and nij

obs/nij
exp > 2; (iii) Mij > 0.01 and nij

obs/
nij

exp < 0.8; (iv) Mij > 0.005 and nij
obs/nij

exp < 0.5.
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remains to be determined. Significant pair correlations taken together
are estimated to contribute <1 bit of information to the binding speci-
ficity defined by the new model, which represents ∼ 12 bits.

In summary, we have obtained an accurate, quantitative binding-site
model for a mammalian transcription factor using high-throughput
SELEX–SAGE experiments and appropriate bioinformatics tools.
Large-scale application of this approach could lead to reliable binding
site–prediction tools for all transcription factors of a given organism.
Such tools would facilitate the comprehensive understanding of gene
regulation and the rational design of control regions for biotechnolog-
ical applications.

Experimental protocol
In vitro selection and amplification of protein-binding sites. The DNA
serving as input in the selection procedure consisted of 25-bp 
double-stranded oligonucleotides flanked by primer sequences (Fig. 2A).
Library DNA was added as competitor to CTF/NFI protein incubated with
1 ng of the medium-affinity 25-bp 32P-labeled oligonucleotide probe 
5′-GTCCCTGGGCGTGCAGCCCATGCAC-3 as described previously8.
The amount of library DNA was titrated such that 50–80% of the radiola-

beled complex was competed away. After electrophoresis, the DNA–
protein complexes were eluted from the gel and PCR amplified using stan-
dard procedures.

Construction of the CTF/NFI binding site clone libraries. The input
oligonucleotide library (Selex0) and the output of the four selection cycles
(Selex1–Selex4) were digested with BglII after large-scale PCR amplifica-
tion. The resulting 36-bp fragments were gel purified and multimerized
using the SAGE protocol5. Concatemers of 400–500 bp were cloned into
BamHI-cleaved pZero vector (Invitrogen, Groningen, The Netherlands)
for sequencing.

Extraction of binding sites from sequence trace files. The Phred program6

was used for automatic sequence extraction and base quality score assign-
ments. Individual sites were excised with the program pfsearch from the
pftools package (see below) and a circular profile reflecting the tandemly
repeated structure of the inserts. The minimal base quality was recorded for
each extracted site. High-quality sites were then extracted from the primary
sites database with a perl script selecting those confirmed by double-strand
sequencing, or those with a minimal base quality score ≥20.

Sequence analysis software and procedures. The following public programs
and software packages were used in this work: pftools version 2.2 (P. Bucher,
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Figure 2. Use of a SELEX experiment with a SAGE-inspired
multimerization step to construct a new CTF/NFI binding-site model.
(A) Overview of the SELEX–SAGE experimental approach. The input
DNA library consists of 25-bp random oligonucleotides flanked by
sequences hybridizing to PCR amplification primers. The positions of the
two BglII sites used for concatemerization and cloning are indicated by
arrows. (B) Computed CTF/NFI binding score distributions for the input
(Selex0) DNA library and for the sequences obtained after each of the
four rounds of selection (Selex1–4). The score of each sequence was
computed with the new profile shown in (C). Qualitatively similar
distributions were first obtained with the old profile (see text). (C) New
CTF/NFI binding-site model derived from the in vitro–selected protein-
binding sites of the Selex3 library. Half-site matrices have one more match
position, reducing the length of the major spacer-length class to 3 bp.
Scaling conventions are the same as in the original profile except for the
new match position, where the maximal score was set to zero. A decrease
of 10 units corresponds to a tenfold decrease in base frequency in the
HMM characterizing the selected binding-site population. (D) Comparison
of experimentally determined CTF/NFI affinities13 with corresponding
binding scores computed with the profile shown in (C).
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unpublished; available at ftp://ftp.isrec.isb-sib.ch/sib-isrec/pftools/); SAM
version 1.3.3 (ref. 18;http://www.cse.ucsc.edu/research/compbio/sam.html);
HMMER version 1.8.4 (S.R. Eddy, unpublished; available at http://hmmer.
wustl.edu). Binding scores for oligonucleotide sequences were computed
with the program pfsearch (pftools). Simulated SELEX data were generated
by first converting the CTF/NFI profile (Fig. 1A) into an equivalent HMM
with the program ptoh (pftools), and then by generating random instances
from the HMM with the program hmme (HMMER). Exponential bases of
1.14, 1.19, and 1.36 were used to convert the same profile into different
HMMs representing low-, medium-, and high-affinity binding sites, respec-
tively. New HMMs were derived from the simulated SELEX data and from
the Selex3 database with the program buildmodel (SAM). The details of the
computational recipe can be found on our website (http://www.isrec.
isb-sib.ch/selex_nf1/). The new profile (Fig. 2C) was computed from the
new HMM with the program htop (pftools) using a logarithmic base of 1.26
for conversion (corresponding to the 10 × log10 scale used in the old profile).
The profile weights were subsequently rescaled manually to conform to the
conventions applied in the old profile (see Fig. 1A legend).

The covariance analysis was done on a set of 3,602 15-mer sites extracted
from the Selex3 library with binding score ≥65 according to the new profile.
Each sequence was presented in both orientations. The calculation of the χ2

test variable and the mutual information value2 was based on a 2 × 2 contin-
gency table representation of the corresponding base frequencies: we consid-
ered only the presence or absence of the specific bases under consideration at
each position.

Note: Supplementary information is available on the Nature Biotechnology
website.
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Chromatin immunoprecipitation followed by cDNA microarray
hybridization (ChIP–array) has become a popular procedure for
studying genome-wide protein–DNA interactions and transcrip-
tion regulation. However, it can only map the probable
protein–DNA interaction loci within 1–2 kilobases resolution. To
pinpoint interaction sites down to the base-pair level, we introduce
a computational method, Motif Discovery scan (MDscan), that
examines the ChIP–array-selected sequences and searches for
DNA sequence motifs representing the protein–DNA interaction
sites. MDscan combines the advantages of two widely adopted
motif search strategies, word enumeration1–4 and position-specific
weight matrix updating5–9, and incorporates the ChIP–array rank-
ing information to accelerate searches and enhance their success
rates. MDscan correctly identified all the experimentally verified
motifs from published ChIP–array experiments in yeast10–13

(STE12, GAL4, RAP1, SCB, MCB, MCM1, SFF, and SWI5), and
predicted two motif patterns for the differential binding of Rap1
protein in telomere regions. In our studies, the method was faster
and more accurate than several established motif-finding algo-
rithms5,8,9. MDscan can be used to find DNA motifs not only in
ChIP–array experiments but also in other experiments in which a
subgroup of the sequences can be inferred to contain relatively
abundant motif sites.The MDscan web server can be accessed at
http://BioProspector.stanford.edu/MDscan/.

Although the 10 to 1,000 binding loci selected by ChIP–array exper-
iments may contain false positives, those with high ChIP–array
enrichment are more likely to represent true positives with multiple
protein–DNA binding sites. MDscan takes advantage of this knowl-
edge by first searching the highly ChIP–array-enriched fragments
thoroughly, generating multiple candidate motif patterns, and then
updating and refining the candidate motifs using other less likely
sequences, guided by statistical scoring functions derived from
Bayesian statistical formulation7. We applied MDscan to both simu-
lated and biological data sets and compared its performance with
BioProspector9, CONSENSUS5, and AlignACE8.

In simulation studies, nine motif models were manually created
(Table 1A), representing three different motif widths and three
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