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BEWARE: These are preliminary notes. In the future, they wil l become part of 
a textbook on Visual Object Recognition.  
 
Chapter 1: Introduction to visual recognition  
 

The greatest challenge of our times is to understand how our brains 
function. The conversations and maneuvers of several billion neurons in our 
brains are responsible for our ability to interpret sensory information, to navigate, 
to communicate, to have feelings and love, to make decisions and plans for the 
future, to learn. Understanding how neural circuits give rise to these functions will 
transform our lives: it will enable us to alleviate the ubiquitous mental health 
conditions that afflict millions, it will lead to building truly artificial intelligence 
machines that are as smart as or smarter than we are, and it will open the doors 
to understand who we are.  
 
 As a paradigmatic example, we will focus here on one of the most 
exquisite pieces of neural machinery ever evolved: the visual system. In a small 
fraction of a second, we can get a glimpse of an image and capture a very large 
amount of information. For example, we can take a look at the picture in Figure 
1.1 and ask a series of questions including Who is there, What is there, Where is 
this place, What was the weather like, How many people are there, What are 
they doing, What is the relationship between people in the picture? We can even 
make educated guesses about a potential narrative including answering 
questions such as What happened before, What will happen next. At the heart of 

Figure 1.1: We can visually interpret complex images at a glance 
Who is there? What are they doing? What will happen next? These are among the 
sets of questions that we can answer after a few hundred milliseconds of exposure 
to a novel image. 
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these questions is our capacity for visual recognition and intelligent inference 
based on visual inputs. 

 
Our remarkable ability to recognize complex spatiotemporal input 

sequences, which we can loosely ascribe to part of “common sense”, does not 
require us to sit down and solve complex differential equations. In fact, a 5-year 
old can answer most of the questions outlined above quite accurately. 
Furthermore, it takes only a few hundred milliseconds to deduce such profound 
information from an image. Even though we have computers that thrive at tasks 
such as solving complex differential equations, computers still fail quite miserably 
at answering common sense questions about an image.  
 
1.1 Evolution of the visual system 
 

Visual recognition is essential for most everyday tasks including 
navigation, reading and socialization. Reading this text involves identifying shape 
patterns. Driving home involves detecting pedestrians, other cars and routes. 
Vision is critical to recognize our friends. It is therefore not much of a strain to 
conceive that the expansion of visual cortex has played a significant role in the 
evolution of mammals in general and primates in particular. The evolution of 
enhanced algorithms for recognizing patterns based on visual input is likely to 
have yielded a significant increase in adaptive value through improvement in 
navigation, recognition of danger and food as well as social interactions. In 
contrast to tactile inputs and, to some extent, even auditory inputs, visual signals 
provide information from far away and from large areas. While olfactory signals 
can also propagate long distances, the speed of propagation is significantly 
lower. The potential selective advantage conveyed by visual processing is so 
large that it has led some investigators to propose the so-called “Light switch” 

Figure 1.2: The same pattern can look very different… 
Even though we can easily recognize these patterns, there is considerable variability 
among different renderings of each shape at the pixel level.  
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theory stating that the evolution of visual recognition was a key determinant in 
triggering the so-called Cambrian explosion (Parker, 2004). 
 

The history and evolution of the visual system is only poorly understood 
and remains an interesting topic for further investigation. The future of the visual 
system is arguably equally fascinating. It is easier to speculate on the 
technological advances that will become feasible as we understand more about 
the neural circuitry involved in visual recognition. One may imagine that in the 
not-too-distant future, we may be able to build high-speed high-resolution video 
sensors that convey information to computers implementing sophisticated 
simulations of the visual cortex in real time. So-called machine vision applications 
may reach (or even surpass) human performance levels in multiple recognition 
tasks. Computers may excel in face recognition tasks to a level where an ATM 
machine will greet you by your name without the need of a password. Computers 
may also be able to analyze images intelligently to be able to search the web by 
image content (as opposed to image names). Doctors may rely more and more 
on artificial vision systems to screen and analyze clinical images. Cars may be 
equipped with automatic systems to avoid collision with other cars and to 
recognize pedestrians. Robots may be able to navigate complex cluttered 
terrains.  

Figure 1.3: A naïve approach to a model of visual recognition  
A, B. Two simple models that are easy to implement, easy to understand and not 
very useful. C. An ideal model should combine selectivity and tolerance. 
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When debates arose about the possibility that computers could one day 

play competitive chess against humans, most people were skeptic. Yet, 
computers today can surpass even sophisticated chess aficionados. In spite of 
the obvious fact that most people can recognize objects much better than they 
can play chess, visual shape recognition is actually more difficult than chess from 
a computational perspective. However, we may not be too far from accurate 
approximations where we will be able to trust “computers’ eyes” as much as we 
trust ours.  

 
1.2  Why is vision difficult? 

 
Why is it so difficult for computers to perform pattern recognition tasks 

that appear to be so simple to us? The primate visual system excels at 
recognizing patterns even when those patterns change radically from one 
instantiation to another. Consider the simple line schematics in Figure 1.2. It is 
straightforward to recognize those handwritten symbols in spite of the fact that, at 
the pixel level, they show considerable variation within each row. These drawings 
have only a few traces. The problem is far more complicated with real scenes 
and objects. Consider the enormous variation that the visual system has to be 
able to cope with to recognize a tiger camouflaged in the dense jungle. Any 
object can cast an infinite number of projections onto the retina. These variations 
include changes in scale, position, viewpoint, illumination, etc. In a seemingly 
effortless fashion, our visual systems are able to map all of those images onto a 
particular object. 
 
1.2  Four key features of visual object recognition 

 
In order to explain how the visual system tackles the identification of 

complex patterns, we need to account for at least four key features of visual 
recognition: selectivity, robustness, speed and capacity.  

 
Selectivity involves the ability to discriminate among shapes that are very 

similar at the pixel level. Examples of the exquisite selectivity of the primate 
visual system include face identification and reading. In both cases, the visual 
system can distinguish between inputs that are very close if we compare them 
side-by-side at the pixel level. A trivial and useless way of implementing 
Selectivity in a computational algorithm is to memorize all the pixels in the image 
(Figure 1.3A). Upon encountering the exact same pixels, the computer would 
be able to “recognize” the image. The computer would be very selective because 
it would not respond to any other possible image. The problem with this 
implementation is that it lacks Robustness.  

 
Robustness refers to the ability of recognizing an object in spite of 

multiple transformations of the object’s image. For example, we can recognize 
objects even if they are presented in a different position, scale, viewpoint, 
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contrast, illumination, colors, etc. We can even recognize objects where the 
image undergoes non-rigid transformations such as the one a face goes through 
upon smiling. A simple and useless way of implementing robustness is to build a 
model that will output a flat response no matter the input. While the model would 
show “robustness” to image transformations, it would not show any selectivity to 
different shapes (Figure 1.3B). Combining Selectivity and Robustness (Figure 
1.3C) is arguably the key challenge in developing computer vision algorithms.  

 
Given the combinatorial explosion of the number of images that map onto 

the same “object”, one could imagine that visual recognition is a very hard task 
that requires many years of learning at school. Of course, this is far from the 
case. Well before a first grader is starting to learn the basics of addition and 
subtraction (rather trivial problems for computers), he is already quite proficient at 
visual recognition. In spite of the infinite number of possible images cast by a 
given object onto the retina, recognizing objects is very fast. Objects can be 
readily recognized in a stream of objects presented at a rate of 100 milliseconds 
per image (Potter and Levy, 1969) and there is behavioral evidence that subjects 
can make an eye movement to indicate the presence of a face about 120 
milliseconds after showing a stimulus (Kirchner and Thorpe, 2006). Furthermore, 
both scalp as well as invasive recordings from the human brain reveal signals 
that can discriminate among complex objects as early as ~150 milliseconds after 
stimulus onset (Liu et al., 2009; Thorpe et al., 1996). The Speed of visual 
recognition constrains the number of computational steps that any theory of 
recognition can use to account for recognition performance. To be sure, vision 
does not “stop” at 150 ms. Many important visual signals arise or develop well 
after 150 ms. Moreover, recognition performance does improve with longer 
presentation times (e.g. (Serre et al., 2007)). However, a basic understanding of 
an image or the main objects within the image can be accomplished in ~150 ms. 
We denote this regime as “rapid visual recognition”.  

 
One way of making progress towards combining selectivity, robustness 

and speed has been to focus on object-specific or category-specific algorithms. 
An example of this approach would be the development of algorithms for 
detecting cars in natural scenes by taking advantage of the idiosyncrasies of cars 
and the scenes in which they typically appear. Some of these specific heuristics 
may be extremely useful and the brain may learn to take advantage of them (e.g. 
if most of the image is sky blue, suggesting that the image background may 
represent the sky, then the prior probabilities for seeing a car would be low and 
the prior probabilities for seeing a bird would be high). We will discuss some of 
the regularities in the visual world (statistics of natural images) in Chapter 2. Yet, 
in the more general scenario, our visual recognition machinery is capable of 
combining selectivity, robustness and speed for an enormous range of objects 
and images. For example, the Chinese language has over 2,000 characters. 
Estimations of the capacity of the human visual recognition system vary 
substantially across studies. Several studies cite numbers that are well over 
10,000 items (e.g. (Biederman, 1987; Shepard, 1987; Standing, 1973)).  
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In sum, a 

theory of visual 
recognition must 
be able to account 
for the high 

selectivity, 
robustness, speed 
and capacity of 
the primate visual 
system. In spite of 
the apparent 
simplicity of 

“seeing”, 
combining these 
four key features 
is by no means a 
simple task. 

 
1.3 The 

travels of a 
photon 

 
We start 

by providing a 
global overview of 

the 
transformations 

information 
carried by light to 
the brain signals 
that support visual 
recognition (for 

reviews, see (Felleman and Van Essen, 1991; Maunsell, 1995; Wandell, 1995). 
Light arrives at the retina after being reflected by objects. The patterns of light 
impinging on our eyes is far from random and the natural image statistics of 
those patterns play an important role in the development and evolution of the 
visual system (Chapter 2). In the retina, light is transduced into an electrical 
signal by specialized photoreceptor cells. Information is processed in the retina 
through a cascade of computations before it is submitted to cortex. Several visual 
recognition models treat the retina as analogous to the pixel-by-pixel 
representation in a digital camera. This is a highly inaccurate description of the 
computational power in the retina1. The retina is capable of performing multiple 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 As of June 2015, some computers boasted a “retinal display” of 5120 by 2880 pixels. While this 
number may well approximate the numbers of photoreceptor cells in some retinas (~5 million 
cone cells and ~120 million rod cells in the human retina), the number of pixels is not the only 

Figure 1.4: The travels of a photon.  
Schematic diagram of the connectivity in the visual system 
(adapted from (Felleman and Van Essen, 1991)).  
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and complex computations on the input image (Chapter 2). The output of the 
retina is conveyed to multiple areas including the superior colliculus and the 
suprachiasmatic nucleus. The pathway that carries information to cortex goes 
from the retina to a part of the thalamus called the lateral geniculate nucleus 
(LGN). The LGN projects to primary visual cortex, located in the back of our 
brains. Primary visual cortex is often referred to as V1 (Chapter 3). The 
fundamental role of primary visual cortex in visual processing and some of the 
basic properties of V1 were discovered through the study of the effects of bullet 
wounds during the First World War.  Processing of information in the retina, LGN 
and V1 is coarsely labeled “early vision” by many researchers.  

 
Primary visual cortex is only the first stage in the processing of visual 

information in cortex. Researchers have discovered tens of areas responsible for 
different aspects of vision (the actual number is still a matter of debate and 
depends on what we mean by “area”). An influential way of depicting these 
multiple areas and their interconnections is the diagram proposed by Felleman 
and Van Essen, shown in Figure 1.4 (Felleman and Van Essen, 1991). To the 
untrained eye, this diagram appears to show a bewildering complexity, not unlike 
the type of circuit diagrams typically employed by electrical engineers. In 
subsequent Chapters, we will delve into this diagram in more detail and discuss 
some of the areas and connections that play a key role in visual recognition. In 
spite of the apparent complexity of the neural circuitry in visual cortex, the 
scheme in Figure 1.4 is an oversimplification of the actual wiring diagram. First, 
each of the boxes in this diagram contains millions of neurons and it is well know 
that there are many different types of neurons. The arrangement of neurons can 
be described in terms of six main layers of cortex (some of which have different 
sublayers) and the topographical arrangement of neurons within and across 
layers. Second, we are still very far from characterizing all the connections in the 
visual system. It is likely that major surprises in neuroanatomy will come from the 
usage of novel tools that take advantage of the high specificity of molecular 
biology. Even if we did know the connectivity of every single neuron in visual 
cortex, this knowledge would not immediately reveal the functions or 
computations (but it would be immensely helpful). In contrast to electrical circuits 
where we understand each element and the overall function can be appreciated 
from the wiring diagram, many neurobiological factors make the map from 
structure to function a non-trivial one.   
 
1.4 Lesion studies 
 
 One way of finding out how something works is by taking it apart, 
removing parts of it and re-evaluating function. This is an important way of 
studying the visual system as well. For this purpose, investigators typically 
consider the behavioral deficits that are apparent when parts of the brain are 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
variable to compare. Several digital cameras have more pixels than the retina but they lag behind 
in important properties such as luminance adaptation, motion detection, focusing, speed, etc.  
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lesioned in either macaque monkey studies or through natural lesions in humans 
(Chapter 5).  
 
 An example mentioned above is given by the studies of the behavioral 
effects of bullet wounds during World War, which provided important information 
about the architecture and function of V1. In this case, subjects typically reported 
that there was a part of the visual field where they were essentially blind (this 
area is referred to as a visual scotoma). Ascending through the visual hierarchy, 
lesions may yield more specific behavioral deficits. For example, subjects who 
suffer from a rare but well-known condition called prosopagnosia typically show a 
significant impairment in recognizing faces.  
 
 One of the challenges in interpreting lesions in the human brain and 
localizing visual functions based on these studies is that these lesions often 
encompass large brain area and are not restricted to neuroanatomically- and 
neurophysiologically-defined areas. Several more controlled studies have been 
performed in animal models including rodents, cats and monkeys to examine the 
behavioral deficits that arise after lesioning specific parts of visual cortex.  
 
 Are the lesion effects specific to one sensory modality or are they 
multimodal? How selective are the visual impairments? Can learning effects be 
dissociated from representation effects? What is the neuroanatomical code? 
Lesion and neurological studies are discussed in Chapter 5. 
 

1.5 Function of circuits in visual cortex 
 
 The gold standard to examine function 
in brain circuits is to implant a microelectrode 
(or multiple microelectrodes) into the area of 
interest (Figure 1.5). These extracellular 
recordings allow the investigators to monitor 
the activity of one or a few neurons in the 
near vicinity of the electrode (~200  µm) at 
neuronal resolution and sub-millisecond 
temporal resolution.  
 

 
Recording the activity of neurons has 

defined the receptive field structure (i.e., the 
spatiotemporal preferences) of neurons in the 
retina, LGN and primary visual cortex. The 
receptive field, loosely speaking, is defined 
as the area within the visual field where a 
neuronal response can be elicited by visual 
stimulation. The size of these receptive fields 
typically increases from the retina all the way 

Figure 1.5: Listening to the 
activity of individual neurons 
with a microelectrode. 
Illustration of electrical recordings 
from microwires electrodes 
(adapted from Hubel).  
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to inferior temporal cortex. In a classical neurophysiology experiment, Hubel and 
Wiesel inserted a thin microwire to isolate single neuron responses in the primary 
visual cortex of a cat (Hubel and Wiesel, 1962). After presenting different visual 
stimuli, they discovered that the neuron fired vigorously when a bar of a certain 
orientation was presented within the neuron’s receptive field. The response was 
significantly less strong when the bar showed a different orientation. This 
orientation preference constitutes a hallmark of a large fraction of the neurons in 
V1 (Chapter 3).  

 
Recording from other parts of visual cortex, investigators have 

characterized neurons that show enhanced responses to stimuli moving in 
specific directions, neurons that prefer complex shapes such as fractal patterns 
or faces, neurons that are particularly sensitive to color contrasts. Chapter 5 
begins the examination of the neurophysiological responses beyond primary 
visual cortex. How does selectivity to complex shapes arise and what are the 
computational transformations that can convert the simpler receptive field 
structure at the level of the retina into more complex shapes?  

 
Rapidly ascending through the ventral visual stream, we reach inferior 

temporal cortex, usually labeled ITC (Chapter 7). ITC constitutes one of the 
highest echelons in the transformation of visual input, receiving direct inputs from 
extrastriate areas such as V2 and V4 and projecting to areas involved in memory 
formation (rhinal cortices and hippocampus), areas involved in processing 
emotional valence (amygdala) and areas involved in planning, decisions and task 
solving (pre-frontal cortex). As noted above, it is important to combine selectivity 
with robustness to object transformations. How robust are the visual responses in 
ITC to object transformations? How fast do neurons along the visual cortex 
respond to new stimuli? What is the neural code, that is, what aspects of 
neuronal responses better reflect the input stimuli? What are the biological 
circuits and mechanisms to combine selectivity and invariance? 

 
There is much more to vision than filtering and processing images in 

interesting way for recognition. Chapter 8 will present some of the interactions 
between recognition and important aspects of cognition including attention, 
perception, learning and memory. 

 
1.6 Moving beyond correlations 
 
 Neurophysiological recordings provide a correlation between the activity of 
neurons (or groups of neurons) and the visual stimulus presented to the subject. 
Neurophysiological recordings can also provide a correlation with the subject’s 
behavioral response (e.g. image recognized or not recognized). Yet, as often 
stated, correlations do not imply causation.  
 
 In addition to the lesion studies briefly mentioned above, an important tool 
to move beyond correlations is to use electrical stimulation in an attempt to bias 
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the subject’s behavioral performance. It is possible to inject current with the same 
electrodes used to record neural responses. Combined with careful 
psychophysical measurements, electrical stimulation can provide a glimpse at 
how influencing activity in a given cluster of neurons can affect behavior. In a 
classical study, Newsome’s group recorded the activity of neurons in an area 
called MT, located within the dorsal part of the macaque visual cortex. As 
observed previously, these neurons showed strong motion direction preferences. 
The investigators trained the monkey to report the direction of motion of the 
stimulus. Once the monkeys were proficient in this task, they started introducing 
trials where they would perform electrical stimulation. Remarkably, they observed 
that electrical stimulation could bias the monkey’s performance by about 10 to 
20% in the preferred direction of the recorded neurons (Salzman et al., 1990). 

 
There is also a long history of electrical stimulation studies in humans in 

subjects with epilepsy. Neurosurgeons need to decide on the possibility of 
resecting the epileptogenic tissue to treat the epilepsy. Before the resection 
procedure, they use electrical stimulation to examine the function of the tissue 
that may undergo resection. Penfield was one of the pioneers in using this 
technique to map neural function and described the effects of stimulating many 
locations and in many subjects (Penfield and Perot, 1963). Anecdotal reports 
provide a fascinating account of the potential behavioral output of stimulating 
cortex. For example, in one of many cases, a subject reported that it felt like “… 
being in a dance hall, like standing in the doorway, in a gymnasium…”  

 
How specific are the effects of electrical stimulation? Under what 

conditions is neuronal firing causally related to perception? How many neurons 
and what types of neurons are activated during electrical stimulation? How do 
stimulation effects depend on the timing, duration and intensity of electrical 
stimulation? Is visual awareness better modeled by a threshold mechanism or by 
gradual transitions? Chapter 9 is devoted to the effects of electrical stimulation in 
the macaque and human brains. 

 
1.7 Towards a theory of visual object recognition 
 

Ultimately, a key goal is to develop a theory of visual recognition that can 
explain the high levels of primate performance in rapid recognition tasks. A 
successful theory would be amenable for computational implementation, in which 
case, one could directly compare the output of the computational model against 
behavioral performance measures (Serre et al., 2005). A complete theory would 
include the information from lesion studies, neurophysiological recordings, 
psychophysics, electrical stimulation studies, etc. Chapters 10-11 discuss 
multiple approaches to building computational models and theories of visual 
recognition. 

 
In the absence of a complete understanding of the wiring circuitry, only 

sparse knowledge about neurophysiological responses and other limitations, it is 
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important to ponder upon whether it is worth even thinking about theoretical 
efforts. My (biased) answer is that it is not only useful; it is essential to develop 
theories and instantiate them through computational models to enhance progress 
in the field. Computational models can integrate existing data across different 
laboratories, techniques and experimental conditions, explaining apparently 
disparate observations. Models can formalize knowledge and assumptions and 
provide a quantitative, systematic and rigorous path towards examining 
computations in visual cortex. A good model should be inspired by the empirical 
findings and should in turn be able to produce non-trivial (and hopefully 
experimentally-testable) predictions. These predictions can be empirically 
evaluated to validate, refute or expand the models.  

 
How do we build and test computational models? How should we deal 

with the sparseness in knowledge and the large number of parameters often 
required in models? What are the approximations and abstractions that can be 
made? Too much simplification and we may miss the crucial aspects of the 
problem. Too little simplification and we may spend decades bogged down by 
non-essential details. Consider as a simple analogy, physicists in the pre-Newton 
era, discussing how to characterize the motion of an object when a force is 
applied. In principle, one of these scientists may think of many variables that 
might affect the object’s motion including the object’s shape, its temperature, the 
time of the day, the object’s material, the surface where it stands, the exact 
position where force is applied and so on. We should perhaps be thankful for the 
lack of computers in that time: there was no possibility of running simulations that 
included all these inessential variables to understand the beauty of the linear 
relationship between force and acceleration. At the other extreme, 
oversimplification (e.g. ignoring the object’s mass in this simple example) is not 
good either. Perhaps a central question in computational neuroscience is to 
achieve the right level of abstraction for each problem. 

 
Chapter 12 will provide an overview of the state-of-the-art of computer 

vision approaches to visual recognition, including biologically inspired and non-
biological approaches. Humans still outperform computers in mostly every 
recognition task but the gap between the two is closing rapidly. We trust 
computers to compute the square root of 2 with as many decimals as we want 
but we do not have yet the same level of rigor and efficacy in automatic pattern 
recognition. However, many real-world applications may not require that type of 
precision. Facebook may be content with being able to automatically label 99.9% 
of the faces in its database. Blind people may recognize where they are even if 
their mobile device can only recognize a fraction of the buildings in a given 
location. We will ask how well computers can detect objects, segment them and 
ultimately recognize them. Well within our lifetimes, we may have computers 
passing some basic Turing tests of visual recognition whereby you present an 
image and out comes a label and you have to decide whether the label was 
produced by a human or a(nother) machine. 
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1.8 Towards the neural correlates of visual consciousness 
 
The complex cascade of interconnected processes along the visual 

system must give rise to our rich subjective perception of the objects and scenes 
around us. Most scientists would agree that subjective feelings and percepts 
emerge from the activity of neuronal circuits in the brain. Much less agreement 
can be reached as to the mechanisms responsible for subjective sensations. The 
“where”, “when”, and particularly “how” of the so-called neuronal correlates of 
consciousness constitutes an area of active research and passionate debates 
(Koch, 2005). Historically, many neuroscientists avoided research in this field as 
a topic too complex or too far removed from what we understood to be worth a 
serious investment of time and effort. In recent years, however, this has begun to 
change: while still very far from a solution, systematic and rigorous approaches 
guided by neuroscience knowledge may one day unveil the answer to one of the 
greatest challenges of our times. 

 
Due to several practical reasons, the underpinnings of subjective 

perception have been particularly (but not exclusively) studied in the domain of 
vision. There have been several heroic efforts to study the neuronal correlates of 
visual perception using animal models (e.g. (Leopold and Logothetis, 1999; 
Macknik, 2006) among many others). A prevalent experimental paradigm 
involves dissociating the visual input from perception. For example, in multistable 
percepts (e.g. Figure 1.6) the same input can lead to two distinct percepts. Under 
these conditions, investigators ask which neuronal events correlate with the 
alternating subjective percepts. It has become clear that the firing of neurons in 
many parts of the brain may not be correlated with perception. In an arguably 
trivial example, activity in the retina is essential for seeing but the perceptual 
experience does not arise until several synapses later, when activity reaches 
higher stages within visual cortex. Neurophysiological, neuroanatomical and 
theoretical considerations suggest that subjective perception correlates with 
activity occurring after primary visual cortex (Koch, 2005; Leopold and 
Logothetis, 1999; Macknik, 2006). Similarly investigators have suggested an 
upper bound in terms where in the visual hierarchy the circuits involved in 
subjective perception could be. Although lesions restricted to the hippocampus 
and frontal cortex (thought to underlie memory and association) yield severe 
cognitive impairments, these lesions seem to leave many aspects of visual 
perception largely intact. Thus, the neurophysiology and lesion studies seem to 
constrain the problem to the multiple stages involved in processing visual 
information along the ventral visual cortex. Ascending through the ventral visual 
cortex several neurophysiological studies suggest that there is an increase in the 
degree of correlation between neuronal activity and visual awareness (Koch, 
2005; Leopold and Logothetis, 1999; Macknik, 2006).  
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How can “visual 

consciousness” be studied using 
scientific methods? Which brain 
areas, circuits and mechanisms 
could be responsible for visual 
consciousness? What are the 
functions of visual consciousness? 
Chapter 13 will provide some 
glimpses into what is known (and 
what is not known) about these 

fascinating questions. 
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