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BEWARE: These are preliminary notes. In the future, they wil l become part of 
a textbook on Visual Object Recognition.  
 
Chapter 10: First steps towards in silico vision 

 
We have been traveling through the wonderful territory of visual cortex, 

examining the properties of different brain areas and neuronal circuits, how 
neurons respond to visual stimuli and their transformations and how neurons 
communicate with each other. It is now time to try to put all this biological 
knowledge into a theory of visual recognition and instantiate this theory through a 
computational model that aims to perform visual recognition. En route towards 
this goal, here we take initial steps to describe how scientists describe neuronal 
circuits in computational models1.  

 
10.1. Why bother with computational models? 

 
I have to start by admitting that I am quite biased here. I think that 

Theoretical Neuroscience and Computational Neuroscience are essential to 
rigorously understand how neuronal circuits work. The language of Science is 
Mathematics. Any description that is not rigorously substantiated by 
mathematical thinking is weak and prone to failure. 
 

In the course of doing science, designing experiments and interpreting the 
results, we implicitly assume the validity of several hypotheses and make 
multiple assumptions. Quantitative models force us to think about and formalize 
these hypotheses and assumptions. This process of explicitly stating the 
assumptions can help design better experiments, discover logical flaws in our 
thinking and further understand the results. 
 

It is often the case that the same questions or related questions are posed 
and attacked from different angles, using different experimental systems or the 
same systems in different laboratories. It is not always trivial to compare the 
results across different reports2. Quantitative models can integrate and 
summarize observations across experiments, resolutions and laboratories. 
Sometimes seemingly unrelated observations can be linked together and 
interpreted using a common powerful framework. Sometimes a quantitative 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  This is by no means intended to be an exhaustive sample or presentation of work in Theoretical 
and Computational Neuroscience. We would like to illustrate some of the ideas, questions, tools, 
methodologies and results in Computational Neuroscience. There are several books that I would 
recommend for those who are interested in learning more Dayan, P., and Abbott, L. (2001). 
Theoretical Neuroscience (Cambridge: MIT Press), Gabbiani, F., and Cox, S. (2010). 
Mathematics for Neuroscientists (London: Academic Press), Hertz, J., Krogh, A., and Palmer, R. 
(1991). Introduction to the theory of neural computation (Santa Fe: Santa Fe Institute Studies in 
the Sciences of Complexity), Koch, C. (1999). Biophysics of Computation (New York: Oxford 
University Press).. 	
  
2 Consider the following simple question. What is multi-unit activity? Wildly different definitions 
permeate through the literature. 
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theoretical framework can help explain intriguing differences across apparently 
similar experiments. A model can point to important missing data, critical 
information and decisive experiments. 
 

A good model can lead to (non-intuitive) experimental predictions. It is 
often the case that experimentalists rightly or wrongly believe that they can come 
up with predictions for the next set of experiments based on their intuitions. And 
often enough, this is certainly the case. Yet, intuition sometimes fails 
(unfortunately). The power of abstraction is sometimes critical to be able to 
extrapolate and push the frontiers of knowledge.  
 

A quantitative model, implemented through simulations, can be useful 
from an engineering viewpoint. Consider for example, the problem of face 
recognition. A theoretical model that describes how the primate visual cortex 
identifies faces can lead to a computational algorithm of diverse and wide 
applicability.  
 

10.2. Do I have to be a “professional theoretician” to build a model? 
 
 No, no and no! I have often encountered brilliant scientists that seem to be 
afraid of adventuring into the wonderful lands of computational models and 
theoretical neuroscience. One of the reasons may be the perennial and 
lamentable fear towards mathematics. Yet in other cases, scientists believe that 
they have to be “professional theoreticians” to build quantitative models. I would 
like to strongly argue against this notion.  Some of the most provocative, 
insightful and pioneering computational models have come from people who 
probably do not consider themselves theoreticians and who spend most of their 
lives perfecting insightful experiments. One could provide a very long list of neat 
theoretical and computational insights provided by experimentalists. As a brief 
sample, see (Blake, 1989; Brincat and Connor, 2006; Carandini et al., 1997; 
Hubel and Wiesel, 1962; Laurent, 2002; Prinz AA, 2004). 
 

10.3. Example: a model for orientation tuning in simple cells in 
primary visual cortex 

 
I would like to spend a few minutes to dig deeper into the misconception 

that models are built exclusively by theoreticians through an example of 
illuminating theoretical ideas coming from brilliant experimentalists. Consider the 
pioneering work of Hubel and Wiesel discussed in Chapter 3 (Hubel and Wiesel, 
1962). They recorded the activity of neurons in the macaque and cat primary 
visual cortex and discovered that neurons are particularly tuned to a bar of a 
certain orientation within their receptive fields. In addition to the neat and careful 
description of the empirical findings, they went on to propose a simple model of 
how orientation tuning could arise. They considered a feed-forward model that 
pooled the activity of multiple units in the lateral geniculate nucleus (LGN) with 
circular center-surround receptive fields. They proposed that orientation tuning in 
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V1 arises by combining the activity of LGN units with receptive fields that are 
aligned along the preferred orientation of the V1 unit. Hubel and Wiesel further 
went on to propose a model that could explain the differences between so-called 
simple and complex cells in V1. There has been a large body of computational 
work in the field trying to describe the activity of V1 units. Yet, the insights of 
Hubel and Wiesel have played a key role in inspiring generations of 
experimentalists and theoreticians alike. Many computational models of vision 
today can trace their roots to the models proposed by Hubel and Wiesel (e.g. 
(Carandini et al., 2005; Fukushima, 1980; Serre et al., 2007a)).  
  

10.4. A nested family of single neuron models 
 

Multiple models have been proposed and used to describe the activity of 
individual neurons. These models range from the use of filter operations to 
describe the firing rate of a neuron all the way to simulations that include 
dendritic spines and even individual ionic channels. Roughly speaking, we can 
distinguish the following categories: 

• Filter models 
• Integrate-and-fire models 
• Hodgkin-Huxley models 
• Multi-compartmental models 
• Models including dendritic subcompartments, spines, ion channels and 

perhaps even realistic geometries 
 
As we move from filter operations towards realistic geometries and models 

including individual channels, there is a significant increase in the biological 
accuracy of the model. Analytical solutions3 become more complicated or even 
nonexistent as we increase the complexity of the model. There is also an 
increase in the computational cost of the simulations as we move towards more 
complex models. It should be noted that biologically more accurate and more 
complex models are not necessarily better4. As the famous Argentinean writer 
Borges once said: “To think is to forget a difference, to generalize, to abstract”. 
 

10.5. Geometrically accurate models vs. spherical cows with point 
masses 

 
If we want to model the activity of a neuron, there are several questions 

that we need to think about. The answers to some of these questions may 
depend on which specific aspects of the neuronal responses we are interested in 
capturing. Let us consider a simple analogy. If you want to understand how an 
object of mass m, say a cow, will accelerate as you apply some force F, you can 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3	
  An	
  equation	
  (e.g.	
  a	
  differential	
  equation)	
  is	
  said	
  to	
  have	
  an	
  analytical	
  solution	
  if	
  we	
  can	
  explicitly	
  
write	
  down	
  an	
  expression	
  that	
  represents	
  the	
  solution.	
  Many	
  equations	
  are	
  solvable	
  even	
  if	
  there	
  is	
  
no	
  analytical	
  solution.	
  
4	
  See	
  the	
  delightful	
  short	
  story	
  on	
  the	
  value	
  and	
  accuracy	
  of	
  maps:	
  
http://www.sccs.swarthmore.edu/users/08/bblonder/phys120/docs/borges.pdf	
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consider a very simple model that assumes that the object is a point mass, that 
is, that the entire mass is concentrated on a point where you apply the force and 
write a one parameter model F = m . a. Now, you and I are well aware that cows 
are not point masses. Yet, this very simple model can capture essential 
ingredients of the problem and it can even help us understand that some of the 
same principles behind the cow’s movement also explain the movement of the 
planets5.  

 
In a similar vein, theoreticians often think of neurons as spherical or ignore 

their shape, their dendrites and axons. To follow up on the Hubel-Wiesel 
example mentioned earlier, one can model the activity of individual V1 neurons 
as a filter operation on the visual input and describe several aspects of the V1 
responses without getting into the details of dendritic computation, biophysics of 
action potential generation and other interesting neuronal properties (e.g. 
(Carandini and Heeger, 1994; Hubel and Wiesel, 1968)).  

 
Yet sometimes it may be critical to consider multiple compartments, such 

as a soma, an axon and one or a few dendrites. Depending on the question, 
other modelers rightly argue that we need to pay attention to the exact 3D shape 
of every single branch and the spatial distribution of spines and synapses on 
each branch. Einstein famously stated: “Make things as simple as possible, but 
not simpler…” Easier said than done.  
 

10.6. The leaky integrate-and-fire model 
 

The leaky integrate-and-fire model is arguably one of the most often used 
models for single units in computational neuroscience. It dates back to 1907 
(Lapicque6). The simplest instantiation of a leaky I&F model is given by an RC 
circuit. A current I(t) is integrated through a capacitance (C) and is leaked 
through a resistance (R). The dynamics of the intracellular voltage V(t) can be 
described by: 

 C dV (t)
dt

= −
V (t)
R
+I(t)  .  

 
Whenever the voltage crosses a threshold, a spike is emitted, the voltage 

is reset and an absolute refractory period is imposed. This highly oversimplified 
version of a real neuron captures some of our most basic intuition about neuronal 
integration. Synaptic inputs are conveyed from dendrites onto the soma, where 
information is integrated and an output action potential is generated when the 
somatic voltage exceeds a threshold. This oversimplified model does not capture 
several phenomena including spike rate adaptation, multiple compartments and 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5	
  Although	
  a	
  trivial	
  point,	
  it	
  should	
  be	
  noted	
  that	
  this	
  one-­‐parameter	
  model	
  does	
  not	
  do	
  a	
  very	
  good	
  
job	
  in	
  describing	
  the	
  movement	
  of	
  the	
  cow,	
  in	
  the	
  presence	
  of	
  friction	
  and	
  other	
  realistic	
  variables.	
  
Plus,	
  nowadays,	
  animal	
  activists	
  could	
  get	
  upset	
  upon	
  considering	
  that	
  cows	
  are	
  point	
  masses.	
  	
  
6	
  See	
  translated	
  version:	
  Lapicque	
  L.	
  Quantitative	
  investigations	
  of	
  electrical	
  nerve	
  excitation	
  treated	
  
as	
  polarization.	
  Biological	
  Cybernetics	
  (2007)	
  97:341-­‐349.	
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spike generation outside the soma, sub-millisecond biophysics, neuronal 
geometry and many other important nuances of neurons.  
 
 It is quite straightforward to write code to simulate the dynamic behavior of 
integrate-and-fire units. A lot of people in Computational Neuroscience write code 
in a language called MATLAB, which is pretty easy7. Here is an ultra-simple (and 
not entirely correct for the aficionados) implementation of the integrate-and-fire 
unit. 
 
V(1)=V_res;        % initial voltage 
for t=2:n    % for each time in the simulation from 1 to n 

V(t)=V(t-1)+(dt/tau_m) * (E_L - V(t-1) + R_m * I_e(t));      
% Change in voltage at time t 
if (V(t)>V_th)  % If V(t) is above threshold V_th 

spk(t)=1;  % Emit a spike 
        V(t)=V_res;  % And reset the voltage to a value V_res 

end 
end 

 
In just a couple of lines, one can simulate a very simple differential 

equation and create spikes (spk) in response to arbitrary input currents (given by 
I_e(t)). As an example, you can set E_L=-65 mV, V_res=E_L, V_th=-50 mV, 
tau_m=10 ms, R_m=10 Mohm, n=1000 time steps, dt=0.1 ms. You can play with 
different input patterns (e.g. I_e=2+3*randn(n,1) )8. The shape of the action 
potentials is not modeled in the I&F unit. In some of the slide figures presented in 
the lecture, the action potential shape was artificially imposed every time the 
voltage crosses threshold. The I&F model can describe some of the basic 
instantaneous firing properties of cortical neurons. For example, when current is 
injected into a pyramidal neuron in cat primary visual cortex the initial firing rate 
computed from the first two spikes can be well approximated by an I&F model. 
Real neurons are fancier devices. Among other properties, neurons show 
adaptation and the firing rate for subsequent spikes (beyond the first two spikes) 
is not well described by the simple integrate-and-fire model (but adjustments can 
be made to describe adaptation (Gabbiani and Cox, 2010; Koch, 1999)). 
 

10.7. The Hodgkin-Huxley model 
 

In another remarkable example of powerful intuition and computational 
principles described by the experimenters collecting the data, Hodgkin and 
Huxley provided some of the fundamental insights into the generation of action 
potentials, even well before much of the subsequent biological characterization of 
different ionic channels (Hodgkin and Huxley, 1952). 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7	
  If	
  you	
  are	
  interested	
  in	
  learning	
  to	
  program	
  in	
  MATLAB,	
  there	
  are	
  lots	
  of	
  easy-­‐to-­‐follow	
  tutorials.	
  
For	
  example,	
  see	
  http://www.mathworks.com/academia/student_center/tutorials/launchpad.html	
  
	
  
8	
  You	
  can	
  download	
  annotated	
  MATLAB	
  code	
  and	
  related	
  materials	
  from:	
  
http://tinyurl.com/3mza84y	
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 The model incorporates the key sodium and potassium currents that are 
responsible for membrane depolarization and repolarization and characterize the 
shape of the action potential: 

I(t) = C dV
dt

+ gL (V − EL ) + gKn
4 (V − EK ) + gNam

3h(V − ENa )   

where EL, EK and ENa reflect the leak, potassium and sodium reversal potentials. 
gL is the leak conductance. gKn

4  describes the time and voltage-dependent 
potassium conductance and gNam

3h  describes the time and voltage-dependent 
sodium conductance.  
 

Again, it is relatively straightforward to write the necessary MATLAB code 
to simulate the dynamics in a Hodgkin-Huxley model unit9. The Hodgkin-Huxley 
model provides a significantly richer and more sophisticated view of intracellular 
voltage dynamics compared to the simpler integrate-and-fire models. Hodgkin-
Huxley neuron models are also widely used when exploring the properties of 
neurons and neuronal networks.  
 

10.8. Network models 
 

Even highly oversimplified neurons can perform interesting computations 
when connected in sophisticated ways. Collective computation refers to the 
emergent functional properties of a group of interconnected neurons. Ultimately, 
to understand the output of a complex system like the brain, we need to think 
about circuits of neurons and their interactions. Intuition often breaks down 
quickly when considering the activity of the circuit as a whole and network 
models can provide help to understand the emergence of properties of the circuit 
as a whole. 

 
To study fluid mechanics, one can abstract from the details of the 

collisions and trajectories of individual molecules in the fluid and instead 
characterize properties of the fluid such as temperature and viscosity. Similarly, 
most network models idealize and simplify the component units. 
 

Artificial networks can be built from simple electronic devices (operational 
amplifiers replace neurons; cables, resistors and capacitors replace axons, 
dendrites and synapses). The dynamics of such systems can also be simulated 
in computers (or clusters of computers). 
 

Some basic definitions and nomenclature can be helpful here in 
understanding the discussions in the literature. Theoreticians often describe 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9	
  I	
  recommend	
  the	
  neat	
  book	
  by	
  Gabbiani	
  and	
  Cox,	
  which	
  includes	
  a	
  lot	
  of	
  MATLAB	
  code	
  for	
  multiple	
  
different	
  types	
  of	
  neuronal	
  models:	
  Gabbiani	
  F,	
  Cox	
  S	
  (2010)	
  Mathematics	
  for	
  Neuroscientists.	
  
London:	
  Academic	
  Press.	
  
	
  



Neurobiology	
  130/230.	
  Visual	
  Object	
  Recognition	
   Gabriel	
  Kreiman©	
  
LECTURE	
  NOTES	
   	
   2015	
  

	
   7	
  

circuits of interconnected neurons, sometimes connected in an all-to-all fashion, 
sometimes organized into layers. The layers may be organized hierarchically 
(e.g. in lose analogy to the hierarchical organization of the visual system). In 
such a hierarchy, one can distinguish between bottom-up connections (from a 
unit in a lower layer to a unit in a higher layer), top-down connections (from a unit 
in a higher layer to a unit in a lower layer) and horizontal or recurrent synapses 
(connecting units in the same layer). The models may incorporate excitatory units 
or both excitatory and inhibitory units. 

 
10.9. Firing rate network models 
 

Firing rate network models constitute a simple yet important class of 
circuits. In the simplest instantiation, consider a feed-forward circuit with N units 
projecting to a given output unit. The input activity is given by the vector u. We 
can think of the components of u as the firing rate of each input unit. The output 
firing rate is given by v (v is a scalar). A synaptic kernel Ks describes how the 
input firing rate is (linearly) converted into an input current for the output unit. 
Theoreticians often represent the strength of a given synapse b (b=1,…,N) by a 
scalar value wb. This value could represent a combination of the probability of 
synaptic release from the pre-synaptic neuron and the amplitude of the post-
synaptic potential (positive or negative) evoked by the incoming 
neurotransmitters. The total input to the output unit Is is given by:  

Is = wb dτKs (t − τ )ub (τ )−∞

t

∫
b=1

N

∑   

where wb represents the weight or strength of each synapse. Using an 
exponential kernel, the dynamics of this circuit can be described by:  

τ s
dIs
dt

= −Is + wbub
b=1

N

∑   

The firing rate of the output unit is usually a non-linear function of the total input 
current: v = F(Is ) . F could be a sigmoid function or a rectifying threshold function. 
 

10.10. The perceptron and gradient descent 
 

So far, I have not quite told you how the weights w are set in the previous 
model. Now I would like to give you an example of a way of learning those 
weights that illustrates an interesting computation that this type of simple circuit 
can perform. The set of weights can be learnt to perform some interesting 
computation. For example, in one of the earliest instantiations of a biologically-
inspired computational algorithm the perceptron can be trained to perform 
interesting classification tasks. Imagine that we have some data that you want to 
classify into two possible groups. For example, there may be a collection of face 
images and you want to separate them into male faces and female faces. Each 
image, indexed by m, is a matrix of grayscale values that can be vectorized and 
represented by um. With each image, we have an associated label vm=+1 (female) 
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or -1 (male). We have a training set10 consisting of multiple such examples. In the 
two-layer perceptron network, we will consider the input to the output unit given 
by w.u. The output v will take the value +1 if w.u − γ ≥ 0 and -1 otherwise. The 
perceptron learning rule tells us how to choose the weights w to minimize the 
error in this classification task (Bishop, 1995). 

 
 Instead of a binary classification task, we may be interested in 
approximating a given output function h(s) (for example, h(s) could represent the 
firing rate of a neuron in cortex in response to a stimulus s). Gradient descent 
refers to changing w so as to minimize the error in this task by moving w along 
the direction of greatest change in the error w→ w + ∇wE .  
 

10.11. Example: digit recognition in a feed-forward network trained 
by gradient descent 

 
As an example of the application of some of these ideas, consider the task 

of learning to recognize hand-written digits from 0 to 9. LeCun and colleagues 
developed a simple feed-forward network, trained by gradient descent, that can 
perform this task quite well (LeCun et al., 1998). 
 

10.12. Extreme biological realism: the “blue brain” project 
 
 Many biologists strongly feel that oversimplified networks like the ones just 
described fail to capture the complexity and richness of neurobiological circuitry. 
At the other end of the spectrum in network models, one encounters efforts like 
the “blue brain” project (Markram, 2006). This project aims to introduce a 
significant amount of biological realism using complex and intensive network 
simulations. These networks often have large number of free parameters given 
that we still do not have sufficient data to constrain realistic models. The brief 
discussion above regarding the appropriate level of abstraction and realism in 
modeling single neurons is equally applicable here in the context of network 
models. 
 

10.13. Algorithms and methods for data analysis 
 

Many computational neuroscientists are also interested in the 
development of tools and resources to quantitatively and rigorously analyze 
neural data. I am not going to spend much time in this lecture describing these 
efforts but they do represent an important and rich repertoire of work. As a non-
exhaustive list of such efforts, some people are interested in the time-frequency 
analysis of neural signals (e.g. (Pesaran et al., 2002)), in the development of 
algorithms to perform spike sorting (e.g. (Lewicki, 1998)), in decoding the activity 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10	
  In	
  this	
  type	
  of	
  exercise,	
  it	
  is	
  always	
  very	
  important	
  to	
  separate	
  the	
  data	
  into	
  a	
  training	
  set	
  (used	
  to	
  
fit	
  parameters)	
  and	
  a	
  test	
  set	
  (used	
  to	
  evaluate	
  performance).	
  This	
  is	
  referred	
  to	
  as	
  cross-­‐validation.	
  
Without	
  cross-­‐validation,	
  training	
  may	
  lead	
  to	
  overfitting	
  the	
  data	
  without	
  power	
  to	
  generalize.	
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of neural ensembles (e.g. (Hung et al., 2005; Wilson and McNaughton, 1993)), in 
using information theory or other approaches to characterize neural coding (e.g. 
(Bialek et al., 1991; Gabbiani et al., 1996)). 
 

10.14. Example: computational models of visual recognition 
 
I will focus now on how some of the definitions and ideas above are 

applied in the context of a specific problem, namely, how to understand the 
computations underlying visual object recognition. I will summarize some of the 
initial steps towards a theoretical understanding of the computational principles 
behind transformation-invariance visual recognition in the primate cortex. 
 
10.14.1 Defining the problem 
 
 We start by defining what needs to be explained and the necessary 
constraints to solve the problem. A theory of visual object recognition, 
implemented by a computational model, should be able to explain the following 
phenomena and have the following characteristics: 

1. Selectivity. The primate visual system shows a remarkable degree 
of selectivity and can differentiate among shapes that appear to be very 
similar at the pixel level (e.g. arbitrary 3D shapes created from paperclips, 
different faces, etc.). Critical to object recognition, a model should be able 
to discriminate among physically similar but distinct shapes. 
2. Transformation tolerance. A trivial solution to achieve high 
selectivity would be to memorize all the pixels in the object. The problem 
with this type of algorithm is that it would not tolerate any changes in the 
image. An object can cast an infinite number of projections onto the retina. 
These changes arise due to changes in object position with respect to 
fixation, object scale, plane or depth rotation, changes in contrast or 
illumination, color, occlusion and others. The importance of combining 
selectivity and tolerance has been emphasized by many investigators (e.g. 
(Deco and Rolls, 2004b; Logothetis and Sheinberg, 1996; Olshausen et 
al., 1993; Riesenhuber and Poggio, 1999; Rolls, 1991; Serre et al., 2007a) 
among others).  
3. Speed. Visual recognition is very fast, as emphasized by many 
psychophysical investigations (Kirchner and Thorpe, 2006; Potter and 
Levy, 1969; Serre et al., 2007b), scalp EEG measurements (Thorpe et al., 
1996) and neurophysiological recordings in humans (Liu et al., 2009) and 
monkeys (e.g. (Hung et al., 2005; Keysers et al., 2001; Richmond et al., 
1983) among others). This speed imposes an important constraint to the 
number of computational steps that the visual system can use for pattern 
recognition (Rolls, 1991; Serre et al., 2007a).  
4. Generic. We can recognize a large variety of objects and shapes. 
Estimates about the exact number of objects or object categories that 
primates can discriminate vary widely depending on several assumptions 
and extrapolations (e.g. (Abbott et al., 1996; Biederman, 1987; Brady et 
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al., 2008; Standing, 1973)). Certain types of shapes may be particularly 
interesting, they may have more cortical real estate associated with them, 
they could be processed faster and could be independently impaired. For 
example, there has been extensive discussion in the literature about 
faces, their representation and how they can be different from other visual 
stimuli. Yet, independently of precise figures about the number of shapes 
that primates can discriminate and independently also of whether natural 
objects and faces are special or not, it is clear that there exists a generic 
system capable of discriminating among multiple arbitrary shapes. For 
simplicity and generality, we focus first on this generic shape recognition 
problem. Face recognition, or specialization for natural objects versus 
other shapes constitute interesting and important specific instantiations 
and sub problems of the general one that we try to address here. 
5. Implementable in a computational algorithm. A successful theory of 
visual object recognition needs to be described in sufficient detail to be 
implemented through computational algorithms. This requirement is 
important because the computational implementation allows us to run 
simulations and hence to quantitatively compare the performance of the 
model against behavioral metrics. The simulations also lend themselves to 
a direct comparison of the model’s computational steps and 
neurophysiological responses at different stages of the visual processing 
circuitry. The algorithmic implementation forces us to rigorously state the 
assumptions and formalize the computational steps; in this way, 
computational models can be more readily compared than “armchair” 
theories and models. The implementation can also help us debug the 
theory by discovering hidden assumptions, bottlenecks and challenges 
that the algorithms cannot solve or where performance is poor. There are 
multiple fascinating ideas and theories about visual object recognition that 
have not been implemented through computational algorithms. These 
ideas can be extremely useful and helpful for the field and can inspire the 
development of computational models. Yet, we emphasize that we cannot 
easily compare theories that can be and have been implemented against 
other ones that have not.  
6. Restricted to primates. Here we restrict the discussion to object 
recognition in primates. There are strong similarities in visual object 
recognition at the behavioral and neurophysiological levels between 
macaque monkeys (one of the prime species for neurophysiological 
studies) and humans (e.g. (Kriegeskorte et al., 2008; Liu et al., 2009; 
Logothetis and Sheinberg, 1996; Myerson et al., 1981; Nielsen et al., 
2006; Orban, 2004).  
7. Biophysically plausible. There are multiple computational 
approaches to visual object recognition. Here we restrict the discussion to 
models that are biophysically plausible. In doing so, we ignore a vast 
literature in Computer Vision where investigators are trying to solve similar 
problems without direct reference to the cortical circuitry. These 
engineering approaches are extremely interesting and useful from a 
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practical viewpoint. Ultimately, in the same way that computers can 
become quite successful at playing chess without any direct connection to 
the way humans play chess, computer vision approaches can achieve 
high performance without mimicking neuronal circuits. Here we restrict the 
discussion to biophysically plausible algorithms. 
8. Restricted to the visual system. The visual system is not isolated 
from the rest of the brain and there are plenty of connections between 
visual cortex and other sensory cortices, between visual cortex and 
memory systems in the medial temporal lobe and between the visual 
cortex and frontal cortex. It is likely that these connections also play an 
important role in the process of visual recognition, particularly through 
feedback signals that incorporate expectations (e.g. the probability that 
there is a lion in an office setting is very small), prior knowledge and 
experience (e.g. the object appears similar to another object that we are 
familiar with), cross-modal information (e.g. the object is likely to be a 
musical instrument because of the sound). To begin with and to simplify 
the problem, we restrict the discussion to the visual system.  

 
10.14.2 Visual recognition goes beyond identifying objects in single images 
 
 We emphasize that visual recognition is far more complex than the 
identification of specific objects. Under natural viewing conditions, objects are 
embedded in complex scenes and need to be separated from their background. 
How this segmentation occurs constitutes an important challenge in itself. 
Segmentation depends on a variety of cues including sharp edges, texture 
changes and object motion among others. Some object recognition models 
assume that segmentation must occur prior to recognition. There is no clear 
biological evidence for segmentation prior to recognition and therefore this 
constitutes a weakness in such approaches. We do not discuss segmentation 
here (see (Borenstein et al., 2004; Sharon et al., 2006) for recent examples of 
segmentation algorithms). 
 Most object recognition models are based on studying static images. 
Under natural viewing conditions, there are important cues that depend on the 
temporal integration of information. These dynamic cues can significantly 
enhance recognition. Yet, it is clear that we can recognize objects in static 
images and therefore many models focus on the reduced version the pattern 
recognition problem using static objects. Here we also focus on static images. 
 We can perform a variety of complex tasks that rely on visual information 
that are different from identification. For example, we can put together images of 
snakes, lions and dolphins and categorize them as animals. Categorization is a 
very important problem in vision research and it also constitutes a formidable 
challenge for computer-based approaches. Here we focus on the question of 
object identification. 
 
10.14.3 Modeling the ventral visual stream – Common themes 
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 Several investigators have proposed computational models that aim to 
capture some of the essential principles behind the transformations along the 
primate ventral visual stream. Before discussing some of those models in more 
detail, we start by providing some common themes that are shared by many of 
these models. 
 The input to the models is typically an image, defined by a matrix that 
contains the grayscale value of each pixel. Object shapes can be discriminated 
quite well in grayscale images and, therefore, most models ignore the added 
complexities of color processing (but eventually it will also be informative and 
important to add color to these models). Because the focus is often on the 
computational properties of ventral visual cortex, several investigators often 
ignore the complexities of modeling the computations in the retina and LGN; the 
pixels are meant to coarsely represent the output of retinal ganglion cells or LGN 
cells. This is of course one of the many oversimplifications in several 
computation models given that we know that images go through a number of 
transformations before retinal ganglion cells convey information to the LGN and 
on to cortex (Meister, 1996). 
 Most models have a hierarchical and deep structure that aims to mimic the 
approximately hierarchical architecture of ventral visual cortex (Felleman and 
Van Essen, 1991; Maunsell, 1995). The properties of deep networks has 
received considerable attention in the computational world, even if the 
mathematics of learning in deep networks that include non-linear responses is far 
less understood than shallow counterparts (Poggio and Smale, 2003). It seems 
that neocortex and computer modelers have adopted a Divide and Conquer 
strategy whereby a complex problem is divided into many simpler tasks.  
 Most computational models assume, explicitly or implicitly, that cortex is 
cortex, and hence that there exist canonical microcircuits and computations that 
are repeated over and over throughout the hierarchy (Douglas and Martin, 2004; 
Riesenhuber and Poggio, 1999; Serre et al., 2007a). 
 As we ascend through the hierarchical structure of the model, units in 
higher levels typically have larger receptive fields, respond to more complex 
visual features and show an increased degree of tolerance to transformations of 
their preferred features. 
 
10.14.4 A panoply of models 
 
 We summarize here a few important ideas that have been developed to 
describe visual object recognition. The presentation here is neither an exhaustive 
list nor a thorough discussion of each of these approaches. For a more detailed 
discussion of several of these approaches, see (Deco and Rolls, 2004a; LeCun 
et al., 1998; Riesenhuber and Poggio, 2002; Serre et al., 2005a; Ullman, 1996). 
 Straightforward template matching does not work for pattern recognition. 
Even shifting a pattern by one pixel would pose significant challenges for an 
algorithm that merely compares the input with a stored pattern on a pixel-by-pixel 
fashion. As noted at the beginning of this chapter, a key challenge to recognition 
is that an object can lead to infinite number of retinal images depending on its 
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size, position, illumination, etc. If all objects were always presented in a 
standardized position, scale, rotation and illumination, recognition would be 
considerably easier (DiCarlo and Cox, 2007; Serre et al., 2007a). Based on this 
notion, several approaches are based on trying to transform an incoming object 
into a canonical prototypical format by shifting, scaling and rotating objects (e.g. 
(Ullman, 1996)). The type of transformations required is usually rather complex, 
particularly for non-affine transformations. While some of these problems can be 
overcome by ingenious computational strategies, it is not entirely clear (yet) how 
the brain would implement such complex calculations nor is there currently any 
clear link to the type of neurophysiological responses observed in ventral visual 
cortex. 
A number of approaches are based on decomposing an object into its 
component parts and their interactions. The idea behind this notion is that there 
could be a small dictionary of object parts and a small set of possible interactions 
that act as building blocks of all objects. Several of these ideas can be traced 
back to the prominent work of David Marr (Marr, 1982; Marr and Nishihara, 1978) 
where those constituent parts were based on generalized cone shapes. The 
artificial intelligence community also embraced the notion of structural 
descriptions (Winston, 1975). In the same way that a mathematical function can 
be decomposed into a sum over a certain basis set (e.g. polynomials or sine and 
cosine functions), the idea of thinking about objects as a sum over parts is 
attractive because it may be possible and easier to detect these parts in a 
transformation-invariant manner (Biederman, 1987; Mel, 1997). In the simplest 
instantiations, these models are based on merely detecting a conjunction of 
object parts, an approach that suffers from the fact that part rearrangements 
would not impair recognition but they should (e.g. a house with a garage on the 
roof and the chimney on the floor). More elaborate versions include part 
interactions and relative positions. Yet, this approach seems to convert the 
problem of object recognition to the problem of object part recognition plus the 
problem of object parts interaction recognition. It is not entirely obvious that 
object part recognition would be a trivial problem in itself nor is it obvious that any 
object can be uniquely and succinctly described by a universal and small 
dictionary of simpler parts. It is not entirely trivial how recognition of complex 
shapes (e.g. consider discriminating between two faces) can be easily described 
in terms of a structural description of parts and their interactions. Computational 
implementations of these structural descriptions have been sparse (see however 
(Hummel and Biederman, 1992)). More importantly, it is not entirely apparent 
how these structural descriptions relate to the neurophysiology of the ventral 
visual cortex (see however (Vogels et al., 2001)). 
 A series of computational algorithms, typically rooted in the neural network 
literature (Hinton, 1992), attempt to build deep structures where inputs can be 
reconstructed (for a recent version of this, see e.g. (Hinton and Salakhutdinov, 
2006). In an extreme version of this approach, there is no information loss along 
the deep hierarchy and backward signals carry information capable of re-creating 
arbitrary inputs in lower visual areas. There are a number of interesting 
applications for such “auto-encoder” deep networks such as the possibility of 
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performing dimensionality reduction. From a neurophysiological viewpoint, 
however, it seems that the purpose of cortex is precisely the opposite, namely, to 
lose information in biologically interesting ways. It is not clear why one build an 
entire network to copy the input (possibly with fewer units). In other words, as 
emphasized at the beginning of this chapter, it seems that a key goal of ventral 
visual cortex is to be able to extract biologically relevant information (e.g. object 
identity) in spite of changes in the input at the pixel level.  
 Particularly within the neurophysiology community, there exist several 
“metric” approaches where investigators attempt to parametrically define a space 
of shapes and then record the activity of neurons along the ventral visual stream 
in response to these shapes (Brincat and Connor, 2004; Connor et al., 2007; 
Tanaka, 1996). This dictionary of shapes can be more or less quantitatively 
defined. For example, in some cases, investigators start by presenting different 
shapes in search of a stimulus that elicits strong responses. Subsequently, they 
manipulate the “preferred” stimulus by removing different parts and evaluating 
how the neuronal responses are modified by these transformations. While 
interesting, these approaches suffer from the difficulties inherent in considering 
arbitrary shapes that may or may not constitute truly “preferred” stimuli. 
Additionally, in some cases, the transformations examined only reveal 
anthropomorphic biases about what features could be relevant. Another 
approach is to define shapes parametrically. For example, Brincat and 
colleagues considered a family of curvatures and modeled responses in a six-
dimensional space defined by a sum of Gaussians with parameters given by the 
curvature, orientation, relative position and absolute position of the contour 
elements in the display. This approach is intriguing because it has the attractive 
property of allowing investigators to plot “tuning curves” similar to the ones used 
to represent the activity of units in earlier visual areas. Yet, it also makes strong 
assumptions about the type of shapes preferred by the units. Expanding on these 
ideas, investigators have tried to start from generic shapes and use genetic 
algorithms whose trajectories are guided by the neuronal preferences (Yamane 
et al., 2008). What is particularly interesting about this approach is that it seems 
to be less biased than the former two. The key limitation here is the recording 
time and this type of algorithm, particularly with small data sets, may converge 
onto local minima or even not converge at all. Genetic algorithms can be more 
thoroughly examined in the computational domain. For example, investigators 
can examine a huge variety of computational models and let them “compete” with 
each other through evolutionary mechanisms (Pinto et al., 2009). To guide the 
evolutionary paths, it is necessary to define a cost function; for example, 
evolution can be constrained by rewarding models that achieve better 
performance in certain recognition tasks. This type of approach can lead to 
models with high performance (although it also suffers from difficulties related to 
local minima). Unfortunately, it is not obvious that better performance necessarily 
implies any better approximation to the way in which cortex solves the visual 
recognition problem. 
  
10.14.5 Bottom-up hierarchical models of the ventral visual stream 
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 A hierarchical network model can be described by a series of layers 
i = 0,1,...,N . Each layer contains n(i) × n(i)  units arranged in a matrix. The 
activity of each unit in each layer can be represented by the matrix xi 
( xi ∈

n(i )×n(i ) ). In several models, xi(j,k) (i.e., the activity of unit at position j,k in 
layer i) is a scalar value interpreted as the firing rate of the unit. The initial layer is 
defined as the input image; x0 represents the (grayscale) values of the pixels a 
given image. 
 Equations 1 and 2 above constitute the initial steps for many object 
recognition models and capitalize on the more studied parts of the visual system, 
the pathway from the retina to primary visual cortex. The output of Equation 2, 
after convolving the output of center-surround receptive fields with a Gabor 
function, can be thought of as a first order approximation to the edges in the 
image. As noted above, our understanding of ventral visual cortex beyond V1 is 
far more primitive and it is therefore not surprising that this is where most models 
diverge. In a first order simplification, we can generically describe the 
transformations along the ventral visual stream as: 
xi+1 = fi (xi )         Equation 14.1 
This assumes that the activity in a given layer only depends on the activity 
pattern in the previous layer. This assumption implies that at least three types of 
connections are ignored: (i) connections that “skip” a layer in the hierarchy (e.g. 
synapses from the LGN to V4 skipping V1); (ii) top-down connections (e.g. 
synapses from V2 to V1 (Virga, 1989)) and (iii) connections within a layer (e.g. 
horizontal connections between neurons with similar preferences in V1 
(Callaway, 1998)) are not included in Equation 14.1.  
The sub index i in the function f indicates that the transformation from one layer 
to another is not necessarily the same. A simple form that f could take is a linear 
function: 
xi+1 =Wixi         Equation 14.2 
where the matrix Wi represents the linear weights that transform activity in layer i 
into activity in layer i+1. Not all neurons in layer i need to be connected to all 
neurons in layer i+1; in other words, many entries in W can be 0. This simple 
formulation fins some empirical evidence; for example, Hubel and Wiesel 
proposed that the oriented filters in primary visual cortex could arise from a linear 
summation of the activity of neurons in the lateral geniculate nucleus with 
appropriately aligned center-surround receptive fields (Hubel and Wiesel, 1962). 
Unfortunately, neurons are far more intricate devices and non-linearities abound 
in their response properties. For example, Hubel and Wiesel also described the 
activity of so-called complex cells that are also orientation tuned but show a non-
linear response as a function of spatial frequency or bar length.  
It is tacitly assumed by most modelers that there exist general rules, often 
summarized in the epithet “cortex is cortex”, such that only a few such 
transformations are allowed. One of the early models that aimed to describe 
object recognition, inspired by the neurophysiological findings of Hubel and 
Wiesel, was the neocognitron (Fukushima, 1980) (see also earlier theoretical 
ideas in (Sutherland, 1968)). This model had two possible operations, a linear 
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tuning function (performed by “simple” cells) and a non-linear OR operation 
(performed by “complex” cells). These two operations were alternated and 
repeated through the multiple layers in the deep hierarchy. This model 
demonstrated the feasibility of such linear/non-linear cascades in achieving scale 
and position tolerance in a letter recognition task. Several subsequent efforts 
(Amit and Mascaro, 2003; Deco and Rolls, 2004b; LeCun et al., 1998; Olshausen 
et al., 1993; Riesenhuber and Poggio, 1999; Wallis and Rolls, 1997) were 
inspired by the Neocognitron architecture. 
 One such effort to expand on the computational abilities of the 
Neocognitron in the computational model developed in the Poggio group 
(Riesenhuber and Poggio, 1999; Serre et al., 2005a; Serre et al., 2007a). This 
model is characterized by a purely feed-forward and hierarchical architecture. An 
image, represented by grayscale values, is convolved with Gabor filters at 
multiple scales and positions to mimic the responses of simple cells in primary 
visual cortex. Like other efforts, the model consists of a cascade of linear and 
non-linear operations. These operations come in only two flavors in the model: a 
tuning operation and soft-max operation. Both operations can be expressed in 
the following form: 

xi+1[k] = g
w[ j,k] xi

p[ j]
j=1

n

∑
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q[ j]
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     Equation 14.3 

where xi+1[k]  represents the activity of unit k in layer i+1, w[ j,k]  represents the 
connection weight between unit j in layer i and unit k in layer b+1, p, q, r are 
integer constants, a is a normalization constant and g is a nonlinear function (e.g. 
sigmoid). Depending on the values of p, q and r different interesting behaviors 
can be obtained. In particular, taking r=1/2, p=1, q=2, leads to a tuning operation: 
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      Equation 14.3’ 

The responses of the unit are controlled by the weights w. As emphasized 
above, tuning is a central aspect of any computational model of visual 
recognition, allowing units along the hierarchy to respond to increasingly more 
elaborate features.  Taking w=1, p=q+1, r=1, leads to a softmax operation, 
particularly for large values of q: 
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Of note, the unit with response xi+1[k]  shows similar response tuning to the units 
with response xi[ j]  for j = 1,...,n . Yet, the higher-level unit shows a stronger 
degree of tolerance to those aspects of the response that differentiate the 
responses of different units with similar tuning in layer i. For example, different 
units in layer i may show identical feature preferences but have slightly different 
receptive fields. A winner-take-all unit in layer i+1 that takes as input the 
responses of those units would inherit the same feature preferences but would 
reveal a larger receptive and tolerate changes in the position of the feature within 
the larger receptive field. Both operations can be implemented through relatively 
simple biophysical circuits (Kouh and Poggio, 2004). 
 This and similar architectures have been subjected to several tests 
including comparison with psychophysical measurements (e.g. (Serre et al., 
2007b)), comparison with neurophysiological responses (e.g. (Cadieu et al., 
2007; Deco and Rolls, 2004b; Hung et al., 2005; Lampl et al., 2004; Serre et al., 
2005a) and quantitative evaluation of performance in computer vision recognition 
tasks (e.g. (LeCun et al., 1998; Mutch and Lowe, 2006; Serre et al., 2005b)).  
 
10.14.6 Top-down signals in visual recognition 
 In spite of the multiple simplifications, the success of bottom-up 
architecture in describing a large number of visual recognition phenomena 
suggest that they may not be a bad first cut. As emphasized above, bottom-up 
architectures constitute only an approximation to the complexities and wonders 
of neocortical computation. One of the several simplifications in bottom-up 
models is the lack of top-down signals. We know that there are abundant back-
projections in neocortex (e.g. (Callaway, 2004; Douglas and Martin, 2004; 
Felleman and Van Essen, 1991)). The functions of top-down connections have 
been less studied at the neurophysiological level but there is no shortage of 
computational models illustrating the rich array of computations that emerge with 
such connectivity. Several models have used top-down connections to guide 
attention to specific locations or specific features within the image (e.g. (Itti and 
Koch, 2001; Olshausen et al., 1993))(Chikkerur et al., 2009; Compte and Wang, 
2006; Deco and Rolls, 2005; Rao, 2005; Tsotsos, 1990). The allocation of 
attention to specific parts of an image can significantly enhance recognition 
performance by alleviating the problems associated with image segmentation 
and with clutter.   
 Top-down signals can also play an important role in recognition of 
occluded objects. When only partial object information is available, the system 
must be able to perform object completion and interpret the image based on prior 
knowledge. Attractor networks have been shown to be able to retrieve the 
identity of stored memories from partial information (e.g. (Hopfield, 1982)). Some 
computational models have combined bottom-up architectures with attractor 
networks at the top of the hierarchy (e.g. (Deco and Rolls, 2004b)).  
During object completion, top-down signals could play an important role by 
providing prior stored information that influences the bottom-up sensory 
responses. Several proposals have argued that visual recognition can be 
formulated as a Bayesian inference problem (Chikkerur et al., 2009; Lee and 
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Mumford, 2003; Mumford, 1992; Rao, 2004; Rao et al., 2002; Yuille and Kersten, 
2006). Considering three layers of the visual cascade (e.g. LGN, V1 and higher 
areas), and denoting activity in those layers as x0, x1 and xh respectively, then 
the probability of obtaining a given response pattern in V1 depends both on the 
sensory input as well as feedback from higher areas:  

P(x1 x0 ) =
P(x0 x1)P(x1 xh )

P(x0 xh )
      Equation 14.8 

where P(x1 xh ) represents the feedback biases conveying prior information. An 
intriguing idea proposed by Rao and Ballard argues that top-down connections 
provide predictive signals whereas bottom-up signals convey the difference 
between the sensory input and the top-down predictions (Rao and Ballard, 1999). 
 

10.15. Hopfield networks 
 

Hopfield developed a nice formalism to understand the properties of 
certain classes of networks (Hopfield, 1982; Tank and Hopfield, 1987). What is 
particularly attractive about these networks (no pun intended) is that there are 
emergent properties of the circuit that are not easy to identify or describe upon 
considering only individual units without paying attention to the interactions. The 
circuits can solve rather challenging computational problems and they have 
interesting properties such as robustness to perturbations and the possibility of 
performing pattern completion.  
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