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BEWARE: These are preliminary notes. In the future, they will become part of a textbook 
on Visual Object Recognition.  
 
 

Chapter XI.  Towards a biologically plausible 
computational model of ventral visual cortex  

 
	

We have now come a long way since our initial steps towards defining the 
proble of visual recognition. We started with characterizing the spatial and 
temporal statistics of natural images (Lecture 2). We explored how neurons along 
ventral visual cortex respond to a variet of different stimulus conditions (Lectures 
3, 5, 7, 8). We described the recognition impairments that arise through cortical 
lesions (Lecture 4) and the effect of applying currents to the neural circuitry 
(Lecture 9). We would like to put all of these separate bits and pieces of data into 
a coherent framework to rigorously understand how neuronal circuits help us 
recognize objecst. Here we summarize some of the initial steps towards a 
theoretical understanding of the computational principles behind transformation-
invariance visual recognition in the primate cortex. 
 

11.1. Defining the problem 
 
 We start by defining what needs to be explained and the necessary 
constraints to solve the problem. A theory of visual object recognition, 
implemented by a computational model, should be able to explain the following 
phenomena and have the following characteristics: 

1. Selectivity. The primate visual system shows a remarkable degree 
of selectivity and can differentiate among shapes that appear to be very 
similar at the pixel level (e.g. arbitrary 3D shapes created from paperclips, 
different faces, etc.). Critical to object recognition, a model should be able 
to discriminate among physically similar but distinct shapes. 
2. Transformation tolerance. A trivial solution to achieve high 
selectivity would be to memorize all the pixels in the object. The problem 
with this type of algorithm is that it would not tolerate any changes in the 
image. An object can cast an infinite number of projections onto the retina. 
These changes arise due to changes in object position with respect to 
fixation, object scale, plane or depth rotation, changes in contrast or 
illumination, color, occlusion and others. The importance of combining 
selectivity and tolerance has been emphasized by many investigators (e.g. 
(Rolls, 1991; Olshausen et al., 1993; Logothetis and Sheinberg, 1996; 
Riesenhuber and Poggio, 1999; Deco and Rolls, 2004b; Serre et al., 
2007b) among others).  
3. Speed. Visual recognition is very fast, as emphasized by many 
psychophysical investigations (Potter and Levy, 1969; Kirchner and 
Thorpe, 2006; Serre et al., 2007a), scalp EEG measurements (Thorpe et 
al., 1996) and neurophysiological recordings in humans (Liu et al., 2009) 
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and monkeys (e.g. (Richmond et al., 1983; Keysers et al., 2001; Hung et 
al., 2005) among others). This speed imposes an important constraint to 
the number of computational steps that the visual system can use for 
pattern recognition (Rolls, 1991; Serre et al., 2007b).  
4. Generic. We can recognize a large variety of objects and shapes. 
Estimates about the exact number of objects or object categories that 
primates can discriminate vary widely depending on several assumptions 
and extrapolations (e.g. (Standing, 1973; Biederman, 1987; Abbott et al., 
1996; Brady et al., 2008)). Certain types of shapes may be particularly 
interesting, they may have more cortical real estate associated with them, 
they could be processed faster and could be independently impaired. For 
example, there has been extensive discussion in the literature about 
faces, their representation and how they can be different from other visual 
stimuli. Yet, independently of precise figures about the number of shapes 
that primates can discriminate and independently also of whether natural 
objects and faces are special or not, it is clear that there exists a generic 
system capable of discriminating among multiple arbitrary shapes. For 
simplicity and generality, we focus first on this generic shape recognition 
problem. Face recognition, or specialization for natural objects versus 
other shapes constitute interesting and important specific instantiations 
and sub problems of the general one that we try to address here. 
5. Implementable in a computational algorithm. A successful theory of 
visual object recognition needs to be described in sufficient detail to be 
implemented through computational algorithms. This requirement is 
important because the computational implementation allows us to run 
simulations and hence to quantitatively compare the performance of the 
model against behavioral metrics. The simulations also lend themselves to 
a direct comparison of the model’s computational steps and 
neurophysiological responses at different stages of the visual processing 
circuitry. The algorithmic implementation forces us to rigorously state the 
assumptions and formalize the computational steps; in this way, 
computational models can be more readily compared than “armchair” 
theories and models. The implementation can also help us debug the 
theory by discovering hidden assumptions, bottlenecks and challenges 
that the algorithms cannot solve or where performance is poor. There are 
multiple fascinating ideas and theories about visual object recognition that 
have not been implemented through computational algorithms. These 
ideas can be extremely useful and helpful for the field and can inspire the 
development of computational models. Yet, we emphasize that we cannot 
easily compare theories that can be and have been implemented against 
other ones that have not.  
6. Restricted to primates. Here we restrict the discussion to object 
recognition in primates. There are strong similarities in visual object 
recognition at the behavioral and neurophysiological levels between 
macaque monkeys (one of the prime species for neurophysiological 
studies) and humans (e.g. (Myerson et al., 1981; Logothetis and 
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Sheinberg, 1996; Orban, 2004; Nielsen et al., 2006; Kriegeskorte et al., 
2008; Liu et al., 2009).  
7. Biophysically plausible. There are multiple computational 
approaches to visual object recognition. Here we restrict the discussion to 
models that are biophysically plausible. In doing so, we ignore a vast 
literature in Computer Vision where investigators are trying to solve similar 
problems without direct reference to the cortical circuitry. These 
engineering approaches are extremely interesting and useful from a 
practical viewpoint. Ultimately, in the same way that computers can 
become quite successful at playing chess without any direct connection to 
the way humans play chess, computer vision approaches can achieve 
high performance without mimicking neuronal circuits. Here we restrict the 
discussion to biophysically plausible algorithms. 
8. Restricted to the visual system. The visual system is not isolated 
from the rest of the brain and there are plenty of connections between 
visual cortex and other sensory cortices, between visual cortex and 
memory systems in the medial temporal lobe and between the visual 
cortex and frontal cortex. It is likely that these connections also play an 
important role in the process of visual recognition, particularly through 
feedback signals that incorporate expectations (e.g. the probability that 
there is a lion in an office setting is very small), prior knowledge and 
experience (e.g. the object appears similar to another object that we are 
familiar with), cross-modal information (e.g. the object is likely to be a 
musical instrument because of the sound). To begin with and to simplify 
the problem, we restrict the discussion to the visual system.  

 
11.2. Visual recognition goes beyond identifying objects in single images 

 
 We emphasize that visual recognition is far more complex than the 
identification of specific objects. Under natural viewing conditions, objects are 
embedded in complex scenes and need to be separated from their background. 
How this segmentation occurs constitutes an important challenge in itself. 
Segmentation depends on a variety of cues including sharp edges, texture 
changes and object motion among others. Some object recognition models 
assume that segmentation must occur prior to recognition. There is no clear 
biological evidence for segmentation prior to recognition and therefore this 
constitutes a weakness in such approaches. We do not discuss segmentation 
here (see (Borenstein et al., 2004; Sharon et al., 2006) for recent examples of 
segmentation algorithms). 
 Most object recognition models are based on studying static images. 
Under natural viewing conditions, there are important cues that depend on the 
temporal integration of information. These dynamic cues can significantly 
enhance recognition. Yet, it is clear that we can recognize objects in static 
images and therefore many models focus on the reduced version the pattern 
recognition problem using static objects. Here we also focus on static images. 
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 We can perform a variety of complex tasks that rely on visual information 
that are different from identification. For example, we can put together images of 
snakes, lions and dolphins and categorize them as animals. Categorization is a 
very important problem in vision research and it also constitutes a formidable 
challenge for computer-based approaches. Here we focus on the question of 
object identification. 
 
 

11.3. Modeling the ventral visual stream – Common themes 
 
 Several investigators have proposed computational models that aim to 
capture some of the essential principles behind the transformations along the 
primate ventral visual stream. Before discussing some of those models in more 
detail, we start by providing some common themes that are shared by many of 
these models. 
 The input to the models is typically an image, defined by a matrix that 
contains the grayscale value of each pixel. Object shapes can be discriminated 
quite well in grayscale images and, therefore, most models ignore the added 
complexities of color processing (but eventually it will also be informative and 
important to add color to these models). Because the focus is often on the 
computational properties of ventral visual cortex, several investigators often 
ignore the complexities of modeling the computations in the retina and LGN; the 
pixels are meant to coarsely represent the output of retinal ganglion cells or LGN 
cells. This is of course one of the many oversimplifications in several 
computation models given that we know that images go through a number of 
transformations before retinal ganglion cells convey information to the LGN and 
on to cortex (Meister, 1996). 
 Most models have a hierarchical and deep structure that aims to mimic the 
approximately hierarchical architecture of ventral visual cortex (Felleman and 
Van Essen, 1991; Maunsell, 1995). The properties of deep networks has 
received considerable attention in the computational world, even if the 
mathematics of learning in deep networks that include non-linear responses is far 
less understood than shallow counterparts (Poggio and Smale, 2003). It seems 
that neocortex and computer modelers have adopted a Divide and Conquer 
strategy whereby a complex problem is divided into many simpler tasks.  
 Most computational models assume, explicitly or implicitly, that cortex is 
cortex, and hence that there exist canonical microcircuits and computations that 
are repeated over and over throughout the hierarchy (Riesenhuber and Poggio, 
1999; Douglas and Martin, 2004; Serre et al., 2007b). 
 As we ascend through the hierarchical structure of the model, units in 
higher levels typically have larger receptive fields, respond to more complex 
visual features and show an increased degree of tolerance to transformations of 
their preferred features. 
 

11.4. A panoply of models 
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 We summarize here a few important ideas that have been developed to 
describe visual object recognition. The presentation here is neither an exhaustive 
list nor a thorough discussion of each of these approaches. For a more detailed 
discussion of several of these approaches, see (Ullman, 1996; LeCun et al., 
1998; Riesenhuber and Poggio, 2002; Deco and Rolls, 2004a; Serre et al., 
2005b). 
 Straightforward template matching does not work for pattern recognition. 
Even shifting a pattern by one pixel would pose significant challenges for an 
algorithm that merely compares the input with a stored pattern on a pixel-by-pixel 
fashion. As noted at the beginning of this chapter, a key challenge to recognition 
is that an object can lead to infinite number of retinal images depending on its 
size, position, illumination, etc. If all objects were always presented in a 
standardized position, scale, rotation and illumination, recognition would be 
considerably easier (DiCarlo and Cox, 2007; Serre et al., 2007b). Based on this 
notion, several approaches are based on trying to transform an incoming object 
into a canonical prototypical format by shifting, scaling and rotating objects (e.g. 
(Ullman, 1996)). The type of transformations required is usually rather complex, 
particularly for non-affine transformations. While some of these problems can be 
overcome by ingenious computational strategies, it is not entirely clear (yet) how 
the brain would implement such complex calculations nor is there currently any 
clear link to the type of neurophysiological responses observed in ventral visual 
cortex. 
A number of approaches are based on decomposing an object into its 
component parts and their interactions. The idea behind this notion is that there 
could be a small dictionary of object parts and a small set of possible interactions 
that act as building blocks of all objects. Several of these ideas can be traced 
back to the prominent work of David Marr (Marr and Nishihara, 1978; Marr, 1982) 
where those constituent parts were based on generalized cone shapes. The 
artificial intelligence community also embraced the notion of structural 
descriptions (Winston, 1975). In the same way that a mathematical function can 
be decomposed into a sum over a certain basis set (e.g. polynomials or sine and 
cosine functions), the idea of thinking about objects as a sum over parts is 
attractive because it may be possible and easier to detect these parts in a 
transformation-invariant manner (Biederman, 1987; Mel, 1997). In the simplest 
instantiations, these models are based on merely detecting a conjunction of 
object parts, an approach that suffers from the fact that part rearrangements 
would not impair recognition but they should (e.g. a house with a garage on the 
roof and the chimney on the floor). More elaborate versions include part 
interactions and relative positions. Yet, this approach seems to convert the 
problem of object recognition to the problem of object part recognition plus the 
problem of object parts interaction recognition. It is not entirely obvious that 
object part recognition would be a trivial problem in itself nor is it obvious that any 
object can be uniquely and succinctly described by a universal and small 
dictionary of simpler parts. It is not entirely trivial how recognition of complex 
shapes (e.g. consider discriminating between two faces) can be easily described 
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in terms of a structural description of parts and their interactions. Computational 
implementations of these structural descriptions have been sparse (see however 
(Hummel and Biederman, 1992)). More importantly, it is not entirely apparent 
how these structural descriptions relate to the neurophysiology of the ventral 
visual cortex (see however (Vogels et al., 2001)). 
 A series of computational algorithms, typically rooted in the neural network 
literature (Hinton, 1992), attempt to build deep structures where inputs can be 
reconstructed (for a recent version of this, see e.g. (Hinton and Salakhutdinov, 
2006). In an extreme version of this approach, there is no information loss along 
the deep hierarchy and backward signals carry information capable of re-creating 
arbitrary inputs in lower visual areas. There are a number of interesting 
applications for such “auto-encoder” deep networks such as the possibility of 
performing dimensionality reduction. From a neurophysiological viewpoint, 
however, it seems that the purpose of cortex is precisely the opposite, namely, to 
lose information in biologically interesting ways. It is not clear why one build an 
entire network to copy the input (possibly with fewer units). In other words, as 
emphasized at the beginning of this chapter, it seems that a key goal of ventral 
visual cortex is to be able to extract biologically relevant information (e.g. object 
identity) in spite of changes in the input at the pixel level.  
 Particularly within the neurophysiology community, there exist several 
“metric” approaches where investigators attempt to parametrically define a space 
of shapes and then record the activity of neurons along the ventral visual stream 
in response to these shapes (Tanaka, 1996; Brincat and Connor, 2004; Connor 
et al., 2007). This dictionary of shapes can be more or less quantitatively defined. 
For example, in some cases, investigators start by presenting different shapes in 
search of a stimulus that elicits strong responses. Subsequently, they manipulate 
the “preferred” stimulus by removing different parts and evaluating how the 
neuronal responses are modified by these transformations. While interesting, 
these approaches suffer from the difficulties inherent in considering arbitrary 
shapes that may or may not constitute truly “preferred” stimuli. Additionally, in 
some cases, the transformations examined only reveal anthropomorphic biases 
about what features could be relevant. Another approach is to define shapes 
parametrically. For example, Brincat and colleagues considered a family of 
curvatures and modeled responses in a six-dimensional space defined by a sum 
of Gaussians with parameters given by the curvature, orientation, relative 
position and absolute position of the contour elements in the display. This 
approach is intriguing because it has the attractive property of allowing 
investigators to plot “tuning curves” similar to the ones used to represent the 
activity of units in earlier visual areas. Yet, it also makes strong assumptions 
about the type of shapes preferred by the units. Expanding on these ideas, 
investigators have tried to start from generic shapes and use genetic algorithms 
whose trajectories are guided by the neuronal preferences (Yamane et al., 2008). 
What is particularly interesting about this approach is that it seems to be less 
biased than the former two. The key limitation here is the recording time and this 
type of algorithm, particularly with small data sets, may converge onto local 
minima or even not converge at all. Genetic algorithms can be more thoroughly 
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examined in the computational domain. For example, investigators can examine 
a huge variety of computational models and let them “compete” with each other 
through evolutionary mechanisms (Pinto et al., 2009). To guide the evolutionary 
paths, it is necessary to define a cost function; for example, evolution can be 
constrained by rewarding models that achieve better performance in certain 
recognition tasks. This type of approach can lead to models with high 
performance (although it also suffers from difficulties related to local minima). 
Unfortunately, it is not obvious that better performance necessarily implies any 
better approximation to the way in which cortex solves the visual recognition 
problem. 
  

11.5. Bottom-up hierarchical models of the ventral visual stream 
 
 A hierarchical network model can be described by a series of layers 
i = 0,1,...,N . Each layer contains n(i) × n(i)  units arranged in a matrix. The 
activity of each unit in each layer can be represented by the matrix xi (
xi ∈

n(i )×n(i ) ). In several models, xi(j,k) (i.e., the activity of unit at position j,k in 
layer i) is a scalar value interpreted as the firing rate of the unit. The initial layer is 
defined as the input image; x0 represents the (grayscale) values of the pixels a 
given image. 
 Equations 1 and 2 above constitute the initial steps for many object 
recognition models and capitalize on the more studied parts of the visual system, 
the pathway from the retina to primary visual cortex. The output of Equation 2, 
after convolving the output of center-surround receptive fields with a Gabor 
function, can be thought of as a first order approximation to the edges in the 
image. As noted above, our understanding of ventral visual cortex beyond V1 is 
far more primitive and it is therefore not surprising that this is where most models 
diverge. In a first order simplification, we can generically describe the 
transformations along the ventral visual stream as: 
xi+1 = fi (xi )         Equation 11.1 
This assumes that the activity in a given layer only depends on the activity 
pattern in the previous layer. This assumption implies that at least three types of 
connections are ignored: (i) connections that “skip” a layer in the hierarchy (e.g. 
synapses from the LGN to V4 skipping V1); (ii) top-down connections (e.g. 
synapses from V2 to V1 (Virga, 1989)) and (iii) connections within a layer (e.g. 
horizontal connections between neurons with similar preferences in V1 
(Callaway, 1998)) are not included in Equation 11.1.  
The subindex i in the function f indicates that the transformation from one layer to 
another is not necessarily the same. A simple form that f could take is a linear 
function: 
xi+1 =Wixi         Equation 11.2 
where the matrix Wi represents the linear weights that transform activity in layer i 
into activity in layer i+1. Not all neurons in layer i need to be connected to all 
neurons in layer i+1; in other words, many entries in W can be 0. This simple 
formulation fins some empirical evidence; for example, Hubel and Wiesel 
proposed that the oriented filters in primary visual cortex could arise from a linear 



Neurobiology	130/230.	Visual	Object	Recognition	 Gabriel	Kreiman©	
LECTURE	NOTES	 	 2017	

summation of the activity of neurons in the lateral geniculate nucleus with 
appropriately aligned center-surround receptive fields (Hubel and Wiesel, 1962). 
Unfortunately, neurons are far more intricate devices and non-linearities abound 
in their response properties. For example, Hubel and Wiesel also described the 
activity of so-called complex cells that are also orientation tuned but show a non-
linear response as a function of spatial frequency or bar length.  
It is tacitly assumed by most modelers that there exist general rules, often 
summarized in the epithet “cortex is cortex”, such that only a few such 
transformations are allowed. One of the early models that aimed to describe 
object recognition, inspired by the neurophysiological findings of Hubel and 
Wiesel, was the neocognitron (Fukushima, 1980) (see also earlier theoretical 
ideas in (Sutherland, 1968)). This model had two possible operations, a linear 
tuning function (performed by “simple” cells) and a non-linear OR operation 
(performed by “complex” cells). These two operations were alternated and 
repeated through the multiple layers in the deep hierarchy. This model 
demonstrated the feasibility of such linear/non-linear cascades in achieving scale 
and position tolerance in a letter recognition task. Several subsequent efforts 
(Olshausen et al., 1993; Wallis and Rolls, 1997; LeCun et al., 1998; Riesenhuber 
and Poggio, 1999; Amit and Mascaro, 2003; Deco and Rolls, 2004b) were 
inspired by the Neocognitron architecture. 
 One such effort to expand on the computational abilities of the 
Neocognitron in the computational model developed in the Poggio group 
(Riesenhuber and Poggio, 1999; Serre et al., 2005b; Serre et al., 2007b). This 
model is characterized by a purely feed-forward and hierarchical architecture. An 
image, represented by grayscale values, is convolved with Gabor filters at 
multiple scales and positions to mimic the responses of simple cells in primary 
visual cortex. Like other efforts, the model consists of a cascade of linear and 
non-linear operations. These operations come in only two flavors in the model: a 
tuning operation and soft-max operation. Both operations can be expressed in 
the following form: 
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     Equation 11.3 

where xi+1[k]  represents the activity of unit k in layer i+1, w[ j,k]  represents the 
connection weight between unit j in layer i and unit k in layer b+1, p, q, r are 
integer constants, a is a normalization constant and g is a nonlinear function (e.g. 
sigmoid). Depending on the values of p, q and r different interesting behaviors 
can be obtained. In particular, taking r=1/2, p=1, q=2, leads to a tuning operation: 
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The responses of the unit are controlled by the weights w. As emphasized 
above, tuning is a central aspect of any computational model of visual 
recognition, allowing units along the hierarchy to respond to increasingly more 
elaborate features.  Taking w=1, p=q+1, r=1, leads to a softmax operation, 
particularly for large values of q: 
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      Equation 11.3’’ 

Of note, the unit with response xi+1[k]  shows similar response tuning to the units 
with response xi[ j]  for j = 1,...,n . Yet, the higher-level unit shows a stronger 
degree of tolerance to those aspects of the response that differentiate the 
responses of different units with similar tuning in layer i. For example, different 
units in layer i may show identical feature preferences but have slightly different 
receptive fields. A winner-take-all unit in layer i+1 that takes as input the 
responses of those units would inherit the same feature preferences but would 
reveal a larger receptive and tolerate changes in the position of the feature within 
the larger receptive field. Both operations can be implemented through relatively 
simple biophysical circuits (Kouh and Poggio, 2004). 
 This and similar architectures have been subjected to several tests 
including comparison with psychophysical measurements (e.g. (Serre et al., 
2007a)), comparison with neurophysiological responses (e.g. (Deco and Rolls, 
2004b; Lampl et al., 2004; Hung et al., 2005; Serre et al., 2005b; Cadieu et al., 
2007) and quantitative evaluation of performance in computer vision recognition 
tasks (e.g. (LeCun et al., 1998; Serre et al., 2005a; Mutch and Lowe, 2006)).  
 
 

11.6. Top-down signals in visual recognition 
 
 In spite of the multiple simplifications, the success of bottom-up 
architecture in describing a large number of visual recognition phenomena 
suggest that they may not be a bad first cut. As emphasized above, bottom-up 
architectures constitute only an approximation to the complexities and wonders 
of neocortical computation. One of the several simplifications in bottom-up 
models is the lack of top-down signals. We know that there are abundant back-
projections in neocortex (e.g. (Felleman and Van Essen, 1991; Callaway, 2004; 
Douglas and Martin, 2004)). The functions of top-down connections have been 
less studied at the neurophysiological level but there is no shortage of 
computational models illustrating the rich array of computations that emerge with 
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such connectivity. Several models have used top-down connections to guide 
attention to specific locations or specific features within the image (e.g. 
(Olshausen et al., 1993; Itti and Koch, 2001))(Tsotsos, 1990; Deco and Rolls, 
2005; Rao, 2005; Compte and Wang, 2006; Chikkerur et al., 2009). The 
allocation of attention to specific parts of an image can significantly enhance 
recognition performance by alleviating the problems associated with image 
segmentation and with clutter.   
 Top-down signals can also play an important role in recognition of 
occluded objects. When only partial object information is available, the system 
must be able to perform object completion and interpret the image based on prior 
knowledge. Attractor networks have been shown to be able to retrieve the 
identity of stored memories from partial information (e.g. (Hopfield, 1982)). Some 
computational models have combined bottom-up architectures with attractor 
networks at the top of the hierarchy (e.g. (Deco and Rolls, 2004b)).  
During object completion, top-down signals could play an important role by 
providing prior stored information that influences the bottom-up sensory 
responses. Several proposals have argued that visual recognition can be 
formulated as a Bayesian inference problem (Mumford, 1992; Rao et al., 2002; 
Lee and Mumford, 2003; Rao, 2004; Yuille and Kersten, 2006; Chikkerur et al., 
2009). Considering three layers of the visual cascade (e.g. LGN, V1 and higher 
areas), and denoting activity in those layers as x0, x1 and xh respectively, then 
the probability of obtaining a given response pattern in V1 depends both on the 
sensory input as well as feedback from higher areas:  

P(x1 x0 ) =
P(x0 x1)P(x1 xh )

P(x0 xh )
      Equation 11.8 

where P(x1 xh ) represents the feedback biases conveying prior information. An 
intriguing idea proposed by Rao and Ballard argues that top-down connections 
provide predictive signals whereas bottom-up signals convey the difference 
between the sensory input and the top-down predictions (Rao and Ballard, 1999). 
 

11.7. The road ahead 
 
 Significant progress has been made towards describing visual object 
recognition in a principled and theoretically sound fashion. Yet, the lacunas in our 
understanding of the functional and computational architecture of ventral visual 
cortex are not small. The preliminary steps have distilled important principles of 
neocortical computation including deep networks that can divide and conquer 
complex tasks, bottom-up circuits that perform rapid computations, gradual 
increases in selectivity and tolerance to object transformation. 
 In stark contrast with the pathway from the retina to primary visual cortex, 
we do not have a quantitative description of the feature preferences of neurons 
along the ventral visual pathway. And several computational models do not make 
clear, concrete and testable predictions towards systematically characterizing 
ventral visual cortex at the physiological levels. Computational models can 
perform several complex recognition tasks and compete against non-biological 
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computer vision approaches. Yet, for the vast majority of recognition tasks, they 
still fall significantly below human performance.  
 The next several years are likely to bring many new surprises in the field. 
We will be able to characterize the system at unprecedented resolution at the 
experimental level and we will be able to evaluate sophisticated and 
computationally intensive theories in realistic times. In the same way that the 
younger generations are not surprised by machines that can play chess quite 
competitively, the next generation may not be surprised by intelligent devices that 
can “see” like we do.   
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