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BEWARE: These are preliminary notes. In the future, they will become part of a textbook 
on Visual Object Recognition.  
 
 

Chapter VII.  First steps into inferior temporal cortex  
 
Inferior temporal cortex (ITC) is the highest echelon within the visual 

stream concerned with processing visual shape information1. As such, one may 
expect that some of the key properties of visual perception may be encoded in 
the activity of ensembles of neurons in ITC. The story of how inferior temporal 
cortex became accepted and described as a visual area is a rather interesting 
one; we encourage readers to consult (Gross, 1994) for a lucid historical 
discussion. 

 
7.1. Preliminaries 
 
 Imagine that you are interested in finding out the functions and properties 
of a given brain area, say inferior temporal cortex (ITC) within the primate ventral 
visual stream. As we have discussed before (Chapter 4), part of the answer to 
this question may come from lesion studies. Bilateral lesions to ITC cause severe 
impairment in visual object recognition in macaque monkeys and several human 
object agnosias are correlated with damage in the inferior temporal cortex 
(Chapter 4). Another piece of evidence for function could come from non-
invasive functional imaging studies. For example, upon presenting images of 
human faces and comparing the patterns of blood flow against those obtained 
when the same subject looks at pictures of houses, investigators typically report 
increased activity in the fusiform gyrus (e.g. (Kanwisher et al., 1997)). To some, 
this may be enough. To many others, this is only the beginning. Even if we have 
some indication (through lesion studies, functional imaging studies or other 
techniques) of the general function of a given brain area, much more work is 
needed to understand the mechanisms and computations involved in the function 
and properties of neurons in that area. We need to understand the receptive field 
structure and feature preferences of the different types of neurons in that area, 
how these preferences originate based on the input, recurrent connections and 
feedback signals and what type of output the area sends to its targets. For this 
purpose, it is necessary to examine function at neuronal resolution and 
millisecond temporal resolution. In this lecture, we will give an overview of the 
heroic efforts of many investigators to characterize the activity of neurons in ITC. 
 
7.2. Neuroanatomy of inferior temporal cortex 
 

																																																								
1	The	famous	Felleman	and	Van	Essen	diagram	from	1991	places	the	hippocampus	
at	the	top.	While	visual	responses	can	be	elicited	in	the	hippocampus,	it	is	not	a	
purely	visual	area	and	it	receives	inputs	from	all	other	modalities	as	well.		
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 Inferior temporal cortex (ITC) is the last purely visual stage of processing 
along the ventral visual stream. It consists of Brodmann’s cytoarchitectonic areas 
20 and 21. It is subdivided into areas TE and TEO or PIT/CIT/AIT (Felleman and 
Van Essen, 1991; Logothetis and Sheinberg, 1996; Tanaka, 1996). ITC receives 
feed-forward topographically organized inputs from areas V2, V3 and V4. It also 
receives (fewer) inputs from areas V3A and MT, highlighting the interconnections 
between the dorsal and ventral streams. ITC projects back to V2, V3 and V4. It 
also projects (outside the visual system) to the parahippocampal gyrus, pre-
frontal cortex, amygdala and perirhinal cortex. There are interhemispheric 
connections between ITC in the right and left hemispheres through the corpus 
callosum (splenium and anterior commissure). ITC includes a large part of the 
macaque monkey temporal cortex. Anatomically it is often divided into multiple 
different subparts as defined above but the functional subdivision among these 
areas is still not clearly understood. Although there are multiple visually 
responsive areas beyond ITC (e.g in perirhinal cortex, entorhinal cortex, 
hippocampus, amygdala, prefrontal cortex), these other areas are not purely 
visual and also receive input from other sensory modalities. 
 
 Most, if not all, ITC neurons show visually evoked responses. ITC 
neurons often respond vigorously to color, orientation, texture, direction of 
movement and shape. PIT or TEO show a coarse retinotopic organization and an 
almost complete representation of the contralateral visual field. The receptive 
field sizes are approximately 1.5 – 4  degrees and are typically larger than the 
ones found in V4 neurons. There is no clear retinotopy to area TE, but there is a 
clear topography such that nearby neurons show similar object preferences 
(Tanaka, 1996). The receptive fields in area TE are often large but there is a 
wide range of estimations in the literature ranging from some units with ~2 
degrees receptive fields (DiCarlo and Maunsell, 2004) to descriptions of units 
with receptive fields that span several tens of degrees (Rolls, 1991; Tanaka, 
1993). Most TE receptive fields include the fovea. 
 
7.3. Feature preferences in inferior temporal cortex 
 
 Investigators have often found strong responses in ITC neurons elicited 
by all sorts of different stimuli. For example, several investigators have shown 
that ITC neurons can be driven by the presentation of faces, hands and body 
parts (Desimone, 1991; Gross et al., 1969; Perrett et al., 1982; Rolls, 1984; 
Young and Yamane, 1992). Other investigators have used parametric shape 
descriptors of abstract shapes (Miyashita and Chang, 1988; Richmond et al., 
1990; Schwartz et al., 1983). Logothetis and colleagues trained monkeys to 
recognize paperclips forming different 3D shapes and subsequently found 
neurons that were selective for paperclip 3D configurations (Logothetis and 
Pauls, 1995).  
  
 While this wide range of responses may appear puzzling at first, it is 
perhaps not too surprising given a simple model where ITC neurons are tuned to 
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“complex shapes”. My interpretation of the wide number of stimuli that can drive 
ITC neurons is that these units are sensitive to complex shapes which can be 
found in all sorts of 2D patterns including fractal patterns, faces and paperclips. 
This wide range of responses also emphasizes that we still do not understand 
the key principles and tuning properties of ITC neurons. 
  
 As emphasized earlier, the key difficulty to elucidate the response 
preferences of neurons involves the curse of dimensionality: given limited 
recording time, we cannot present all possible stimuli. A promising line of 
research to elucidate the feature preferences in inferior temporal cortex involves 
changing the stimuli in real-time dictated by the neuron’s preferences (Kobatake 
and Tanaka, 1994; Yamane et al., 2008). 
 
 Tanaka and others have shown that there is clear topography in the ITC 
response map. By advancing the electrode in an (approximately) tangential 
trajectory to cortex, he and others described that neurons within a tangential 
penetration show similar visual preferences (Fujita et al., 1992; Gawne and 
Richmond, 1993; Kobatake and Tanaka, 1994; Tanaka, 1993). They argue for 
the presence of “columns” and higher-order structures like “hypercolumns” in the 
organization of shape preferences in ITC. 
 
 While each neuron shows a preference for some shapes over others, the 
amount of information conveyed by individual neurons about overall shape is 
limited (Rolls, 1991). Additionally, there seems to be a significant amount of 

Figure	7.1.	Example	responses	from	3	neurons	in	inferior	temporal	cortex	(labeld	
“Site	1”,	“Site	2”,	“Site	3”	to	5	different	gray	scale	objects.	Each	dot	represents	a	
spike,	each	row	represents	a	separate	repetition	(10	repetitions	per	object)	and	
the	horizontal	white	line	denotes	the	onset	and	offset	of	the	image	(100	ms	
presentation	time).	Data	from	Hung	et	al,	2005.		
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“noise”2 in the neuronal responses in any given trial. Can the animal use the 
neuronal representation of a population of ITC neurons to discriminate among 
objects in single trials? Hung et al addressed this question by recording 
(sequentially) from hundreds of neurons and using statistical classifiers to 
decode the activity of a pseudo-population3 of neurons in individual trials (Hung 
et al., 2005a). They found that a relatively small group of ITC neurons (~200) 
could support object identification and categorization quite accurately (up to 
~90% and ~70% for categorization and identification respectively) with a very 
short latency after stimulus onset (~100 ms after stimulus onset). Furthermore, 
the pseudo-population response could extrapolate across changes in object 
scale and position. Thus, even when each neuron conveys only noisy information 
about shape differences, populations of neurons can be quite powerful in 
discriminating among visual objects in individual trials.  
 
7.4. Tolerance to object transformations 
 

																																																								
2	The	term	“noise”	is	used	in	a	rather	vague	way	here.	There	is	extensive	literature	
on	the	variability	of	neuronal	responses,	the	origin	of	this	variability	and	whether	it	
represents	noise	or	signal.	For	the	purposes	of	the	discussion	here,	“noise”	could	be	
defined	as	the	variability	in	the	neuronal	response	(e.g.	spike	counts)	across	
different	trials	when	the	same	stimulus	was	presented.	
3	Because	the	neurons	were	recorded	sequentially	instead	of	simultaneously,	the	
authors	use	the	word	pseudo-population	as	opposed	to	population	of	neurons.	

	
Figure	7.2.	Example	electrode	describing	the	physiological	responses	to	25	
different	exemplar	objects	belonging	to	5	different	categories.	A.	Responses	to	
each	of	25	different	exemplars	(each	color	denotes	a	different	category	of	images;	
each	trace	represents	the	response	to	a	different	exemplar).	B.	Raster	plot	
showing	every	single	trial	in	the	responses	to	the	5	face	exemplars.	Each	row	is	a	
repetition,	the	dashed	lines	separate	the	exemplars,	the	color	shows	voltage	(see	
scale	bar	on	right).	C.	Electrode	location.	
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 As emphasized in Lecture 1, a key property of visual recognition is the 
capacity to recognize objects in spite of the transformations of the images at the 
pixel level. Several studies have shown that ITC neurons show a significant 
degree of tolerance to object transformations.  
 
 ITC neurons can show similar responses in spite of large changes in the 
size of the stimuli (Hung et al., 2005b; Ito et al., 1995; Logothetis and Pauls, 
1995). Even if the absolute firing rates are affected by the stimulus size, the rank 
order preferences among different objects can be mainained in spite of stimulus 
size changes (Ito et al., 1995). ITC neurons also show more tolerance to object 
position changes than units in earlier parts of ventral visual cortex (Hung et al., 
2005b; Ito et al., 1995; Logothetis and Pauls, 1995). ITC neurons also show a 
certain degree of tolerance to depth rotation (Logothetis and Sheinberg, 1996). 
They even show tolerance to the particular cue used to define the shape (such 
as luminance, motion or texture) (Sary et al., 1993). 
 
 An extreme example of tolerance to object transformations was provided 
by recordings performed in human epileptic patients. These are subjects that 
show pharmacologically-resistant forms of epilepsy. They are implanted with 
electrodes in order to map the location of seizures and to examine cortical 
function for potential surgical treatment of epilepsy. This approach provides a 
rare opportunity to examine neurophysiological activity in the human brain at high 
spatial and temporal resolution. Recording from the hippocampus, entorhinal 
cortex, amygdala and parahippocampal gyrus, investigators have found neurons 
that show responses to multiple objects within a semantically-defined object 
category (Kreiman et al., 2000). They have also shown that some neurons show 
a remarkable degree of selectivity to individual persons or landmarks. For 
example, one neuron showed a selective response to images where the ex-
president Bill Clinton was present. Remarkably, the images that elicited a 
response in this neuron were quite distinct in terms of their pixel content ranging 
from a black/white drawing to color photographs with different poses and views 
(Quian Quiroga et al., 2005). As discussed above for the ITC neurons, we still do 
not have any understanding of the circuits and mechanisms that give rise to this 
type of selectivity or tolerance to object transformations. 
 
7.5. The path forward 
 
 Terra incognita (extrastriate ventral visual cortex), has certainly been 
explored at the neurophysiological level. The studies discussed here constitute a 
non-exhaustive list of examples of the type of responses that one might see in 
areas such as V2, V4 and ITC. While the field has acquired a certain number of 
such examples, there is an urgent need to put together these empirical 
observations into a coherent theory of visual recognition. In our Lecture 6, we will 
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discuss some of the efforts in this direction and the current status in building 
computational models to test theories of visual recognition. 
 
 As a final note, I conclude here with a list of questions and important 
challenges in the field to try to better describe what we do not know and what 
needs to be explained in terms of extrastriate visual cortex. It would be of interest 
to develop more quantitative and systematic approaches to examine feature 
preferences in extrastriate visual cortex (this also applies to other sensory 
modalities). Eventually, we should be able to describe a neuron’s preferences in 
quantitative terms, starting from pixels. What types of shapes would a neuron 
respond to? This quantitative formulation should allow us to make predictions 
and extrapolations to novel shapes. It is not sufficient to show stimulus A and A” 
and then interpolate to predict the responses to A’. If we could really characterize 
the responses of the neuron, we should be able to predict the responses to a 
different shape B. Similarly, as emphasized multiple times, feature preferences 
are intricately linked to tolerance to object transformations. Therefore, we should 
be able to predict the neuronal response to different types of transformations of 
the objects. Much more work is needed to understand the computations and 
transformations along ventral visual cortex. How do we go from oriented bars to 
complex shapes such as faces? A big step would be to take a single neuron in, 
say, ITC, be able to examine the properties and responses of its afferent V4 units 
to characterize the transformations from V4 to ITC. This formulation presupposes 
that a large fraction of the ITC response is governed by its V4 inputs. However, 
we should keep in mind the complex connectivity in cortex and the fact that the 
ITC unit receives multiple other inputs as well (recurrent connections, bypass 
inputs from earlier visual areas, backprojections from the medial temporal lobe 
and pre-frontal cortex, connections from the dorsal visual pathway, etc). There is 
clearly plenty of virgin territory for the courageous investigators who dare explore 
the vast land of extrastriate ventral visual cortex and the computations involved in 
processing shapes. 
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