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Today’s theme: inferotemporal cortex (IT), a key locus for visual object recognition 

1. What is IT?

- a brief review of the ventral stream and how IT fits in it

2. What do IT neurons do?

- selectivity

3. How well do IT neurons do their job?

- the problem of invariance

4. Some unresolved questions in IT

5. Segue into the paper: how do we understand IT neurons at the population level?

Agenda



1. What is inferotemporal cortex (IT)?



Felleman, D. J. and Van Essen, D. C. 

(1991) Cerebral Cortex 1:1-47.

There are over 30 visual areas in the brain of the macaque



How do we organize these ventral stream areas into a hierarchy?

Markov and others, 2013

IT is the last exclusively visual area of the ventral stream, following areas V2 and V4



We can organize cortical areas through their laminar 

(layer) connection patterns

a. Select a cortical area (say, posterior IT)



We can organize cortical areas through their laminar 

(layer) connection patterns

b. Inject a retrograde tracera. Select a cortical area (say, posterior IT)



We can organize cortical areas through their laminar 

(layer) connection patterns

b. Inject a retrograde tracera. Select a cortical area (say, posterior IT)

area X area Y area Z area A

Neurons in many areas take up the tracer



We can organize cortical areas through their laminar 

(layer) connection patterns

b. Inject a retrograde tracera. Select a cortical area (say, posterior IT)

area X area Y area Z area A

- count the number of labeled cells in the dorsal layers 

- count the number of labeled cells in the ventral layers 

Dorsal layers

Ventral layers



- sort areas by the ratio ( # cells in dorsal layers / # cells in ventral layers)

area X area Y area Z area A

area X area Yarea Zarea A



Hierarchical stage

the results in a consistent rank of cortical areas across individuals (and species)

V4 AITCITV2

area X area Yarea Zarea A



Markov and others, 2013

V4 AITCITV2



Markov and others, 2013

Historically, this hierarchy has been described as the “ ventral stream” (Ungerleider and Mishkin, 1982)

But if all these areas are so highly interconnected, how are they a “stream?”



IT depends on some regions more than others



how we know

answer: count the total number of cells labeled for every injection!

V4

V3

say you find two visual regions at approximately the same hierarchical level

which is most important to PIT?

PIT

5/3

5/3
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Markov and others (2013) defined the relative weights from cortical area to cortical area

Here’s one example: posterior IT



By applying weights to these connections, 

we can better understand the “chain of 

command”



Because IT depends more on V4 than in other regions, we can think of IT as part of a “stream”

V2 V4 PIT AIT

Once we get a hold of this primary pathway, we’ll bring in the rest!

V2 V4 PIT AIT



IT “depends” on V4 for what?

V2 V4 PIT AIT

depends



2. What do IT neurons do?

- selectivity in IT



1984: Desimone, Albright, Gross and Bruce

2006: Connor and others

1995: Logothetis, Pauls and Poggio

2005 - Hung, Kreiman, Poggio and DiCarlo

2007: Kiani, Esteky, Mirpour and Tanaka

IT neurons respond to (“prefer”) complex images

Pictures and drawings of natural images Parametrically defined objects (“curvature”)



How do we know what a cell “prefers”? 

Receptive field

Credit: Praneeth Namburi

We count spikes. 

Imagine we’ve identified an IT neuron’s RF

During rest, the unit may fire ~ 6 spikes per s



Receptive field

When we flash an image in the RF

We look for changes in the spike rate

Time of image onset



Receptive field

To control for random changes in 

spike rate, we repeat the presentation 

multiple times



Receptive field

If we count the number of spikes in a 

time bin (say, 25 ms)



Receptive field

We can derive a peri-stimulus 

histogram (PSTH)



IT cells emit different numbers of spikes and show different PSTH profiles 

in response to different images...



PSTH shape can show when different types of preferences are expressed by the neuron



Keiji Tanaka

RIKKEN Institute

Recorded responses from single neurons along 

the occipito-temporal lobe

PSTHs also show that IT neurons prefer more complex images 

depending on their position in the temporal lobe



They stimulated neurons using complex and simple images



IT cells closer to V1 (more posterior) prefer simpler features.

Prefers simple

Prefers complex



IT cells closer to V1 (more posterior) 

have smaller receptive fields.

Vertical meridian

Horizontal meridian



IT cells closer to V1 (more posterior) 

have smaller receptive fields.

IT RFs frequently include the fovea, 

and may extend to the contralateral 

hemifield.



Retinotopy: when cells which are physically near one another in the brain 

respond to parts of the visual field that are also near each other

Tootell et al (1988a)

IT cells further from V1 show less and less retinotopy, 

organizing themselves by feature preference.

IT cells also change in their retinotopy



Many studies thus established that IT neurons prefer complex shapes

Historically, this idea met with resistance. Let’s review why.



Since the 1800s, it has been known that the brain is divided into functional regions

Edward Albert Schafer, 1850-1935

British physiologist

“…the animals, although they received and 

responded to impressions from all the senses, 

appeared to understand very imperfectly the 

meaning of such impressions…even objects most 

familiar to the animals were carefully examined, 

felt, smelt and tasted exactly … as an entirely new 

object…



For decades thereafter, investigators performed many lesions experiments to 

correlate brain locations with behavioral changes.

But they started using electrophysiology as their primary tool for mapping, 

we learned much more.



1962

Hubel and Wiesel first showed us that cells in V1 responded differently to the orientation of edges

Diffuse light, edges, other 

simple geometric images



Charlie Gross, Peter Schiller

In early days, neurons in other parts of the brain were stimulated with similar images

Diffuse light, edges, other 

simple geometric images



No great responses. No receptive fields. 

Either this is a very different brain area compared 

to V1, or the right stimuli weren’t used…. 

They went back to look for effects of attention…



“We set up a board in front of the monkeys with little windows or "peep holes" to 

which we could apply our eye or present such objects as a finger, a burning Q-tip, 

or a bottle brush. Most of the units responded vigorously…”

(1969)



Jerzy Konorski (1967) had recently proposed “gnostic” units –

cells that represented “unitary perceptions.” Suggested that they 

live in IT.

“When we wrote the first draft...we did not have the nerve to 

include the ‘hand’ cell until [department head] Teuber urged us to 

do so.”

They did not publish the existence of face cells until 1981.



The grandmother cell hypothesis



Over the years, dozens of teams have confirmed that IT neurons do prefer complex images

So are these grandmother cells…?



When we perceive grandma, we can recognize her even if her image on our retina…



When we perceive grandma, we can recognize her even if her image on our retina…

- changes size



When we perceive grandma, we can recognize her even if her image on our retina…

- changes size

- moves to a different place



When we perceive grandma, we can recognize her even if her image on our retina…

- changes size

- moves to a different place

- rotates in 3-D (viewpoint position)



When we perceive grandma, we can recognize her even if her image on our retina…

- changes size

- moves to a different place

- rotates in 3-D (viewpoint position)

- is occluded by an object



3. How well do IT neurons tolerate these changes?

- the problem of achieving invariance



One compelling summary of the goal of the ventral stream:

To compute object representations that are invariant to different transformations

(selectivity is much, much easier then!)

Tomaso Poggio, MIT



most experiments on IT have characterized

their ability to respond to their preferred stimulus 

regardless of “nuisance” variables (e.g. position, size, rotation, 

lighting, occlusion, texture…)



how well do IT neurons respond to their preferred image when it changes size?



One way to test size invariance: present the same image at different sizes. Does the firing rate change?

Ito et al. 1995 presented different images to IT neurons at different sizes

Sometimes, cells can show little 

variation in their spike responses to 

different sizes. 

Ito et al. 1995

Most of the time, they vary 

their responses.



More commonly, size tolerance means that neurons keep their ranked image preferences across size changes.

This neuron shows the same relative preference 

despite size changes.
Ito et al. 1995

Definition: if a neuron likes image X more than image Y when X and Y are small…

and it also likes image X more than image Y when X and Y are big, 

then it is size-invariant



how well do IT neurons respond to their preferred image when it changes position?



Logothetis et al. (1995) presented the same object at different positions inside a neuron’s RF

This neuron shows the same firing rate activity 

AND relative preference despite position changes.

Position #1

Position #2



Ito et al. (1995) presented 

images in five positions inside 

a neuron’s RF

This neuron shows different firing rates as a 

function of position for a given image



But they can also show the same relative preference for objects despite position changes.



Some image transformations are more problematic than others

When an object changes size or position, it is 

possible to match the images because all key points 

are the same



Some image transformations are more difficult than others

When an object changes size or position, it is 

possible to match the images because all interest 

features are the same

When an object rotates in 3-D space, 

entirely new parts may emerge



how well do IT neurons respond to their preferred image when it changes viewpoint?



Logothetis and others (1995) showed paperclip-like images to IT neurons and measured their “view tuning curves”

IT neurons view tuning curves have 

widths of ~ 30° rotation



Can individual IT cells tolerate viewpoint changes in more complex images (e.g. faces)?

Yes, but it takes lots of work in the form of patches!



Current investigations in IT: patches (domains)



Interestingly, also for clusters 

measuring up to several mm...

(visible in fMRI)

(visible with intrinsic imaging techniques)

...groups of neurons at scales of <1 mm...

1 mm

Tsunoda et al 2001

(evident with electrophysiology)

Individual neurons, tens of micrometers 

apart, tend to share preferences

Fujita et al 1992

Cells with similar preferences cluster together at different scales



Bell and others 2011

Some of these categories are abstract, and well-summarized by our vocabulary: 

Tsao et al

Thus we have “face patches,” “body part patches…” 



The best-studied patches are selective for faces. 

They were first characterized in humans by Sergent and Kanwisher (imaging)

And in monkeys, by Tsao, Freiwald and Livingstone (electrophysiologically)



These patches are present in virtually every monkey and human: 

Why are patches necessary? Are they genetically encoded or developed 

purely through experience?

- We know it is computationally possible to get face recognition WITHOUT patches 

(as you will see in the neural networks talk)



The face network develops viewpoint invariance along its domains.

Freiwald and Tsao 2010

Patch AL neurons respond to 

some viewpoints and their 

mirror images.

Patch AM neurons respond 

to identity despite viewpoint.

Figure from Charles Connor, 2010

Patch ML neurons  respond 

to similar viewpoints, despite 

person identity



Tomaso Poggio, MIT

Poggio and Anselmi have developed a general theory that proposes that viewpoint 

invariance is the key reason for the development of patches



Current investigations in IT (2): bypass pathways and feedback



Because IT depends more on V4 than in other regions, we can think of IT as part of a “stream”

V2 V4 PIT AIT

V2 V4 PIT AIT

What are these guys doing?



What is the most prominent difference between V2 and V4?

V4V2

modified from Freeman and Simoncelli, 2011 (based on Gattass, Gross and Sandell, 1981)

V2 V4 PIT



IT sites may use parallel pathways 

to keep their preferences across 

different scales (size invariance!)

V2

PIT

V4

To be determined!



Current investigations in IT (3): How do IT neurons encode information at the population level?

Intro to the paper discussion



Virtually all studies 

above were 

conducted using 

single-electrode 

experiments

What do we do when we have 

many, many electrodes?



In single-cell electrophysiology…

Flash an image (one trial)

23

Final datum: 

one spike rate 

scalar per trial



Final datum: 

one spike rate 

vector per trial

In single-cell electrophysiology…

Flash an image (one trial)

Final datum: 

one spike rate 

scalar per trial
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There are as many vectors as there are 

image flashes (presentations).

…



Think of each vector as a point in a coordinate space
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this results in response vector comprising two elements 

(spike rate #1 and spike rate #2)

Imagine you have flashed image X
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Multiple presentations

Response cloud for image 1 
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Response clouds for images 1 and 2

Different coordinate positions suggest separate 

representations in neural space
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We need a statistic to tell us how 

separable these response clouds are

in multi-dimensional space
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One example: 

Support vector machines
-linear kernel

Statistical classifier: a function that returns a 

binary value (“0” or “1”). These include rule-based 

classifiers, probabilistic classifiers, and geometric 

classifiers.
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Unit 1 activity

Hyperplane

One method to determine the separability of each cluster: statistical classifiers 

For a binary task, accuracy usually 

ranges between 50 and 100%



For multi-class classification, we can use a one-vs-all (aka one vs. rest) approach. 
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Label one category as positive, everything else as 

negative

Test a new set of points, and 

identify which classifier gives 

the highest activation.
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cross-validation

How do we define the statistical reliability of 

classification accuracy?

Randomly partition the 

data into subsets (90% for 

training, 10% for testing)

Accuracy (correct labeling) 

vs. 

accuracy (shuffled labeling) 

Shuffling

Repeat the procedure 

shuffling the class labels to 

check for accuracy bias.



Now we have all we need to dig into the paper
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