Neurobiology HMS 130/230 Harvard / GSAS 78454

Visual object recognition: From computational and biological mechanisms

Lecturer: Carlos R. Ponce, M.D., Ph.D.

Postdoctoral research fellow
Margaret Livingstone Lab, Harvard Medical School
Center for Brains, Minds and Machines, MIT

crponce@gmail.com

Today's meeting: Early Steps into Inferotemporal Cortex
Today’s theme: inferotemporal cortex (IT), a key locus for visual object recognition

1. What is IT?
 - a brief review of the ventral stream and how IT fits in it

2. What do IT neurons do?
 - selectivity

3. How well do IT neurons do their job?
 - the problem of invariance

4. Some unresolved questions in IT

5. Segue into the paper: how do we understand IT neurons at the population level?
1. What is inferotemporal cortex (IT)?
There are over 30 visual areas in the brain of the macaque.

IT is the last exclusively visual area of the ventral stream, following areas V2 and V4.

How do we organize these ventral stream areas into a hierarchy?
We can organize cortical areas through their laminar (layer) connection patterns

a. Select a cortical area (say, posterior IT)
We can organize cortical areas through their laminar (layer) connection patterns

a. Select a cortical area (say, posterior IT)

b. Inject a retrograde tracer
We can organize cortical areas through their laminar (layer) connection patterns

a. Select a cortical area (say, posterior IT)

b. Inject a retrograde tracer

area X area Y area Z area A

Neurons in many areas take up the tracer
We can organize cortical areas through their laminar (layer) connection patterns.

a. Select a cortical area (say, posterior IT)

b. Inject a retrograde tracer

- count the number of labeled cells in the dorsal layers
- count the number of labeled cells in the ventral layers
- sort areas by the ratio (# cells in dorsal layers / # cells in ventral layers)
the results in a consistent rank of cortical areas across individuals (and species)
Historically, this hierarchy has been described as the “ventral stream” (Ungerleider and Mishkin, 1982)

But if all these areas are so highly interconnected, how are they a “stream?”
IT depends on some regions more than others
how we know

say you find two visual regions at approximately the same hierarchical level

answer: count the total number of cells labeled for every injection!
Markov and others (2013) defined the relative weights from cortical area to cortical area.

Here’s one example: posterior IT.
By applying weights to these connections, we can better understand the “chain of command”
Because IT depends more on V4 than in other regions, we can think of IT as part of a “stream”

Once we get a hold of this primary pathway, we’ll bring in the rest!
IT “depends” on V4 for what?
2. What do IT neurons do?
 - selectivity in IT
IT neurons respond to (“prefer”) **complex** images

Pictures and drawings of natural images

1984: Desimone, Albright, Gross and Bruce

2005: Hung, Kreiman, Poggio and DiCarlo

2007: Kiani, Esteky, Mirpour and Tanaka

Parametrically defined objects (“curvature”)

2006: Connor and others

1995: Logothetis, Pauls and Poggio
How do we know what a cell “prefers”?

We count spikes.

Imagine we’ve identified an IT neuron’s RF

During rest, the unit may fire ~ 6 spikes per s

Credit: Praneeth Namburi
When we flash an image in the RF

We look for changes in the spike rate
To control for random changes in spike rate, we repeat the presentation multiple times
If we count the number of spikes in a time bin (say, 25 ms)
We can derive a peri-stimulus histogram (PSTH)
IT cells emit different numbers of spikes and show different PSTH profiles in response to different images...
PSTH shape can show when different types of preferences are expressed by the neuron.
PSTHs also show that IT neurons prefer more complex images depending on their position in the temporal lobe.
They stimulated neurons using complex and simple images
IT cells closer to V1 (more posterior) prefer simpler features.
IT cells closer to V1 (more posterior) have smaller receptive fields.
IT cells closer to V1 (more posterior) have smaller receptive fields.

IT RFs frequently include the fovea, and may extend to the contralateral hemifield.
IT cells also change in their **retinotopy**.

Retinotopy: when cells which are physically near one another in the brain respond to parts of the visual field that are also near each other.

IT cells further from V1 show less and less retinotopy, organizing themselves by feature preference.
Many studies thus established that IT neurons prefer complex shapes. Historically, this idea met with resistance. Let’s review why.
Since the 1800s, it has been known that the brain is divided into functional regions.

Edward Albert Schafer, 1850-1935
British physiologist

"...the animals, although they received and responded to impressions from all the senses, appeared to understand very imperfectly the meaning of such impressions...even objects most familiar to the animals were carefully examined, felt, smelt and tasted exactly ... as an entirely new object..."
For decades thereafter, investigators performed many lesions experiments to correlate brain locations with behavioral changes.

But they started using electrophysiology as their primary tool for mapping, we learned much more.
Hubel and Wiesel first showed us that cells in V1 responded differently to the orientation of edges.

Diffuse light, edges, other simple geometric images.
In early days, neurons in other parts of the brain were stimulated with similar images.

Diffuse light, edges, other simple geometric images.

Charlie Gross, Peter Schiller
No great responses. No receptive fields. Either this is a very different brain area compared to V1, or the right stimuli weren’t used….

They went back to look for effects of attention…
“We set up a board in front of the monkeys with little windows or "peep holes" to which we could apply our eye or present such objects as a finger, a burning Q-tip, or a bottle brush. Most of the units responded vigorously…”

(1969)

Visual Receptive Fields of Neurons in Inferotemporal Cortex of the Monkey

C. G. Gross, D. B. Bender and C. E. Rocha-Miranda

ence. The first is that by largely confining the stimuli to bars, edges, rectangles, and circles we may never have found the “best” stimulus for each unit. There were several units that responded most strongly to more complicated figures. For example, one unit that responded to dark rectangles responded much more strongly to a cut-out of a monkey hand, and the more the stimulus looked like a hand, the more strongly the unit responded to it.
Jerzy Konorski (1967) had recently proposed “gnostic” units – cells that represented “unitary perceptions.” Suggested that they live in IT.

“When we wrote the first draft...we did not have the nerve to include the ‘hand’ cell until [department head] Teuber urged us to do so.”

They did not publish the existence of face cells until 1981.

Jerzy Konorski (1967) had recently proposed “gnostic” units – cells that represented “unitary perceptions.” Suggested that they live in IT.
The grandmother cell hypothesis
Over the years, dozens of teams have confirmed that IT neurons do prefer complex images.

So are these grandmother cells…?
When *we* perceive grandma, we can recognize her even if her image on our retina...
When we perceive grandma, we can recognize her even if her image on our retina... - changes size
When we perceive grandma, we can recognize her even if her image on our retina…
- changes size
- moves to a different place
When we perceive grandma, we can recognize her even if her image on our retina...
- changes size
- moves to a different place
- rotates in 3-D (viewpoint position)
When we perceive grandma, we can recognize her even if her image on our retina...
- changes size
- moves to a different place
- rotates in 3-D (viewpoint position)
- is occluded by an object
3. How well do IT neurons tolerate these changes?
 - the problem of achieving invariance
One compelling summary of the goal of the ventral stream:

To compute object representations that are invariant to different transformations

(selectivity is much, much easier then!)
most experiments on IT have characterized
their ability to respond to their preferred stimulus
regardless of “nuisance” variables (e.g. position, size, rotation,
lighting, occlusion, texture…)
how well do IT neurons respond to their preferred image when it changes size?
One way to test size invariance: present the same image at different sizes. Does the firing rate change?

Ito et al. 1995 presented different images to IT neurons at different sizes

Sometimes, cells can show little variation in their spike responses to different sizes.

Most of the time, they vary their responses.
More commonly, size tolerance means that neurons keep their ranked image preferences across size changes.

Definition: if a neuron likes image X more than image Y when X and Y are small…

and it also likes image X more than image Y when X and Y are big,

then it is size-invariant

This neuron shows the same relative preference
despite size changes.

Ito et al. 1995
how well do IT neurons respond to their preferred image when it changes position?
Logothetis et al. (1995) presented the same object at different positions inside a neuron’s RF

Position #1

Position #2

This neuron shows the same firing rate activity AND relative preference despite position changes.
Ito et al. (1995) presented images in five positions inside a neuron's RF. This neuron shows different firing rates as a function of position for a given image.
But they can also show the same relative preference for objects *despite* position changes.
Some image transformations are more problematic than others

When an object changes size or position, it is possible to match the images because all key points are the same.
Some image transformations are more difficult than others

When an object changes size or position, it is possible to match the images because all interest features are the same

When an object rotates in 3-D space, entirely new parts may emerge
how well do IT neurons respond to their preferred image when it changes viewpoint?
Logothetis and others (1995) showed *paperclip*-like images to IT neurons and measured their “view tuning curves”.

IT neurons view tuning curves have widths of ~ 30° rotation.
Can individual IT cells tolerate viewpoint changes in more complex images (e.g. faces)?

Yes, but it takes lots of work in the form of patches!
Current investigations in IT: patches (domains)
Cells with similar preferences **cluster** together at different scales

Individual neurons, tens of micrometers apart, tend to share preferences

![Image](image1.png)

(evident with electrophysiology)

...groups of neurons at scales of $<1\text{ mm}$...

![Image](image2.png)

(Tsunoda et al 2001)

(Visible with intrinsic imaging techniques)

Interestingly, also for clusters measuring up to several mm...

![Image](image3.png)

(Visible in fMRI)
Some of these categories are abstract, and well-summarized by our vocabulary:

Thus we have “face patches,” “body part patches...”
The best-studied patches are selective for faces. They were first characterized in humans by Sergent and Kanwisher (imaging) and in monkeys, by Tsao, Freiwald and Livingstone (electrophysiologically).
These patches are present in virtually every monkey and human:

Why are patches necessary? Are they genetically encoded or developed purely through experience?

- We know it is computationally possible to get face recognition WITHOUT patches (as you will see in the neural networks talk)
The face network develops viewpoint invariance along its domains.

Patch ML neurons respond to similar viewpoints, despite person identity.

Patch AL neurons respond to some viewpoints and their mirror images.

Patch AM neurons respond to identity despite viewpoint.

Freiwald and Tsao 2010

Figure from Charles Connor, 2010
Poggio and Anselmi have developed a general theory that proposes that viewpoint invariance is the key reason for the development of patches.
Current investigations in IT (2): bypass pathways and feedback
Because IT depends more on V4 than in other regions, we can think of IT as part of a “stream”

What are these guys doing?
What is the most prominent difference between V2 and V4?

V2 → V4 → PIT

modified from Freeman and Simoncelli, 2011 (based on Gattass, Gross and Sandell, 1981)
IT sites may use parallel pathways to keep their preferences across different scales (size invariance!)
Current investigations in IT (3): How do IT neurons encode information at the population level?

Intro to the paper discussion
Virtually all studies above were conducted using single-electrode experiments.

What do we do when we have many, many electrodes?
In single-cell electrophysiology…

Flash an image (one trial)

Site 1

Final datum:
one spike rate scalar per trial

23
In single-cell electrophysiology...

Flash an image (one trial)

Site 1

Final datum: *one spike rate scalar per trial*

23

Site 1
Site 2
Site 3

Final datum: *one spike rate vector per trial*

Spike counts

23
5
4
There are as many vectors as there are image flashes (presentations).
Think of each vector as a *point* in a coordinate space
Imagine you have flashed image X while recording from two cells concurrently. This results in a response vector comprising two elements (spike rate #1 and spike rate #2).
Different coordinate positions suggest separate representations in neural space.
We need a statistic to tell us how separable these response clouds are in multi-dimensional space.
One method to determine the separability of each cluster: statistical classifiers

Statistical classifier: a function that returns a binary value (“0” or “1”). These include rule-based classifiers, probabilistic classifiers, and geometric classifiers.

One example:

Support vector machines

- linear kernel

For a binary task, accuracy usually ranges between 50 and 100%
For multi-class classification, we can use a one-vs-all (aka one vs. rest) approach.

- Label one category as positive, everything else as negative

Test a new set of points, and identify which classifier gives the highest activation.
How do we define the statistical reliability of classification accuracy?

Randomly partition the data into subsets (90% for training, 10% for testing)

Repeat the procedure shuffling the class labels to check for accuracy bias.
Now we have all we need to dig into the paper
Fast Readout of Object Identity from Macaque Inferior Temporal Cortex

Chou P. Hung, 1,2,4*; Gabriel Kreiman, 1,2,3,4*; Tomaso Poggio, 1,2,3,4
James J. DiCarlo 1,2,4
Some of the papers mentioned in this lecture

1984 - Desimone, Albright, Gross and Bruce, Stimulus selective properties of IT neurons, J Neurosci

1992 - Sergent, Ohta and MacDonald, Functional neuroanatomy of face and object processing, Brain

1993 - Sary, Vogels and Orban, Cue invariant shape selectivity of macaque IT, Science

1994 - Kobatake and Tanaka, Neuronal selectivities to complex object features, J Neurophysiol

1999 - Sugase et al. Global and fine information coded by single neurons in IT, Nature

2001 - Tsunoda et al. Complex objects represented in IT by the combination of feature columns, NN.pdf

2005 - Quiroga, Reddy, Kreiman and Fried, Invariant visual representation by single neurons in the human brain, Nature

2006 - Brincat and Connor Dynamic shape synthesis in posterior IT, Neuron, Supp

2006 - Tsao et al. A cortical region consisting entirely of face-selective cells, Science

2007 - Kiani_Esteky_Mirpour_Tanaka, Object Category Structure IT with Supp

2010 - Freiwald and Tsao, Functional Compartmentalization and Viewpoint, Science

2012 - Markov et al, A weighted and directed interareal connectivity matrix for macaque cerebral cortex, Cerebral Cortex

2013 - Markov et al, Cortical high-density counterstream architectures, Science