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• Probing high level neural responses

• Manipulating invariant Inferior Temporal Cortex (ITC) responses

• ITC responses match behavior

• ITC responses are modulated by cognition

• ITC neurons continue to respond in the absence of a stimulus 

• Categorization and responses to non-metric stimulus properties



Probing high level neural responses

• “Feature reduction”
- typically requires subjective decisions
- local minima 

• Parameterized shape space(s) 
• Analysis of “natural stimuli” (e.g. movie clips) followed by 
quantitative models 
• Approaches based on computational models 
• Representational similarity – brain/behavior/model comparisons



Yamane et al Nature Neuroscience 2008

Initial 
generation 
(random)

Partial 
examples 
across 4 
generations

Top 10 stimuli 
(out of 500

Superior 
temporal 
sulcus

Neuronal tuning for complex feature combinations 
could underlie shape recognition



Using natural movies to probe neural visual 
responses

Huth et al., Neuron 2012



Using natural movies to probe neural visual 
responses



Using natural movies to probe neural visual 
responses

McMahon et al., J. Neurosci 2015



Using natural movies to probe neural visual 
responses

McMahon et al., J. Neurosci 2015



Yamins et al., 2014

Analyzing neural responses with computational 
models



Kreigeskorte et al., 2008
Yamins et al., 2014

Analyzing neural responses with computational 
models

• Model matching as a tool to interpret neural responses.



Yamins et al., 2014

Analyzing neural responses with computational 
models
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• Categorization and responses to non-metric stimulus properties



Training can rapidly alter neuronal responses

Li, N., & Dicarlo, J. J. (2008). Science, 321(5895), 1502-
1507.



Bondar, I., et al. (2009). "Long-term stability of visual pattern selective responses of monkey 
temporal lobe neurons " PLoS One 9(12).

Neural responses can be stable over days
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Kriegeskorte et al., Neuron, 2008

Matching category responses of man and monkey



Majaj et al., J. Neurosci., 2015

IT population activity accurately predicts human 
object recognition performance
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• Probing high level neural responses

• Manipulating invariant Inferior Temporal Cortex (ITC) responses

• ITC responses match behavior
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• ITC neurons continue to respond in the absence of a stimulus 

• Categorization and responses to non-metric stimulus properties



Sugase et al Nature 1999

Response latencies depend on stimuli/questions

Global
Fine 



Neuronal activity in ITC can be modulated by tasks

Sigala et al 2002



Chelazzi et al 1998

Neuronal activity in ITC can be modulated by tasks



Sheinberg DL and Logothetis NK, PNAS 94:3409-3413, 1997

Here, shown with binocular rivalry and flash suppression

Neural responses can reflect perception



Schölvinck and Rees, J Cog Neuro 22: 1235-1243 (2009)

As some weak and nonsignificant changes in activity
associated with experimental conditions were present in
these control ROIs, we explicitly tested whether the
activity differences we observed in localizer ROIs were
significantly different from control ROIs. Critically, the

interaction between condition (visible, invisible, absent)
and region (localizer, control) was significant in V1 and
trended toward significance in V2, F(2,14) = 9.510, p =
.003 and F(2,14) = 3.582, p = .087 for V1 and V2, respec-
tively. Hence, MIB-associated modulation of activity in

Figure 2. BOLD signal in localizer and control ROIs. The retinotopic regions in visual cortex (localizer ROIs) representing the spatial location
of the target for a representative participant are shown on a flattened representation of the right (contralateral) visual cortex (A; V1 is bright
red, V2 is bright blue). Mean percent BOLD signal change (mean corrected and compared with resting baseline) in these regions for the
three conditions [vis (target visible)–invis (target invisible)–abs (target absent)] are plotted in B; bright red bars represent the V1 localizer, and
bright blue bars represent the V2 localizer. Error bars represent the group SEM. Raw data are shown in Supplementary Figure 2. Time courses
of these three conditions are shown in C for the localizer region in V1. Time zero signals the time of the perceptual switch; time courses for
the visible, invisible, and absent condition are shown in straight, dotted, and dashed lines, respectively. Retinotopic regions of the same size
but representing the right lower visual quadrant (control ROIs) are shown in D, on a flattened representation of the left visual cortex for
the same representative participant (V1 is dark red, V2 is dark blue). Mean percent BOLD signal change (mean corrected and compared with
resting baseline) for the three conditions (target visible–invisible–absent) is plotted in E; dark red bars represent the V1 control ROI, and
dark blue bars represent the V2 control ROI. Again, raw data are shown in Supplementary Figure 2. Time courses of the three conditions for
the control ROI in V1 are shown in F; conventions are the same as in C.

Schölvinck and Rees 1239

Neural responses can reflect perception



Rolls, E.T., and Tovee, M.J. (1995). Exp Brain Res 103, 409-420.

Clutter reduces neural responses



Left Occipito-Temporal Fusiform Gyrus [-42,-44,-24]

Agam et al. Current Biology 2010

And yet the problem of clutter can be resolved at the 
population level



Bansal et al

Target detection modulates responses in human 
ventral visual system



Attentional modulation in ITC

Zhang et al 2011
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stimulus 

• Categorization and responses to non-metric stimulus properties



Chelazzi, L., Duncan, J., Miller, E.K., and Desimone, R. (1998). J. Neurophysiology 80, 2918-2940.

Neuronal responses in ITC persist during DMTS task



Kreiman et al. Nature 2000

Vision

Imagery

Selective responses during visual imagery in the 
human brain
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Selectivity and tolerance beyond ITC in humans

Quian Quiroga et al 2005



Selectivity and tolerance beyond ITC in humans

Quian Quiroga et al 2005

Microwire location: 
right amygdala

the false positive rate (x axis) the relative number of responses to
other pictures. The ROC curve corresponds to the performance of a
linear binary classifier for different values of a response threshold.
Decreasing the threshold increases the probability of hits but also of
false alarms. A cell responding to a large set of pictures of different
individuals will have a ROC curve close to the diagonal (with an area
under the curve of 0.5), whereas a cell that responds to all pictures of
an individual but not to others will have a convex ROC curve far from
the diagonal, with an area close to 1. In Fig. 1c we show the ROC
curve for all seven pictures of Jennifer Aniston (red trace, with an area
equal to 1). The grey lines show 99 ROC surrogate curves, testing
invariance to randomly selected groups of pictures (see Methods). As
expected, these curves are close to the diagonal, having an area of
about 0.5. None of the 99 surrogate curves had an area equal or larger
than the original ROC curve, implying that it is unlikely (P , 0.01)

that the responses to Jennifer Aniston were obtained by chance. A
responsive unit was defined to have an invariant representation if the
area under the ROC curve was larger than the area of the 99 surrogate
curves.
Figure 2 shows another single unit located in the right anterior

hippocampus of a different patient. This unit was selectively acti-
vated by pictures of the actress Halle Berry as well as by a drawing of
her (but not by other drawings; for example, picture no. 87). This
unit was also activated by several pictures of Halle Berry dressed as
Catwoman, her character in a recent film, but not by other images of
Catwoman that were not her (data not shown). Notably, the unit was
selectively activated by the letter string ‘Halle Berry’. Such an
invariant pattern of activation goes beyond common visual features
of the different stimuli. As with the previous unit, the responses were
mainly localized between 300 and 600ms after stimulus onset.

Figure 2 | A single unit in the right anterior hippocampus that responds to
pictures of the actress Halle Berry (conventions as in Fig. 1).
a–c, Strikingly, this cell also responds to a drawing of her, to herself dressed
as Catwoman (a recent movie in which she played the lead role) and to the

letter string ‘Halle Berry’ (picture no. 96). Such an invariant response cannot
be attributed to common visual features of the stimuli. This unit also had a
very low baseline firing rate (0.06 spikes). The area under the red curve in c is
0.99.

LETTERS NATURE|Vol 435|23 June 2005

1104



Categorical responses in the macaque pre-frontal 
cortex

Freedman, D., et al. (2001). "Categorical representation of visual stimuli in the primate prefrontal cortex." Science 
291: 312-316.



Orban, Van Essen, and 
Vanduffel, TICS 8 2004

similarities in these early areas. These include similarities
in local integration of line elements in V1 and V2 [26], in
the effect of scrambling in V1 [20] (Figure 3c,d), and in the
involvement of V2 and V3 in the extraction of 3D-structure
from motion (SFM) [14] (Figure 5a,b).

Other studies have revealed modest species differences
in function and structure. V1 shows species differences in
its laminar architecture [41] indicating a greater differ-
entiation of the magnocellular signals reaching V1 in
humans and hinting thatmotion processingmight bemore
important in humans than in monkeys. In monkeys, V3 is
more motion sensitive than V3A [15], whereas in humans
the opposite is true [42]. Monkey V3d is more shape
sensitive than human V3 [20].

One intriguing question concerns possible dorso/ventral
asymmetries in the early visual areas. This can shed
light on the likelihood of finding what Zeki refers to as
‘improbable areas’ [43]: areas that represent only a quad-
rant of the visual field rather than a complete hemifield.
Two such asymmetries have been documented with fMRI

recently, adding to previous physiological and anatomical
evidence for asymmetries [2]. In monkey, V3d is more
engaged in 2D-shape processing thanV3v [20]. In humans,
ventral parts of V1–V3 are more active in color discrimi-
nation, compared with a dimming control task, than their
dorsal counterparts [44]. Interestingly, activity in the
upper and lower field representation of the human color
responsive region was equal. Discrimination performance
was also comparable in upper versus lower fields and is
thus better correlated with higher-level activation than
the early visual activation.

A mixed bag: the mid-level visual areas
Likely homology: area V3A
Human V3A has a retinotopic organization similar to that
of monkey V3A: a complete representation of the visual
field split by a horizontal meridian, which also adjoins V3d
[18,25,42]. This constitutes strong evidence for homology
even in the face of evidence for significant divergence in
function. V3A is stereo sensitive in both species [16,45].

Figure 3. Object-related activation in human and monkey (group data, modified from [20]). (a,b) Flatmaps showing the statistical parametric maps (SPMs) indicating the
voxels with significantly (p , 0.05 corrected for multiple comparisons) larger activity for viewing intact images of objects compared with viewing scrambled images. Same
data as in Figure 4a,b, but shown on flattened (Freesurfer) maps of posterior cortex to reveal the relationship with retinotopic borders in the monkey (a) and with motion
sensitive regions (white outlines) in humans (b). (c,d) Activity profiles plotting percentage MR signal change compared with fixation baseline in intact greyscale (G) and
scrambled greyscale (SG) images and intact (L) and scrambled (SL) drawings of objects (stimuli used in [38]) in V1 and inferotemporal cortex (IT) of the monkey (c) and V1
and lateral occipital complex (LOC) of humans (d). These profiles are the averages of MR signal changes obtained in four and five local maxima in V1 and temporal cortex,
respectively. In (a) abbreviations m, d, v, p, a indicate: middle, dorsal, ventral, posterior, anterior, respectively; in (b) letters a to j indicate local maxima of motion sensitive
regions [19]; LuS: lunate sulcus, IOS: inferior occipital sulcus, CollS: collateral sulcus, TOS: transverse occipital sulcus; ITG: inferior temporal gyrus, FG: fusiform gyrus.
Other conventions as in Figure 1.
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Caveat: human and monkey brains differ
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