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Chapter	I. Introduction	to	visual	recognition		1	
 2	

The greatest challenge of our times is to understand how the brain works. 3	
The conversations and maneuvers of a hundred billion neurons in our brains are 4	
responsible for our ability to interpret sensory information, to navigate, to 5	
communicate, to feel and to love, to make decisions and plans for the future, to 6	
learn. Understanding how neural circuits give rise to these functions will 7	
transform our lives: it will enable us to alleviate the ubiquitous mental health 8	
conditions that afflict millions, it will lead to building truly artificial intelligence 9	
machines that are as smart as or probably smarter than we are, and it will open 10	
the doors to finally understand who we are.  11	
 12	
 As a paradigmatic example of brain function, we will focus here on one of 13	
the most exquisite pieces of neural machinery ever evolved: the visual system. In 14	
a small fraction of a second, we can get a glimpse of an image and capture a 15	
large amount of information. For example, we can take a look at the picture in 16	
Figure 1.1 and answer an infinite series of questions including Who is there, What 17	
is there, Where is this place, What is the weather like, How many people are 18	
there, What are they doing, What is the relationship between people in the 19	
picture? We can even make educated guesses about a potential narrative 20	
including answering questions such as What happened before, What will happen 21	
next. At the heart of these questions is our capacity for visual recognition and 22	

Figure 1.1: We can visually interpret complex images at a glance 
Who is there? What are they doing? What will happen next? These are among the 
sets of questions that we can answer after a few hundred milliseconds of exposure 
to a novel image. 
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intelligent inference based on visual inputs. 23	
 24	
Our remarkable ability to recognize complex spatiotemporal input 25	

sequences, which we can loosely ascribe to part of “common sense”, does not 26	
require us to sit down and solve complex differential equations. In fact, a 5-year 27	
old can answer most of the questions outlined above quite accurately, younger 28	
kids can answer a large fraction of them and many non-human animal species 29	
can also be trained to correctly describe many aspects of a visual scene. 30	
Furthermore, it takes only a few hundred milliseconds to deduce such profound 31	
information from an image. Even though we have computers that thrive at tasks 32	
such as solving complex differential equations, computers still fall short of human 33	
performance at answering common sense questions about an image.  34	
 35	

1.1. Evolution	of	the	visual	system	36	
 37	

Visual recognition is essential for most everyday tasks including 38	
navigation, reading and socialization. Reading this text involves identifying shape 39	
patterns. Driving home involves detecting pedestrians, other cars and routes. 40	
Vision is critical to recognize our friends and their emotions. It is therefore not 41	
much of a strain to conceive that the expansion of visual cortex has played a 42	
significant role in the evolution of mammals in general and primates in particular. 43	
The evolution of enhanced algorithms for recognizing patterns based on visual 44	
inputs is likely to have yielded a significant increase in adaptive value through 45	
improvement in navigation, through discrimination of friend versus foe, through 46	
differentiating food from poison, and through deciphering social interactions. In 47	
contrast to tactile inputs and, to some extent, even auditory inputs, visual signals 48	
provide information from large and far away areas. While olfactory signals can 49	

Figure 1.2: The same pattern can look very different… 
Even though we can easily recognize these patterns, there is considerable variability 
among different renderings of each shape at the pixel level.  
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also propagate long distances, the speed of propagation is significantly lower 50	
than that of photons. The potential selective advantage conveyed by visual 51	
processing is so large that it has led some investigators to propose the so-called 52	
“Light switch” theory stating that the evolution of visual recognition was a key 53	
determinant in triggering the Cambrian explosion that led to a rapid renewal and 54	
expansion of the number and diversity of life on Earth (Parker, 2004). 55	
 56	

The history and evolution of the visual system is only poorly understood 57	
and remains an interesting topic for further investigation. The future of the visual 58	
system is arguably equally fascinating. It is easier to speculate on the 59	
technological advances that will become feasible once we understand more 60	
about the neural circuitry involved in visual recognition. One may imagine that in 61	
the not-too-distant future, we may be able to build high-speed high-resolution 62	
video sensors that convey information to computers implementing sophisticated 63	
simulations of the visual cortex in real time. So-called machine vision applications 64	
may reach (or even surpass) human performance levels in multiple recognition 65	
tasks. Computers may excel in face recognition tasks to a level where an ATM 66	
machine will greet you by your name without the need of a password. Self-driving 67	
vehicles propelled by machine vision algorithms have escaped the science fiction 68	
pages and entered our streets. Computers may also be able to analyze images 69	

Figure 1.3: A naïve approach to a model of visual recognition  
A, B. Two simple models that are easy to implement, easy to understand and not 
very useful. C. An ideal model should combine selectivity and tolerance. 
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intelligently to search the web by image content (as opposed to image names). 70	
Doctors may rely more and more on artificial vision systems to screen and 71	
analyze clinical images. Robots may be able to navigate complex cluttered 72	
terrains. And this is only the beginning.  73	

 74	
When debates arose about the possibility that computers could one day 75	

play competitive chess against humans, most people were skeptic. Yet, 76	
computers today can surpass even sophisticated chess aficionados. Recently, 77	
computers have also thrived in the ancient and complex game of Go. In spite of 78	
the obvious fact that most people can recognize objects much better than they 79	
can play chess or Go, visual shape recognition is actually more difficult than 80	
these games from a computational perspective. However, we may not be too far 81	
from accurate approximations where we will be able to trust “computers’ eyes” as 82	
much as we trust our own eyes.  83	

 84	

1.2. Why	is	vision	difficult?	85	
 86	

Why is it so difficult for computers to perform pattern recognition tasks 87	
that appear to be so simple to us? The primate visual system excels at 88	
recognizing patterns even when those patterns change radically from one 89	
instantiation to another. Consider the simple line schematics in Figure 1.2. It is 90	
straightforward to recognize those handwritten symbols in spite of the fact that, at 91	
the pixel level, they show considerable variation within each row. These drawings 92	
have only a few traces. The problem is far more complicated with real scenes 93	
and objects. Imagine all the possible variations of pictures taken at Piazza San 94	
Marco in Venice (Figure 1.1) and how the visual system can interpret them with 95	
ease. Consider the enormous variation that the visual system has to be able to 96	
cope with to recognize a tiger camouflaged in the dense jungle. Any object can 97	
cast an infinite number of projections onto the retina. These variations include 98	
changes in scale, position, viewpoint, illumination, etc. In a seemingly effortless 99	
fashion, our visual systems are able to map all of those images onto a particular 100	
object. 101	

 102	

1.3. Four	key	features	of	visual	object	recognition	103	
 104	

In order to explain how the visual system tackles the identification of 105	
complex patterns, we need to explain four key features of visual recognition: 106	
selectivity, robustness, speed and capacity.  107	

 108	
Selectivity involves the ability to discriminate among shapes that are very 109	

similar at the pixel level. Examples of the exquisite selectivity of the primate 110	
visual system include face identification and reading. In both cases, the visual 111	
system can distinguish between inputs that are very close if we compare them 112	
side-by-side at the pixel level. A trivial and useless way of implementing 113	
Selectivity in a computational algorithm is to memorize all the pixels in the image 114	



Biological	and	Computer	Vision	 	 Gabriel	Kreiman©	
Chapter	2	 	 2018	

	 5	

(Figure 1.3A). Upon encountering the exact same pixels, the computer would be 115	
able to “recognize” the image. The computer would be very selective because it 116	
would not respond to any other possible image. The problem with this 117	
implementation is that it lacks Robustness.  118	

 119	
Robustness refers to the ability of recognizing an object in spite of 120	

multiple transformations of the object’s image. For example, we can recognize 121	
objects even if they are presented in a different position, scale, viewpoint, 122	
contrast, illumination, colors, etc. We can even recognize objects where the 123	
image undergoes non-rigid transformations such as the one a face goes through 124	
upon smiling. A simple and useless way of implementing robustness is to build a 125	
model that will output a flat response no matter the input. While the model would 126	
show “robustness” to image transformations, it would not show any selectivity to 127	
different shapes (Figure 1.3B). Combining Selectivity and Robustness (Figure 128	
1.3C) is arguably the key challenge in developing computer vision algorithms.  129	

 130	
Given the combinatorial explosion in the number of images that map onto 131	

the same “object”, one could imagine that visual recognition is a very hard task 132	
that requires many years of learning at school. Of course, this is far from the 133	
case. Well before a first grader is starting to learn the basics of addition and 134	
subtraction (rather trivial problems for computers), he is already quite proficient at 135	
visual recognition. In spite of the infinite number of possible images cast by a 136	
given object onto the retina, recognizing objects is very fast. Objects can be 137	
readily recognized in a stream of objects presented at a rate of 100 milliseconds 138	
per image (Potter and Levy, 1969) and there is behavioral evidence showing that 139	
subjects can make an eye movement to indicate the presence of a face about 140	
200 milliseconds after showing the visual stimulus (Kirchner and Thorpe, 2006). 141	
Furthermore, both scalp as well as invasive recordings from the human brain 142	
reveal signals that can discriminate among complex objects as early as ~150 143	
milliseconds after stimulus onset (Liu et al., 2009; Thorpe et al., 1996). The 144	
Speed of visual recognition constrains the number of computational steps that 145	
any theory of recognition can use to account for recognition performance. To be 146	
sure, vision does not “stop” at 150 ms. Many important visual signals arise or 147	
develop well after 150 ms. Moreover, recognition performance does improve with 148	
longer presentation times (e.g. (Serre et al., 2007)). However, a basic 149	
understanding of an image or the main objects within the image can be 150	
accomplished in ~150 ms. We denote this regime as “rapid visual recognition”.  151	

 152	
One way of making progress towards combining selectivity, robustness 153	

and speed has been to focus on object-specific or category-specific algorithms. 154	
An example of this approach would be the development of algorithms for 155	
detecting cars in natural scenes by taking advantage of the idiosyncrasies of cars 156	
and the scenes in which they typically appear. Some of these specific heuristics 157	
may be extremely useful and the brain may learn to take advantage of them (e.g. 158	
if most of the image is sky blue, suggesting that the image background may 159	
represent the sky, then the prior probabilities for seeing a car would be low and 160	
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the prior 161	
probabilities for 162	
seeing a bird 163	
would be high). 164	
We will discuss 165	
some of the 166	
regularities in the 167	
visual world 168	
(statistics of 169	
natural images) in 170	
Chapter 2. Yet, in 171	
the more general 172	
scenario, our 173	
visual recognition 174	
machinery is 175	
capable of 176	
combining 177	
selectivity, 178	
robustness and 179	
speed for an 180	
enormous range 181	
of objects and 182	
images. For 183	
example, the 184	
Chinese language 185	
has over 2,000 186	
characters. 187	
Estimations of the 188	
capacity of the 189	
human visual 190	
recognition 191	
system vary 192	
substantially 193	

across studies. Several studies cite numbers that are well over 10,000 items (e.g. 194	
(Biederman, 1987; Shepard, 1987; Standing, 1973)).  195	

 196	
In sum, a theory of visual recognition must be able to account for the high 197	

selectivity, robustness, speed and capacity of the primate visual system. In spite 198	
of the apparent simplicity of “seeing”, combining these four key features is by no 199	
means a simple task. 200	

 201	

1.4. The	travels	and	adeventures	of	a	photon	202	
 203	

We start by providing a global overview of the transformations of 204	
information carried by light to the brain signals that support visual recognition (for 205	
reviews, see (Felleman and Van Essen, 1991; Maunsell, 1995; Wandell, 1995). 206	

Figure 1.4: The travels of a photon.  
Schematic diagram of the connectivity in the visual system 
(adapted from (Felleman and Van Essen, 1991)).  
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Light arrives at the retina after being reflected by objects. The patterns of light 207	
impinging on our eyes is far from random and the natural image statistics of 208	
those patterns play an important role in the development and evolution of the 209	
visual system (Chapter 2). In the retina, light is transduced into an electrical 210	
signal by specialized photoreceptor cells. Information is processed in the retina 211	
through a cascade of computations before it is submitted to cortex. Several visual 212	
recognition models treat the retina as analogous to the pixel-by-pixel 213	
representation in a digital camera. This is a highly inaccurate description of the 214	
computational power in the retina1. The retina is capable of performing multiple 215	
and complex computations on the input image (Chapter 2). The output of the 216	
retina is conveyed to multiple areas including the superior colliculus and the 217	
suprachiasmatic nucleus. The pathway that carries information to cortex goes 218	
from the retina to a part of the thalamus called the lateral geniculate nucleus 219	
(LGN). The LGN projects to primary visual cortex, located in the back of our 220	
brains. Primary visual cortex is often referred to as V1 (Chapter 3). The 221	
fundamental role of primary visual cortex in visual processing and some of the 222	
basic properties of V1 were discovered through the study of the effects of bullet 223	
wounds during the First World War.  Processing of information in the retina, LGN 224	
and V1 is coarsely labeled “early vision” by many researchers.  225	

 226	
Primary visual cortex is only the first stage in the processing of visual 227	

information in cortex. Researchers have discovered tens of areas responsible for 228	
different aspects of vision (the actual number is still a matter of debate and 229	
depends on what we mean by “area”). An influential way of depicting these 230	
multiple areas and their interconnections is the diagram proposed by Felleman 231	
and Van Essen, shown in Figure 1.4 (Felleman and Van Essen, 1991). To the 232	
untrained eye, this diagram appears to show a bewildering complexity, not unlike 233	
the type of circuit diagrams typically employed by electrical engineers. In 234	
subsequent Chapters, we will delve into this diagram in more detail and discuss 235	
some of the areas and connections that play a key role in visual recognition. In 236	
spite of the apparent complexity of the neural circuitry in visual cortex, the 237	
scheme in Figure 1.4 is an oversimplification of the actual wiring diagram. First, 238	
each of the boxes in this diagram contains millions of neurons and it is well know 239	
that there are many different types of neurons. The arrangement of neurons can 240	
be described in terms of six main layers of cortex (some of which have different 241	
sublayers) and the topographical arrangement of neurons within and across 242	
layers. Second, we are still very far from characterizing all the connections in the 243	
visual system. It is likely that major surprises in neuroanatomy will come from the 244	
usage of novel tools that take advantage of the high specificity of molecular 245	
biology. Even if we did know the connectivity of every single neuron in visual 246	
																																																								
1 As of June 2015, some computers boasted a “retinal display” of 5120 by 2880 pixels and there 
are commercially available digital cameras with tens of millions of Megapixels (and even more 
than this in professional devices). While this number may well approximate the numbers of 
photoreceptor cells in some retinas (~5 million cone cells and ~120 million rod cells in the human 
retina), the number of pixels is not the only variable to compare. Several digital cameras have 
more pixels than the retina but they lag behind in important properties such as luminance 
adaptation, motion detection, focusing, speed, etc.  



Biological	and	Computer	Vision	 	 Gabriel	Kreiman©	
Chapter	2	 	 2018	

	 8	

cortex, this knowledge would not immediately reveal the functions or 247	
computations (but it would be immensely helpful). In contrast to electrical circuits 248	
where we understand each element and the overall function can be appreciated 249	
from the wiring diagram, many neurobiological factors make the map from 250	
structure to function a non-trivial one.   251	

 252	

1.5. Lesion	studies	253	
 254	

One way of finding out how something works is by taking it apart, 255	
removing parts of it and re-evaluating function. This is an important way of 256	
studying the visual system as well. For this purpose, investigators typically 257	
consider the behavioral deficits that are apparent when parts of the brain are 258	
lesioned in either macaque monkey studies or through natural lesions in humans 259	
(Chapter 5).  260	

 261	
An example mentioned above is given by the studies of the behavioral 262	

effects of bullet wounds during World War, which provided important information 263	
about the architecture and function of V1. In this case, subjects typically reported 264	
that there was a part of the visual field where they were essentially blind (this 265	
area is referred to as a visual scotoma). Ascending through the visual hierarchy, 266	
lesions may yield more specific behavioral deficits. For example, subjects who 267	
suffer from a rare but well-known condition called prosopagnosia typically show a 268	
significant impairment in recognizing faces.  269	

 270	
One of the challenges in interpreting lesions in the human brain and 271	

localizing visual functions based on these studies is that these lesions often 272	
encompass large brain area and are not restricted to neuroanatomically- and 273	
neurophysiologically-defined areas. Several more controlled studies have been 274	
performed in animal models including rodents, cats and monkeys to examine the 275	
behavioral deficits that arise after lesioning specific parts of visual cortex.  276	

 277	
Are the lesion effects specific to one sensory modality or are they 278	

multimodal? How selective are the visual impairments? Can learning effects be 279	
dissociated from representation effects? What is the neuroanatomical code? 280	
Lesion and neurological studies are discussed in Chapter 5. 281	

 282	

1.6. Functions	of	circuits	in	visual	cortex	283	
  284	

The gold standard to examine function in brain circuits is to implant a 285	
microelectrode (or multiple microelectrodes) into the area of interest (Figure 1.5). 286	
These extracellular recordings allow the investigators to monitor the activity of 287	
one or a few neurons in the near vicinity of the electrode (~200  µm) at neuronal 288	
resolution and sub-millisecond temporal resolution.  289	
 290	
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 291	
Recording the activity of neurons has defined the receptive field structure 292	

(i.e., the spatiotemporal preferences) of neurons in the retina, LGN and primary 293	
visual cortex. The receptive field, loosely speaking, is defined as the area within 294	
the visual field where a neuronal response can be elicited by visual stimulation. 295	
The size of these receptive fields typically increases from the retina all the way to 296	
inferior temporal cortex. In a classical neurophysiology experiment, Hubel and 297	
Wiesel inserted a thin microwire to isolate single neuron responses in the primary 298	
visual cortex of a cat (Hubel and Wiesel, 1962). After presenting different visual 299	
stimuli, they discovered that the neuron fired vigorously when a bar of a certain 300	
orientation was presented within the neuron’s receptive field. The response was 301	
significantly less strong when the bar showed a different orientation. This 302	
orientation preference constitutes a hallmark of a large fraction of the neurons in 303	
V1 (Chapter 3).  304	

 305	
Recording from other parts of visual cortex, investigators have 306	

characterized neurons that show enhanced responses to stimuli moving in 307	
specific directions, neurons that prefer complex shapes such as fractal patterns 308	
or faces, neurons that are particularly sensitive to color contrasts. Chapter 5 309	
begins the examination of the neurophysiological responses beyond primary 310	
visual cortex. How does selectivity to complex shapes arise and what are the 311	
computational transformations that can convert the simpler receptive field 312	
structure at the level of the retina into more complex shapes?  313	

 314	
Rapidly ascending through the ventral 315	

visual stream, we reach inferior temporal 316	
cortex, usually labeled ITC (Chapter 7). ITC 317	
constitutes one of the highest echelons in the 318	
transformation of visual input, receiving direct 319	
inputs from extrastriate areas such as V2 and 320	
V4 and projecting to areas involved in 321	
memory formation (rhinal cortices and 322	
hippocampus), areas involved in processing 323	
emotional valence (amygdala) and areas 324	
involved in planning, decisions and task 325	
solving (pre-frontal cortex). As noted above, it 326	
is important to combine selectivity with 327	
robustness to object transformations. How 328	
robust are the visual responses in ITC to 329	
object transformations? How fast do neurons 330	
along the visual cortex respond to new 331	
stimuli? What is the neural code, that is, what 332	
aspects of neuronal responses better reflect 333	
the input stimuli? What are the biological 334	
circuits and mechanisms to combine 335	
selectivity and invariance? 336	

Figure 1.5: Listening to the 
activity of individual neurons 
with a microelectrode. 
Illustration of electrical recordings 
from microwires electrodes 
(adapted from Hubel).  
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 337	
There is much more to vision than filtering and processing images in 338	

interesting way for recognition. Chapter 8 will present some of the interactions 339	
between recognition and important aspects of cognition including attention, 340	
perception, learning and memory. 341	

 342	

1.7. Moving	beyond	correlations	343	
 344	

 Neurophysiological recordings provide a correlation between the activity of 345	
neurons (or groups of neurons) and the visual stimulus presented to the subject. 346	
Neurophysiological recordings can also provide a correlation with the subject’s 347	
behavioral response (e.g. image recognized or not recognized). Yet, as often 348	
stated, correlations do not imply causation.  349	
 350	
 In addition to the lesion studies briefly mentioned above, an important tool 351	
to move beyond correlations is to use electrical stimulation in an attempt to bias 352	
the subject’s behavioral performance. It is possible to inject current with the same 353	
electrodes used to record neural responses. Combined with careful 354	
psychophysical measurements, electrical stimulation can provide a glimpse at 355	
how influencing activity in a given cluster of neurons can affect behavior. In a 356	
classical study, Newsome’s group recorded the activity of neurons in an area 357	
called MT, located within the dorsal part of the macaque visual cortex. As 358	
observed previously, these neurons showed strong motion direction preferences. 359	
The investigators trained the monkey to report the direction of motion of the 360	
stimulus. Once the monkeys were proficient in this task, they started introducing 361	
trials where they would perform electrical stimulation. Remarkably, they observed 362	
that electrical stimulation could bias the monkey’s performance by about 10 to 363	
20% in the preferred direction of the recorded neurons (Salzman et al., 1990). 364	

 365	
There is also a long history of electrical stimulation studies in humans in 366	

subjects with epilepsy. Neurosurgeons need to decide on the possibility of 367	
resecting the epileptogenic tissue to treat the epilepsy. Before the resection 368	
procedure, they use electrical stimulation to examine the function of the tissue 369	
that may undergo resection. Penfield was one of the pioneers in using this 370	
technique to map neural function and described the effects of stimulating many 371	
locations and in many subjects (Penfield and Perot, 1963). Anecdotal reports 372	
provide a fascinating account of the potential behavioral output of stimulating 373	
cortex. For example, in one of many cases, a subject reported that it felt like “… 374	
being in a dance hall, like standing in the doorway, in a gymnasium…”  375	

 376	
How specific are the effects of electrical stimulation? Under what 377	

conditions is neuronal firing causally related to perception? How many neurons 378	
and what types of neurons are activated during electrical stimulation? How do 379	
stimulation effects depend on the timing, duration and intensity of electrical 380	
stimulation? Is visual awareness better modeled by a threshold mechanism or by 381	
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gradual transitions? Chapter 9 is devoted to the effects of electrical stimulation in 382	
the macaque and human brains. 383	

 384	

1.8. Towards	a	theory	of	visual	object	recognition	385	
 386	

Ultimately, a key goal is to develop a theory of visual recognition that can 387	
explain the high levels of primate performance in rapid recognition tasks. A 388	
successful theory would be amenable for computational implementation, in which 389	
case, one could directly compare the output of the computational model against 390	
behavioral performance measures (Serre et al., 2005). A complete theory would 391	
include the information from lesion studies, neurophysiological recordings, 392	
psychophysics, electrical stimulation studies, etc. Chapters 10-11 discuss 393	
multiple approaches to building computational models and theories of visual 394	
recognition. 395	

 396	
In the absence of a complete understanding of the wiring circuitry, only 397	

sparse knowledge about neurophysiological responses and other limitations, it is 398	
important to ponder upon whether it is worth even thinking about theoretical 399	
efforts. My (biased) answer is that it is not only useful; it is essential to develop 400	
theories and instantiate them through computational models to enhance progress 401	
in the field. Computational models can integrate existing data across different 402	
laboratories, techniques and experimental conditions, explaining apparently 403	
disparate observations. Models can formalize knowledge and assumptions and 404	
provide a quantitative, systematic and rigorous path towards examining 405	
computations in visual cortex. A good model should be inspired by the empirical 406	
findings and should in turn be able to produce non-trivial (and hopefully 407	
experimentally-testable) predictions. These predictions can be empirically 408	
evaluated to validate, refute or expand the models.  409	

 410	
How do we build and test computational models? How should we deal 411	

with the sparseness in knowledge and the large number of parameters often 412	
required in models? What are the approximations and abstractions that can be 413	
made? Too much simplification and we may miss the crucial aspects of the 414	
problem. Too little simplification and we may spend decades bogged down by 415	
non-essential details. Consider as a simple analogy, physicists in the pre-Newton 416	
era, discussing how to characterize the motion of an object when a force is 417	
applied. In principle, one of these scientists may think of many variables that 418	
might affect the object’s motion including the object’s shape, its temperature, the 419	
time of the day, the object’s material, the surface where it stands, the exact 420	
position where force is applied and so on. We should perhaps be thankful for the 421	
lack of computers in that time: there was no possibility of running simulations that 422	
included all these inessential variables to understand the beauty of the linear 423	
relationship between force and acceleration. At the other extreme, 424	
oversimplification (e.g. ignoring the object’s mass in this simple example) is not 425	
good either. Perhaps a central question in computational neuroscience is to 426	
achieve the right level of abstraction for each problem. 427	
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 428	
Chapter 12 will provide an overview of the state-of-the-art of computer 429	

vision approaches to visual recognition, including biologically inspired and non-430	
biological approaches. Humans still outperform computers in mostly every 431	
recognition task but the gap between the two is closing rapidly. We trust 432	
computers to compute the square root of 2 with as many decimals as we want 433	
but we do not have yet the same level of rigor and efficacy in automatic pattern 434	
recognition. However, many real-world applications may not require that type of 435	
precision. Facebook may be content with being able to automatically label 99.9% 436	
of the faces in its database. Blind people may recognize where they are even if 437	
their mobile device can only recognize a fraction of the buildings in a given 438	
location. We will ask how well computers can detect objects, segment them and 439	
ultimately recognize them. Well within our lifetimes, we may have computers 440	
passing some basic Turing tests of visual recognition whereby you present an 441	
image and out comes a label and you have to decide whether the label was 442	
produced by a human or a(nother) machine. 443	

 444	

1.9. Towards	the	neural	correlates	of	visual	consciousness	445	
 446	

The complex cascade of interconnected processes along the visual 447	
system must give rise to our rich subjective perception of the objects and scenes 448	
around us. Most scientists would agree that subjective feelings and percepts 449	
emerge from the activity of neuronal circuits in the brain. Much less agreement 450	
can be reached as to the mechanisms responsible for subjective sensations. The 451	
“where”, “when”, and particularly “how” of the so-called neuronal correlates of 452	
consciousness constitutes an area of active research and passionate debates 453	
(Koch, 2005). Historically, many neuroscientists avoided research in this field as 454	
a topic too complex or too far removed from what we understood to be worth a 455	
serious investment of time and effort. In recent years, however, this has begun to 456	
change: while still very far from a solution, systematic and rigorous approaches 457	
guided by neuroscience knowledge may one day unveil the answer to one of the 458	
greatest challenges of our times. 459	

 460	
Due to several practical reasons, the underpinnings of subjective 461	

perception have been particularly (but not exclusively) studied in the domain of 462	
vision. There have been several heroic efforts to study the neuronal correlates of 463	
visual perception using animal models (e.g. (Leopold and Logothetis, 1999; 464	
Macknik, 2006) among many others). A prevalent experimental paradigm 465	
involves dissociating the visual input from perception. For example, in multistable 466	
percepts (e.g. Figure 1.6) the same input can lead to two distinct percepts. Under 467	
these conditions, investigators ask which neuronal events correlate with the 468	
alternating subjective percepts. It has become clear that the firing of neurons in 469	
many parts of the brain may not be correlated with perception. In an arguably 470	
trivial example, activity in the retina is essential for seeing but the perceptual 471	
experience does not arise until several synapses later, when activity reaches 472	
higher stages within visual cortex. Neurophysiological, neuroanatomical and 473	
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theoretical considerations suggest 474	
that subjective perception 475	
correlates with activity occurring 476	
after primary visual cortex (Koch, 477	
2005; Leopold and Logothetis, 478	
1999; Macknik, 2006). Similarly 479	
investigators have suggested an 480	
upper bound in terms where in the 481	
visual hierarchy the circuits 482	
involved in subjective perception 483	
could be. Although lesions 484	

restricted to the hippocampus and frontal cortex (thought to underlie memory and 485	
association) yield severe cognitive impairments, these lesions seem to leave 486	
many aspects of visual perception largely intact. Thus, the neurophysiology and 487	
lesion studies seem to constrain the problem to the multiple stages involved in 488	
processing visual information along the ventral visual cortex. Ascending through 489	
the ventral visual cortex several neurophysiological studies suggest that there is 490	
an increase in the degree of correlation between neuronal activity and visual 491	
awareness (Koch, 2005; Leopold and Logothetis, 1999; Macknik, 2006).  492	

 493	
How can “visual consciousness” be studied using scientific methods? 494	

Which brain areas, circuits and mechanisms could be responsible for visual 495	
consciousness? What are the functions of visual consciousness? Chapter 13 will 496	
provide some glimpses into what is known (and what is not known) about these 497	
fascinating questions. 498	

 499	
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