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Chapter II. The travels of a photon: Natural image 1	
statistics and the retina 2	

 3	
Let there be light. And there was light. Vision starts when photons 4	

reflected from objects in the world impinge on the retina. Light is transduced into 5	
electrical signals at the level of the photoreceptors, one of the astounding feats of 6	
evolution, rapidly allowing the organism to make inferences about distant objects 7	
and events. The structure of the environment plays a critical role in dictating the 8	
pattern of connections and responses throughout the visual system and marks 9	
the beginning of our journey. 10	

2.1. Natural images are special 11	
 12	
 Let us consider a digital grayscale image of 100 x 100 pixels, let us 13	
further restrict ourselves to a gray world where each pixel can take 256 shades of 14	
gray. Such small colorless image patches constitute a far cry from the complexity 15	
of real visual input. Yet, even under these constraints, there is an extremely large 16	
number of possible images. There are 256 possible one-pixel images. There are 17	
256 x 256 possible two-pixel images. All in all, there are 25610,000 possible 100 x 18	
100 images. This is a pretty big number; there are more of these image patches 19	
than the current estimate for the total number of stars in the universe. 20	
  21	
 Now take a digital camera, a rather old one with a sensor comprising only 22	
100 x 100 pixels, turn the settings to gray images, and go around shooting 23	
random pictures. If you are very fast and shoot one picture per second, and if you 24	
spend an entire week without sleeping or eating, just collecting pictures in the 25	
city, at the beach, in the forest, or at home, you will have accrued less than a 26	
million pictures, a very tiny fraction of a percent of all possible images. Yet, you 27	
will note rather interesting patterns. It turns out that the distribution of natural 28	
image patches that you collected in the world tends to have peculiar properties 29	
that span an interesting subset of all possible images.  30	
 31	
 In principle, any of the 25610,000 grayscale patches could show up in the 32	
natural world. However, there are strong correlations and constraints in the way 33	
natural images look. A particularly striking pattern is that there tends to be a 34	
strong correlation between the grayscale intensities of two adjacent pixels 35	
(Figure 2.1). In other words, grayscale intensities in natural images typically 36	
change in a smooth manner and contain surfaces of approximately uniform 37	
intensity. Those surfaces are separated by edges that represent discontinuities, 38	
where such correlations between adjacent pixels break, and which tend to be the 39	
exception rather than the rule. Overall, edges constitute a small fraction of the 40	
image.  41	
 42	
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 One way of quantifying such patterns is to compute the autocorrelation 43	
function. To simplify, consider an image in only one dimension. If f(x) denotes the 44	
grayscale intensity at position x, then the autocorrelation function A measures the 45	
average correlation as a function of the separation  D between two points:  46	

  
A(Δ) = f∫ (x) f (x − Δ)dx  47	

where the integral goes over the entire image. This definition can be readily 48	
extended to more dimensions and colored images. The autocorrelation function 49	
of a natural image typically shows a strong peak at small pixel separations 50	
followed by a gradual drop (for a review of the properties of natural images, see 51	
(Simoncelli and Olshausen, 2001)).  52	
 53	
 Another way of evaluating the spatial correlations in an image is to 54	
compute its power spectrum. Intuitively, one can convert those correlations from 55	
the pixel domain into the frequency domain. If there is a lot of power at high 56	
frequencies, that implies large changes across small pixel distances as one 57	
might observe when there is an edge. Conversely, a lot of power at low 58	
frequencies implies more gradual changes and smoothness in the pixel domain. 59	
If P denotes power and f denotes the spatial frequency, natural images typically 60	
show that power decreases with f approximately as  61	

  P ~ 1/ f 2   62	
There is significantly more power at low frequencies than at high frequencies. 63	
Such a function is called a power law. Power laws are pervasive throughout 64	
multiple natural phenomena and have interesting properties. One important 65	
property of power laws is scale invariance. If we change the scale of the image, 66	
its power spectrum will still have the same shape defined by the equation above. 67	
  68	

2.2. Efficient coding by allocating more resources where they are needed 69	
 70	

	
FIGURE 2.1. There is a strong correlation in the intensities of nearby pixels in natural 
images. For the small 100x100 pixel from the image in part a (white box), the scatter plots 
show the grayscale intensity in pixel  with coordinates (x,y) versus the grayscale intensity in 
position (x+1,y) (b, horizontally adjacent pixel) or in position (x,y+1) (c, vertically adjacent 
pixel).  
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 One of the reasons why we are interested in characterizing the properties 71	
of natural images is the conjecture that the brain is especially well adapted to 72	
represent the real world. This idea, known in the field as the efficient coding 73	
principle, posits that the visual system is particularly good at representing the 74	
type of variations that occur in Nature. If only a fraction of the 25610,000 possible 75	
image patches are present in any typical image, it may be smart to use most of 76	
the neurons to represent the fraction of this space that is occupied. Brain sizes 77	
are constrained by evolution and it is tempting to assume that they are not filled 78	
with neurons that encode images that would never show up. Additionally, brains 79	
are extremely expensive from an energetic viewpoint [REFERENCE], and it 80	
makes sense to allocate more resources where they are needed.  81	
 82	
 By understanding the structure and properties of natural images, it is 83	
possible to generate testable hypothesis about the preferences of neurons 84	
representing visual information (Barlow, 1972; Olshausen and Field, 1996; 85	
Simoncelli and Olshausen, 2001; Smith and Lewicki, 2006), a topic that we will 86	
come back to once we delve into the neural circuitry involved in processing visual 87	
information. 88	
 89	
 Such specialization to represent the properties of natural images could 90	
arise as a consequence of evolution (Nature) or as a consequence of learning via 91	
visual exposure to the real world (Nurture). As in other domains of the Nature 92	
versus Nurture dilemma, it seems quite likely that both are true. Certain aspects 93	
of the visual system are hard-wired, yet visual experience plays a central role in 94	
shaping neuronal tuning properties. 95	
 96	

2.3. The visual world is slow 97	
 98	
 The visual properties of nearby locations in the natural world are 99	
correlated. In addition to those spatial correlations, there are also strong temporal 100	
constraints in the natural world. Expanding on the collection of natural world 101	
photographs, imagine that you go back to the same locations and now collect 102	
short videos while keeping the camera still. Because the camera is not allowed to 103	
move, the only changes across frames will be dictated by the movement of 104	
objects in the natural world. Assuming that you use a camera that captures about 105	
30 frames per second, in most cases, adjacent frames in those videos will look 106	
extremely similar. With some exceptions, objects in the world move rather slowly. 107	
Consider a cheetah, or a car, moving at a rather impressive speed of 50 miles 108	
per hour. Assuming that we have a camera capturing about 40 yards in 2000 109	
pixels, the cheetah will move approximately 30 pixels from one frame to the next. 110	
Most objects move at slower speeds. Therefore, the temporal autocorrelation of 111	
the natural world also shows a peak at short temporal scales spanning tens to 112	
hundreds of milliseconds.  113	
 114	
 Several computational models have taken advantage of the continuity of 115	
the input under natural viewing conditions in order to develop algorithms that can 116	
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learn about objects and their transformations.(Foldiak, 1991; Stringer et al., 2006; 117	
Wiskott and Sejnowski, 2002), a theme that we will revisit when discussing 118	
computational accounts of learning in the visual system. The notion of using 119	
temporal continuity as a constraint for learning is often referred to as the 120	
“slowness” principle. 121	
 122	

2.4. We are continuously moving our eyes 123	
 124	
 The assumption that the camera is perfectly still is not quite right. To 125	
begin with, we can move our heads, therefore changing the information 126	
impinging on the eyes. Yet, head movements are also rather sparse and rather 127	
slow. Even with our heads perfectly still, it turns out that humans and other 128	
primates are essentially moving their eyes all the time. The observation that the 129	
eyes are in almost continuous motion is rather counterintuitive. Unless you have 130	
reflected rather seriously about this, or spent time scrutinizing another person’s 131	
eye movements, introspection might suggest that the visual world around us 132	
does not change at all in the absence of external movements or head 133	
movements. However, it is dangerous to accept introspection without questioning 134	
our assumptions and testing them via experimental measurements. 135	
  136	
 Nowadays, it is relatively straightforward to measure eye movements in a 137	
laboratory. Figure 2.2 shows an example of a sequence of eye movements 138	
during presentation of a static image. The eyes typically stay in one location, then 139	
rapidly jump to another location, exploring that location briefly, before 140	
adventuring again into a new location. The rapid jumps are denominated visual 141	
saccades and typically take a few tens of milliseconds to execute from initial 142	
position to final position [add reference here]. The positions in between saccades 143	
are called fixations.  144	
 145	
 The pattern of fixations depends on the image, temporal history and 146	
goals. The characteristics of the image influence eye movements: for example, 147	
high contrast regions are more salient and tend to attract eye movements. The 148	
temporal history of previous fixations is also relevant: on average, subjects tend 149	
to avoid returning to a location they recently fixated on, a phenomenon known as 150	
inhibition of return. 151	
 152	
 During scene perception, subjects typically make saccades of 153	
approximately 4 degrees of visual angle. Degrees of visual angle is the most 154	
relevant and common unit to measure sizes and positions in the visual field. One 155	
degree of visual angle approximately corresponds to the size of your thumb at 156	
arm’s length. Under natural scene perception circumstances, subjects tend to 157	
make saccades approximately every 300 ms (Rayner, 1998).  158	
 159	
 160	
 161	
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 162	

2.5. The retina 163	
 164	
 The adventure of visual processing in the brain begins with the 165	
conversion of photons into electrical signals in the retina (diminutive form of the 166	
word net, in Latin). The net of neurons in the retina is a particularly beautiful 167	
structure that has mesmerized Neuroscientists for decades. Due to its 168	
accessibility, the retina is the most studied part of the visual system. The retina is 169	
located at the back of the eye and has a thickness of approximately 500  µm. 170	
From a developmental point of view, the retina is part of the central nervous 171	
system. The retina encompasses an area of about 5x5 cm. A schematic diagram 172	
of the retina is shown in Figure 2.3, illustrating the stereotypical connectivity 173	

composed of three main 174	
cellular layers. 175	
 176	

FIGURE 2.4. The eye lens inverts the image.  

	

	
FIGURE 2.2. Pattern of fixations (yellow x) while a subject observes an image. Here we 
show the average eye positions averaged every 33 ms. The units are given in terms of 
pixels (100 pixels correspond to ~2 degrees of visual angle under these viewing 
conditions). 
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 Photoreceptors 177	
come in two main 178	
varieties: rods and 179	
cones. There are about 180	
108 rods; these cells are 181	
particularly specialized 182	
for capturing photons 183	
under low-light 184	
conditions. Night vision 185	
depends on rods. There 186	
are about 106 cones 187	
specialized for vision 188	
under bright light 189	
conditions. There are 190	
three types of cones 191	
depending on their 192	
wavelength sensitivity. 193	
Color vision relies on 194	
the activity of cones. 195	
There is extensive 196	
biochemical work 197	
characterizing the 198	
signal transduction 199	
cascades responsible 200	

for converting light into 201	
electrical signals by 202	
photoreceptors (Yau, 203	
1994).  204	
 205	
 There is a 206	
special part of the retina, 207	
called the fovea, that is 208	
specialized for high 209	
acuity. This ~500 µm 210	
region of the retina 211	

contains a high density of cones (and no rods) and provides a finer sampling of 212	
the visual field, thereby providing subjects with higher resolution at the point of 213	
fixation (~1.7 degrees). For example, our ability to read depends on the fovea (try 214	
fixating on a word without moving your eyes and reading five words away). 215	
 216	

There is a part of the visual field projection in each eye, denominated the 217	
blind spot, which does not map onto to photoreceptors. The easiest way to detect 218	
the blind spot is to close one eye and slowly move a small object in the opposite 219	
hemifield until the object disappears. Under normal circumstances, we are not 220	
aware of the blind spot, i.e., we have the subjective feeling that we can see the 221	
entire field in front of us (even with one eye closed). This is because the brain fills 222	

	
FIGURE 2.3. 
Schematic diagram of the cell types and connectivity in 
the primate retina. R = rod photoreceptors; C = cone 
photoreceptors; FMB = flat midget bipolar cells; IMB = 
invaginating midget bipolar cells; H = horizontal cells; 
IDB invaginating diffuse bipolar cells; RB = rod bipolar 
cells; I = interplexiform cell; A = amacrine cells; G = 
ganglion cells; MG = midget ganglion cells. Reproduced 
from Dowling (2007), Scholarpedia, 2(12):3487. 

	
FIGURE 2.5. Mapping receptive fields. Neurons 
throughout the visual system typically respond to stimuli 
only when presented within a certain location in the visual 
field. Here the “x” stands for the fixation point, the circles 
indicate different stimulus locations and each vertical line 
denotes an action potential. The neuron fires vigorously 
when a stimulus is presented in the lower left corner 
(arrow) but not elsewhere.  
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in and compensates for the lack of receptors in the blind spot. This fill-in process 223	
introduces the notion that our visual perception is a constructive process 224	
whereby our brains build an interpretation of the outside world. We will return to 225	
the notion of vision as a subjective construction when we discuss visual 226	
consciousness. 227	
 228	
 Similarly, the eye lens inverts the image (upside down and left/right, 229	
Figure 2.4). This basic fact of Optics sometimes puzzles those who reflect about 230	
perception for the first time. Why don’t we see everything upside down? Because 231	
visual perception (as well as other modalities) constitutes our brain’s construction 232	
of the outside world based on the pattern of activity from neurons in the retina. 233	
Our brains learn that a certain pattern of activation is right side up. In fact, it is 234	
possible to teach the brain to adapt to different images with different rules, for 235	
example, by wearing glasses that invert the image (Stratton, 1896). 236	
 237	
 The beauty of the retinal circuitry, combined with its accessibility for 238	
experimental examination and manipulations make it an attractive area of intense 239	
research. Photoreceptors connect to bipolar and horizontal cells, which in turn 240	
communicate with amacrine and ganglion cells. There is a large number of 241	
different types of amacrine cells and there is ongoing work trying to characterize 242	
the function of these different types of cells and their role in information 243	
processing. Similarly, there is variety in the type of ganglion cells and how these 244	
cells respond to different light input patterns. Whereas rods, cones, bipolar and 245	
horizontal cells are non-spiking neurons, ganglion cells do fire action potentials 246	
and carry the output of retinal computations. 247	
 248	

2.6. Receptive fields 249	
 250	
 The functional properties of ganglion cells have been extensively 251	
examined by electrophysiological recordings that go back to the prominent work 252	
of Kuffler (Kuffler, 1953). Retinal neurons (as well as most neurons examined in 253	
visual cortex so far) respond most strongly to a circumscribed region of the visual 254	
field called the receptive field (Figure 2.5). Two main types of ganglion cell 255	
responses are often described depending on the region of the visual field that 256	
activates the neurons. “On-center” cells are activated whith light input in the 257	
center of the receptive field and they are inhibited by the presence of light input in 258	
the borders of the receptive field. The opposite holds for “off-center” ganglion 259	
cells. Some ganglion cells are also strongly activated by the direction of motion of 260	
a bar within the receptive field. In addition to these spatial properties, most 261	
neurons respond with a strong transient upon stimulus onset and the response 262	
rate decays over time. Although it seems that vision happens very fast, 263	
information is not propagated instantaneously; it takes several tens of 264	
milliseconds to elicit a response at the level of retinal ganglion cells in the retina. 265	
 266	
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2.7. The lateral geniculate nucleus (LGN) 267	
 268	
 The retina projects to a part of the thalamus called the lateral geniculate 269	
nucleus (LGN). The retina also projects to the superior colliculus, the pretectum, 270	
accessory optic system, pregeniculate and the suprachiasmatic nucleus among 271	
other regions. Primates can recognize objects after lesions to the superior 272	
colliculus but not after lesions to V1 (see {Gross, 1994 #90} for a historical 273	
overview). To a good first approximation, the key connectivity involved in visual 274	
object recognition involves the pathway traveling to the LGN and to cortex. 275	
 276	
Throughout the visual system, as we will discuss later, there are massive 277	
backprojections. One of the few exceptions to this claim is the connection from 278	
the retina to the LGN. There are no connections from the LGN back to the retina. 279	
The thalamus has been often succinctly (and somewhat unfairly) called the 280	
“gateway to cortex”. This nomenclature advocates the idea that the thalamus is a 281	
relay area involved in controlling the on-off of the visual information conveyed to 282	
the cortex. This is likely to be only an oversimplification and the picture will 283	
change dramatically as we understand more about the neuronal circuits and 284	
computations in the LGN. 285	
 286	
 Six distinct layers can be distinguished in the LGN. Layers 2, 3 and 5 287	
receive ipsilateral input. Ipsilateral input means that the right LGN receives input 288	
from the right eye. Layers 1, 4 and 6 receive contralateral input. Therefore, the 289	
input from the right and left visual hemifields is kept separate at the level of the 290	
input to the LGN. Layers 1 and 2 are called magnocellular layers and receive 291	
input from M-type ganglion cells. Layers 3-6 are called parvocellular layers and 292	
receive input form P-type ganglion cells. There are about 1.5 million cells in the 293	
LGN. 294	

 295	
While we often think of the LGN predominantly in terms of the input from 296	

retinal ganglion cells, there is a large number of back-projections, predominantly 297	
from primary visual cortex, to the LGN (Douglas and Martin, 2004). To 298	
understand the function of the circuitry, in addition to the number of inputs, we 299	
need to know the corresponding weights or synaptic influence for the different 300	
type of projections. Our understanding of the different types of receptive fields in 301	
the LGN is guided by the retinal ganglion cell input.  302	

 303	

2.8. Quantitative description of center-surround receptive fields 304	
 305	

The receptive fields for LGN cells are slightly larger than the ones in the 306	
retina. The responses of LGN cells are typically described a difference of 307	
Gaussians operator (Figure 2.6):  308	

 309	
 310	
  Equation 2.1 311	

 312	
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The first term indicates the influence of the center and is characterized by the 313	
width scen. The second term indicates the influence of the surround and is 314	
characterized by the width ssur and the scaling factor B. The difference between 315	
these two terms yields a “Mexican-hat” structure with a peak in the center and an 316	
inhibitory dip in the surround. 317	
 318	
 This static description can be expanded to take into account the dynamical 319	
evolution of the receptive field structure: 320	
 321	
 322	

 Equation 2.2 323	

 324	
 325	
where 326	

Dcen (t) =α cen
2 texp[−α cent]− βcen

2 texp[−βt]describes the dynamics of the center 327	
excitatory function and Dsur (t) =α sur

2 texp[−α surt]− βsur
2 texp[−βsurt] 	 describes	 the	328	

dynamics	 of	 the	 surround	 inhibitory	 function	 (Dayan	 and	 Abbott,	 2001;	Wandell,	329	
1995).	330	
	331	
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FIGURE 2.6. Mexican-hat receptive field. The receptive 
field in the retina and LGN is often characterized as a 
difference between a center response (red) and a broader 
and weaker surround response (blue), resulting in a 
“Mexican hat” shape (black). 
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