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 1	
Chapter IV. Psychophysical studies of visual object 2	

recognition 3	
 4	

 We want to understand the neural mechanisms responsible for visual 5	
object recognition and we want to instantiate these mechanisms into 6	
computational algorithms that resemble and perhaps eventually surpass human 7	
performance. In order to untangle the mechanisms orchestrating visual 8	
recognition and build adequate computational models, we need to define visual 9	
recognition capabilities at the behavioral level. What shapes can humans 10	
recognize and when and how? Under what conditions do humans make 11	
mistakes? How fast can humans recognize complex objects? How much 12	
experience and what type of experience with the world is required to learn to 13	
recognize objects? 14	
 15	
 We can learn about visual object recognition by carefully quantifying 16	
human performance under a variety of well-controlled visual tasks. A discipline 17	
with the peculiar and attractive name of “Psychophysics” aims to rigorously 18	
characterize, quantify and understand behavior during cognitive tasks.  19	

4.1. What you get ain’t what you see 20	
 21	
 It is clear that what we end up perceiving 22	
is a significantly transformed version of the 23	
pattern of photons impinging on the retina. Our 24	
brains filter and process visual inputs to 25	
understand the physical world by constructing an 26	
interpretation that is consistent with our 27	
experiences. This observation may seem 28	
counterintuitive at first: our perception is a 29	
sufficiently reasonable representation of the 30	
outside world to allow us to navigate, to grasp 31	
objects, to interpret where things are going and 32	
whether a friend is happy or not. It is extremely 33	
tempting to assume that our visual system is 34	
actually capturing a perfect rendering of the 35	
outside world.  36	
  37	
 Visual illusions constitute strong 38	
examples of the dissociation between what is in 39	
the real world and what we end up perceiving. A 40	

simple example of the dissociation between inputs and percepts is given by the 41	
blind spot. If you close one eye, there is a part of the visual field that is not 42	
mapped onto retinal ganglion cells, the spot where these cells leave the retina to 43	
form the optic nerve. It is possible to distinguish this blind spot by closing one 44	
eye, fixating on a given spot and slowly moving a finger from the center to the 45	

	
Figure 4.1: The Kanizsa 
triangle. The mind creates a 
white triangle from the 
incomplete information provided 
by the pacmen or other shapes 
in the figure. 
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periphery until part of it disappears from view (but not in 46	
its entirety which would imply that you moved your 47	
finger completely outside of your visual field).    48	
 49	
 Visual illusions are not the exception, rather 50	
they illustrate the fundamental principle that our 51	
perception is a construct, a confabulation, inspired by 52	
the visual inputs. There is a lot of information in the 53	
world that we just do not see. As a simple example, we 54	
do not perceive with our eyes information in the 55	
ultraviolet portion of the light spectrum (but other 56	
animals do). Another simple example is when we are 57	
watching a movie. A movie is nothing more than a 58	
sequence of frames, typically presented at a rate of 30 59	

frames per second or more. Our brains do not perceive this rate and instead we 60	
interpret objects as moving on the screen.  61	
 62	
 In addition to not being able to perceive a lot of what’s happening in the 63	
real world, our brains invent a lot of information that does not exist. Consider for 64	
example, the Kanizsa triangle illustrated in Figure 4.1. We perceive a large white 65	
triangle in the center of the image and we can trace each of the sides of said 66	
triangle. Yet, those edges are composed of illusory contours: in between the 67	
edge of a pacman and the adjacent small black triangle, there is no white edge.  68	

4.2. Gestalt laws of grouping 69	
  70	
 One of the early and founding attempts at establishing basic principles of 71	
visual perception originated from the German philosophers and experimental 72	
psychologists in the late nineteenth century. The so-called Gestalt laws (in 73	
German “gestalt” means shape) provide basic constraints about how patterns of 74	
light are integrated into perceptual sensations (Reagan, 2000). These rules arose 75	
from attempts to understand the basic perceptual principles that lead to 76	
interpreting objects as wholes rather than the constituent isolated lines or 77	
elements that give rise to them. 78	
 79	

n Law of closure. We complete lines and extrapolate to complete known 80	
patterns or regular figures. An example of this is given by the famous 81	
Kanizsa triangle. Our mind creates a triangle in the middle of the image 82	
from incomplete information (Figure 4.1).  83	

n Law of similarity. We tend to group similar objects together. Similarity 84	
could be defined by shape, color, size or brightness (Figure 4.2) 85	

n Law of proximity. We tend to group objects based on their distance 86	
(Figure 4.3). 87	

n Law of symmetry. We tend to group symmetrical images. 88	

	
	
Figure 4.2. Law of 
similarity. We tend to 
group objects that share 
some properties. 
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n Law of continuity. We tend to continue regular patterns (Figure 4.4). 89	
n Law of common fate. Elements with the same moving direction tend to be 90	

grouped. 91	
 92	
 These laws are usually summarized by pointing out that the forms 93	
(Gestalten) are more than the mere sum of the component parts. 94	
 95	

4.3. Holistic processing of faces 96	
 97	
 An interesting example of the processing and interpretation of a whole 98	
image beyond what can be discerned from the individual components is the f 99	
holistic processing of faces. Three main observations have been put forward to 100	
document the holism of face processing. First is the inversion effect (Yin, 1969; 101	
Valentine, 1988), which describes how difficult it can be to distinguish local 102	
changes in a face when it is turned upside down (this is also called the “Thatcher 103	
effect” alluding to the images of Britain’s prime minister originally used to 104	
demonstrate the perceptual illusion). The second observation is the composite 105	
face illusion: by putting together the upper part of face 1 and the bottom part of 106	

face 2, one can create a novel face that 107	
appears to be perceptually distinct from 108	
the two original ones (Young et al., 1987). 109	
A third argument for holistic processing is 110	
the parts and wholes effect: changing a 111	
local aspect of a face distorts the overall 112	
perception of the entire face (Tanaka and 113	
Farah, 1993).  114	
 115	

4.4. Tolerance to object transformations 116	
 117	
 A hallmark of visual recognition is our ability to identify and categorize 118	
objects in spite of large transformations in the 119	
image. An object can cast an infinite number 120	
of projections onto the retina due to changes 121	
in position, scale, rotation, illumination, color, 122	
etc. This invariance to image transformations 123	
is critical to recognition. Our visual 124	
recognition capabilities would be quite 125	
useless without the ability to abstract away 126	
those changes.  127	
 128	
 To further illustrate the critical role of 129	
tolerance to object transformations in visual 130	
recogntiion, consider a very simple algorithm 131	

	
	
Figure 4.3. Law of proximity. We tend 
to see this figure as vertical lines. 

	

	
	
Figure 4.4. Law of continuity. We 
tend to assume that the dark gray 
circles form a line. 
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that we will refer to as “the rote memorization machine”. This algorithm receives 132	
inputs from a digital camera and remembers every single pixel. It can remember 133	
the Van Gogh sunflowers, it can remember a picture with your face taken two 134	
weeks ago on Monday at 2:30pm, it can remember exactly what your car looked 135	
like three years ago on a Saturday at 5:01pm. While such extraordinary memory 136	
might seem quite remarkable at first, it turns out that this would constitute a 137	
rather brittle approach to recognition. This algorithm would not be able to 138	
recognize your car in the parking lot today, because you may see it under a 139	
different illumination, a different angle, and with different amounts of dust than in 140	
any of the memorized photographs. This problem is beautifully illustrated in a 141	
short story by Argentinian fiction writer Jorge Luis Borges in “Funes the 142	
memorious”, relating the story of a character who has infinite memory due to a 143	
brain accident. Borges concludes: “To think is to forget differences, generalize, 144	
make abstractions”. 145	
 146	
 Our visual system is able to abstract away many of those image 147	
transformations to recognize objects. The visual system shows a significant 148	
degree of robustness to changes in many image properties, including the 149	
following:  150	
 151	

• Scale (e.g. you can recognize an object at different sizes). You can easily 152	
demonstrate the strong degree of tolerance for object transformations. 153	
For example, take a piece of text with 12pt font size, hold it at arm’s 154	
length and focus on any given letter, say “A”. The A will subtend a 155	
fraction of one degree of visual angle (approximately the size of your 156	
thumb at arm’s length).   157	

• Position with respect to fixation (e.g. we can recognize an object placed 158	
at different distances to the fixation point) 159	

• 2D rotation (e.g. we can recognize an object after turning our head 160	
sideways or rotating the object within the plane) 161	

• 3D rotation (e.g. we can recognize an object from different viewpoints) 162	
• Color (e.g. we can recognize the objects in a photograph whether it’s in 163	

color, sepia, grayscale) 164	
• Illumination (e.g. consider illuminating an object from the left, right, top or 165	

bottom) 166	
• Cues (e.g. an object’s shape can be determined by edges, by motion 167	

cues, by completion without sharp edges) 168	
•  Clutter (e.g. we can recognize objects despite the presence of other 169	

objects in the image) 170	
• Occlusion (e.g. we can recognize objects from partial information) 171	
• Other non-rigid transformations (e.g. we can recognize faces even with 172	

changes in expression, aging, even from the line drawing sketches in 173	
Figure 4.5!) 174	

 175	
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 A particularly intriguing 176	
example of tolerance is given by 177	
the capability to recognize 178	
caricatures and line drawings. At 179	
the pixel level, these images 180	
seem to bear little resemblance to 181	
the actual objects and yet, we can 182	
recognize them quite efficiently, 183	
sometimes even better than the 184	
real images! 185	
 186	

4.5. Speed of visual 187	
recognition 188	

 189	
 Visual recognition seems 190	
almost instantaneous. Several 191	
investigators have shown that we 192	

can recognize complex objects in a small fraction of a second.  193	
 194	
 One of the original studies by Mary Potter consisted of showing a 195	
sequence of images in a rapid sequence (RSVP, rapid serial visual presentation) 196	
and showing that subjects could detect the individual images even when 197	
presented at rates of 8 per second (Potter and Levy, 1969). Complex objects can 198	
be recognized when presented tachistoscopically for < 50 ms without a mask, 199	
even in the absence of any prior expectation or other knowledge (Vernon, 1954).  200	
 201	
 Part of the delays in reaction time measurements are associated with the 202	
behavioral response. In an attempt to constrain the amount of time required for 203	
visual recognition, Thorpe and colleagues recorded evoked response potentials 204	
from scalp electroencephalographic (EEG) signals while subjects performed a 205	
go/no-go animal categorization task (Thorpe et al., 1996). They found that frontal 206	
cortex electrodes showed a differential signal at about 150 ms; they argued that 207	
visual discrimination of animals versus non-animals in complex scenes should 208	
happen before that time. Kirchner et al used eye movements to elicit rapid 209	
responses and showed that subjects could make a saccade to discriminate the 210	
presence of a face or non-face stimulus in slightly more than 100 ms (Kirchner 211	
and Thorpe, 2006). These observations place a strong constraint into the 212	
mechanisms that underlie visual recognition. 213	
 214	
 Such speed in object recognition also suggests that the mechanisms that 215	
integrate information in time must occur rather rapidly. Under normal viewing 216	
conditions, all parts of an object reach the eye more or less simultaneously (in 217	
the absence of occlusions and object movement). By disrupting such 218	
synchronous access, one can probe the speed of temporal integration in vision. 219	
In a behavioral experiment to quantify the speed of integration, Jed Singer 220	
presented different parts of an object asynchronously (Figure 4.6), like breaking 221	

	
	
Figure 4.5. Recognition of line drawings. We 
can identify the objects in these line drawings 
despite the extreme simplicity in the traces and the 
minimal degree of resemblance to the actual 
objects. 
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Humpty Dumpty and trying to put the pieces back together again. He reasoned 222	
that if there was a long interval between the presentation of different parts, 223	
subjects would be unable to interpret what the object was, but if the parts were 224	
presented very close in time, the brain would easily be able to integrate them 225	
back to a unified perception of the object.  226	
 227	
 Another striking example of temporal integration is the phenomenon 228	
known as anorthoscopic perception, defined as perception of a whole object in 229	
cases where only a part of which is seen at a given time, perhaps one of the very 230	
earliest attempts at cinema. In classical experiments, an image is seen through a 231	
slit and the image moves rapidly allowing the viewer to catch only a small part of 232	
the whole at any given time. The brain integrates all the snapshots and puts them 233	
together to create a perception of a whole object moving. The power of temporal 234	
integration is emphasized in cases where an actor is placed in a completely dark 235	
room wearing black with only a few sources of information placed along his body. 236	

	

	
Figure 4.6. Subjects can integrate asynchronously presented object information. 
Subjects were presented with different parts of an object in an asynchronous fashion (in this 
example, a camel). The middle part of the diagram shows the sequence of steps in the 
experiment. Subjects fixate and they observe a sequence of frames in which the object 
fragments are separated by a stimulus onset asynchrony (SOA). Subjects perform a 5-
alternative forced choice categorization task. Subjects could integrate information up to 
asynchronies of about 30 ms. 
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With just a handful of points it is 237	
possible to infer the actor’s motion 238	
patterns(Johansson, 1973). 239	
Related studies have shown that it 240	
is possible to dynamically group 241	
and segment information purely 242	
based on temporal 243	
integratoin(Anstis, 1970; Kellman 244	
and Cohen, 1984). 245	
 246	

4.6. Beyond pixels – 247	
contextual effects 248	

 249	
 In addition to temporal 250	
integration, visual recognition also 251	
exploits the possibility of integrating spatial information.  Several visual 252	
illusions demonstrate the existence of strong contextual effects in visual object 253	
recognition. For example, it is significantly more difficult to recognize faces when 254	
they are upside down (see “Holistic processing” above). In a simple yet elegant 255	
demonstration, the perceived size of a circle can be strongly influenced by the 256	
size of its neighbors (Figure 4.7). Another extremely simple example is the 257	
Muller-Lyer illusion: the perceived length of a line with arrows at the two ends 258	
depends on the directions of the two arrows. Several entertaining examples of 259	
contextual effects have been 260	
reported (e.g. (Sinha and Poggio, 261	
1996; Eagleman, 2001)). These 262	
strong contextual dependences 263	
illustrate that the visual system 264	
spatially integrates information 265	
and the perception of local 266	
features may depend on the 267	
global surrounding properties.  268	
 269	
 Such contextual effects 270	
are not restricted to visual 271	
illusions and psychophysics 272	
demos like the one in Figure 4.7. 273	
Consider Figure 4.8. What is the 274	
object in the white box? It is 275	
typically very hard to answer this question with any degree of certainty. Now, turn 276	
your attention to Figure 4.9. What is the object in the white box? This is a much 277	
easier question! Even though the pixels inside the white box are identical in both 278	
figures, the surrounding contextual information dramatically changes the 279	
probability of correctly detecting the object. These contextual effects are very fast 280	
and can be triggered by presenting even simpler and blurred version of the 281	
background information(Wu et al., Submitted). These contextual effects also 282	

	

	
	
Figure 4.7. Context matters. The green circle on 
the right appears to be larger than the one on the 
left but they are the same size. 

	

	
	
Figure 4.8. Context matters in the real world 
too. What is the object in the white box?  



Biological	and	Computer	Vision	 	 Gabriel	Kreiman©	
Chapter	4	 	 2018	

	 8	

emphasize that perception constitutes an interpretation of the input in the light of 283	
context and experience. 284	
 285	
4.5 The value of experience 286	
 287	

Our percepts are also 288	
influenced by previous visual 289	
experience. This observation holds 290	
at multiple different temporal 291	
scales. At short time scales, 292	
several visual illusions show the 293	
powerful effects of visual 294	
adaptation. One such illusion is the 295	
waterfall effect: after staring at a 296	
waterfall for a minute or so, and 297	
then shifting the gaze to other static 298	
objects, those objects appear to be 299	
moving upward. At longer time 300	
scales, the interpretation of an 301	
image could depend on whether 302	
one has seen the image before. A typical example is the Dalmatian dog: for the 303	
first-time observer the image consists of a smudge of black and white spots. 304	
However, after recognizing the dog, people can immediately spot him the next 305	
time. Other similar examples are Mooney images (Mooney, 1957).  306	
 307	
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Figure 4.9. Context matters in the real world 
too. What is the object in the white box?  
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