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 401	
Chapter V. (Part II) Adventures into terra incognita  402	

 403	
 Ascending through the hierarchy of cortical computations, leaving 404	
primary visual cortex, we reach the fascinating and bewildering cortical areas that 405	
bridge low-level visual features into the building blocks of perception. In primary 406	
visual cortex there are neurons that respond selectively to lines of different 407	
orientation (Chapter V, Part I) (Hubel & Wiesel 1959, Hubel & Wiesel 1968). At 408	
the other end of the visual hierarchy, there are neurons that respond selectively 409	
to complex shapes such as faces, as we will discuss in Chapter VI. In between, 410	
there is a large expanse of cortex involved in the magic transformations that take 411	
oriented lines into complex shapes. How do we go from oriented lines to 412	
recognizing faces and cars and other fancy shapes (Figure 5.5)? Despite heroic 413	
efforts by a talented cadre of investigators to scrutinize the responses between 414	
primary visual cortex and the highest echelons of inferior temporal cortex, this 415	
part of cortex remains terra incognita in many ways. Visual information flows 416	
along the ventral visual stream from primary visual cortex into areas V2, V4, 417	
posterior and anterior parts of inferior temporal cortex. The cortical real estate 418	
between V2 and inferior temporal cortex composes a mysterious, seductive, 419	
controversial and fascinating ensemble of neurons whose functions remain 420	
unclear and are only beginning to be deciphered. 421	

  422	
5.9. Divide and conquer 423	
 424	
 To solve the complex task of object recognition, the visual system seems 425	
to have adopted a “divide and conquer” strategy. Instead of trying to come up 426	
with a single function that will transform lines into complex shapes in one step, 427	
the computations underlying pattern recognition are implemented by a cascade 428	
of multiple approximately sequential computations. Each of these computations 429	
may be deceptively simple and yet the concatenation of such steps can lead to 430	
interesting and complex results. As a coarse analogy, consider a factory making 431	
cars. There is a long sequence of specialized areas, departments and tasks. One 432	
group of workers may be involved in receiving and ordering different parts, others 433	

Figure 5.5: Through the cascade of computations along the ventral visual stream, the brain 
can convert preferences for simple stimulus properties such as orientation tuning into complex 
features such as faces. 
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may be specialized in assembling 434	
the carburetor, others in painting 435	
the exterior. The car is the result of 436	
all of these sequential and parallel 437	
steps. To understand the entire 438	
mechanistic process by which a car 439	
is made, we need to dig deeper 440	
into each of those specialized sub-441	
steps. To understand the 442	
mechanisms orchestrating visual 443	
object recognition, we need to 444	
inspect neuronal ensembles along 445	
the ventral visual stream.   446	
  447	
 448	
 449	

5.10. We cannot exhaustive study all possible visual stimuli 450	
 451	
 One of the challenges to investigate the function and preferences of 452	
neurons in cortex is that we have a limited amount of recording time for a given 453	
neuron. Given current techniques, it is simply impossible to examine the large 454	
number of possible combinations of different stimuli that might drive a neuron. 455	
Consider a simple scenario where we present a 5x5 image patch where each 456	
pixel is either black or white (Figure 5.6). There are 225 such stimuli. If we 457	
present each stimulus for 100 ms and we do not allow for any intervening time in 458	
between stimuli, it would take more than 5 weeks to present all possible 459	
combinations. There are many more possibilities if we allow each pixel to have 460	
three colors (Red, Green, Blue) with an intensity between 0 and 255. We can 461	
typically hold extracellular recordings with single (non-chronic) electrodes for a 462	
couple of hours. Recent heroic efforts have managed to track the activity of 463	
presumably the same neuron for months (Bondar et al 2009, McMahon et al 464	
2014). Yet, even with such chronic electrodes, it is difficult to keep an animal 465	
engaged in a visual presentation task for more than a few hours a day. Thus, 466	
investigators often recur to a number of astute strategies to decide which stimuli 467	
to use to investigate the responses of cortical neurons. These strategies typically 468	
involve a combination of: (i) inspiration from previous studies (past behavior of 469	
neurons in other studies is a good predictor of how neurons will behave in a new 470	
investigation); (ii) intuitions about what might matter for neurons (for example, 471	
many investigators have argued that real world objects such as faces should be 472	
important); (iii) statistics of natural stimuli (as discussed in Chapter II, it is 473	
reasonable to assume that neuronal tuning is sculpted by exposure to images in 474	
the natural world); (iv) computational models (to be discussed in more detail in 475	
Chapters VII-IX); (v) serendipity (the role of rigorous scrutiny and systematic 476	
observation combined with luck should not be underestimated). Combining these 477	
approaches, several investigators have began to probe the neural code for visual 478	
shapes along the ventral visual cortex.   479	

Table 5.1: Response latencies in different areas 
in the macaque monkey (from Schmolesky et al 
1998). 

Area	 Mean	(ms)	 S.D.	(ms)	
LGNd	M	layer	 33	 3.8	
LGNd	P	layer	 50	 8.7	
V1	 66	 10.7	
V2	 82	 21.1	
V4	 104	 23.4	
V3	 72	 8.6	
MT	 72	 10.3	
MST	 74	 16.1	
FEF	 75	 13	
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5.11. We live in the visual past: response latencies increase along the 480	
ventral stream 481	

 482	
 Vision seems to be instantaneous. You open your eyes and the world is 483	
out there, apparently immediately. Visual processing is indeed very fast. Indeed, 484	
we argued in Chapter I that the speed of vision is likely to have conferred critical 485	
advantages to the first species with eyes and may well constitute one of the key 486	
reasons why evolution led to the expansion of visual capabilities. Yet, the 487	
intuition that vision is instantaneous is nothing more than an illusion. It takes time 488	
for signals to propagate through the brain. A small fraction of this time has to do 489	
with the speed of propagation of signals within a neuron, along dendrites and 490	
axons. Yet, the within neuron delays are relatively small. In particular, action 491	
potential signals within axons that are insulated by myelin can propagate with 492	
speeds of about 100 meters per second. Dendrites tend to be shorter than axons 493	
and propagation speeds within dendrites is also quite fast. The main reason why 494	
vision is far from instantaneous is the multiple computations and integration steps 495	
in each neuron combined with the synaptic hand-off of information from one 496	
neuron to the next.  497	
 498	
 At each processing stage in the visual system, it is possible to estimate 499	
the time it takes for neurons in that area to realize that a flash of light was 500	
presented. Response latencies to a stimulus flash within the receptive field of a 501	
neuron increase from ~45 ms in the LGN to ~100 ms in inferior temporal cortex 502	
(Hung et al, 2005, Schmolesky et al 1998) (Table 5.1). There is an increase in 503	
the average latency within each area from the retina to the LGN to V1, to V2, to 504	
V4, to ITC. This progression of latencies has further reinforced the notion of the 505	
ventral processing stream as an approximately hierarchical and sequential 506	
architectures. Each additional processing stage along the ventral stream adds an 507	
average of ~15 ms of computation time. It should be emphasized that these are 508	
only coarse values and there is a lot of neuron-to-neuron variability within each 509	
area. For example, an analysis in anesthetized monkeys by Schmolesky and 510	
colleagues showed latencies ranging from 30 ms all the way to 70 ms in primary 511	
visual cortex. Because of this heterogeneity, the distribution of response 512	
latencies overlap and the fastest neurons in a given area (say V2) may fire 513	
before the slowest neurons in an earlier area (say V1). The notion of sequential 514	
processing is only a coarse approximation. The response latencies constrain the 515	
number of computations required to perform computations along the visual 516	
hierarchy. 517	
 518	
 Because of these latencies, we continuously live in the past in terms of 519	
vision. The notion that we only see the past events is particularly evident when 520	
we consider distant stars. The light signals that reach the Earth have left those 521	
stars a long time ago. Although much less intuitive, the same idea applies to 522	
visual processing in the brain. Of course, the time it takes for light to bounce on a 523	
given object and reach the retina is negligible, yet signal propagation in the brain 524	
takes on the order of a hundred milliseconds as discussed above. In several 525	
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cases, through learning, the brain might be able to account for these delays by 526	
predicting what will happen next. For example, how is it possible for a ping-pong 527	
player to respond to a smash? The ball may be moving at about 50 km/h 528	
(apparently, the world record is about 112 km/h) and thus traverses the ~3 m 529	
distance in about 200 ms. By the time the opponent has to hit the ball back, his 530	
or her visual cortex are processing sensory inputs from the time when the ball 531	
was passing the net in the best-case scenario. Not to mention that to orchestrate 532	
a movement also takes time (signals need to travel from the decision centers of 533	
the brain all the way to the muscles). The only way to play ping-pong and other 534	
sports is to use the visual input combined with predictions learnt through 535	
experience. Because of these predictions, players not only capitalize on 536	
smashing speed but also recur to other strategies such as embedding the ball 537	
with spinning effects to confuse the opponent.   538	
 539	

5.12. Receptive field sizes increase along the visual hierarchy 540	
 541	
 Concomitant with the prolonged latencies, as we ascend through the 542	
visual hierarchy, receptive fields become larger (Figure 5.7). Receptive fields 543	
range from below one degree in the initial steps (LGN, V1) all the way to several 544	
degrees or even in some cases tens of degrees in the highest echelons of cortex 545	
(Kobatake & Tanaka 1994, Rolls 1991). Each area has a complete map of the 546	
visual field, thus the centers of the receptive fields go from the fovea all the way 547	
to the periphery. As discussed for primary visual cortex, within each area, the 548	
size of the receptive field increases as we move farther away from the periphery. 549	
There is always better resolution in the fovea, across all visual areas. The range 550	
of receptive field sizes within an area also increases with the mean receptive field 551	
size. The distributions are relatively narrow in primary visual cortex but 552	
investigators have described a wide range of receptive field sizes in V4 or inferior 553	

Figure 5.6: With current techniques, we cannot exhaustively sample all possible stimuli. Here 
we consider a 5x5 grid of possible binary images (top) or possible grayscale images (bottom). 
Even for such simple stimuli, the number of possibilities is immense (see text). 
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temporal cortex. The scaling factor between receptive field size and eccentricity 554	
is more pronounced in V4 than in V2 and in V2 compared to V1.  555	
 556	

5.13. What do extrastriate neurons prefer? 557	
 558	
 There have been a few systematic parametric studies of the neuronal 559	
preferences in areas V2 and V4. These studies have clearly opened the doors to 560	
investigate the complex transformations along the ventral visual stream. Despite 561	
multiple interesting studies comparing responses in V1, V2 and V4, there isn’t yet 562	
a clear unified theory of what neurons “prefer” in these higher visual areas. Of 563	
course, the term “prefer” is an anthropomorphism. Neurons do not prefer 564	
anything. They fire spikes whenever the integration of their inputs exceeds a 565	
given threshold. Investigators often speak about neuronal preferences in terms of 566	
what types of images will elicit high firing rates.  567	
 568	
 The notion that V1 neurons show a preference for orientation tuning is 569	
well established, even if this only accounts for part of the variance in V1 570	
responses to natural stimuli (Carandini et al 2005). There is significantly less 571	
agreement as to the types of shape features that are encoded in V2 and V4. 572	
There have been several studies probing responses with stimuli that are more 573	
complex than oriented bars and less complex than everyday objects. These 574	
stimuli include sinusoidal gratings, hyperbolic gratings, polar gratings, angles 575	
formed by intersecting lines, curvatures with different properties, among others 576	
(Hegde & Van Essen 2003, Hegde & Van Essen 2007, Kobatake & Tanaka 577	
1994, Pasupathy & Connor 2001). Simple stimuli such as Cartesian gratings can 578	
certainly drive responses in V2 and V4. As a general rule, neurons in V2 and V4 579	
can be driven more strongly by more complex shapes. As discussed above in the 580	
context of latency, there is a wide distribution of stimulus preferences in V2 and 581	
V4. 582	
 583	

Figure 5.7: Receptive field increases within eccentricity for a given area and receptive field 
increases along the ventral visual stream at a fixed eccentricity. a. Experimental 
measurements based on neurophysiological recordings in macaque monkeys. B. Schematic 
rendering of receptive field sizes in areas V1, V2 and V4. Reproduced from Freeman and 
Simoncelli, 2013. 
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 Perhaps one of the 584	
challenges is that investigators 585	
seek an explanation of neural 586	
coding preferences in terms of 587	
colloquial English expressions 588	
such as orientation, curvature, 589	
etc. An attractive idea that is 590	
gaining momentum is the notion 591	
that neurons in these higher 592	
visual areas filter the inputs 593	
from previous stages to 594	
produce complex tuning 595	
functions that defy language-596	
based descriptions. A neuron 597	
may be particularly activated by 598	
a patch representing complex 599	
shapes and textures that is not 600	
simply defined as an angle or a 601	
convex curve. Ultimately, the 602	
language of science is 603	
mathematics, not English or 604	
Esperanto. Neuronal tuning 605	
properties do not have to map 606	
in any direct way to a short 607	
language-based description.  608	
 609	

5.14. Brains construct an interpretation of the world: the case of illusory 610	
contours 611	

 612	
 Another pervasive illusion is that our senses contain a veridical 613	
representation of exactly what is out there in the world. This notion can be readily 614	
debunked through the study of visual illusions (Chapter I). Let us revisit the 615	
Kanizsa triangle (Chapter 1, Figure 5.8) where we have the strong illusion of 616	
perceiving an equilateral triangle in the midst of the three pacman icons. The 617	
sides of the triangle near the vertices are composed of real black/white contours. 618	
However, the center of each side is composed of a line that does not really exist. 619	
These lines represent illusory contours, edges created without any change in 620	
luminance. It is relatively easy to “trick the eye”. Except that the eye is typically 621	
not tricked in most visual illusions. Visual illusions represent situations where our 622	
brains construct an interpretation of the image that is different from the pixel level 623	
content. In most such illusions, retinal ganglions cells do follow the pixel level 624	
content in the image relatively well. If we record the activity of a retinal ganglion 625	
cell whose receptive field is right in the center of the illusory contour, nothing 626	
would happen upon flashing the Kanizsa figure. In other words, the activity of 627	
retinal ganglion cells does not correlate with our perception. But if the retina does 628	
not reflect perception, then who does? It seems reasonable to conjecture that 629	

Figure 5.8: V2 cells can represent lines that do 
not exist except in the eyes of the beholder. The 
figure shows the Kanizsa triangle visual illusion and a 
schematic rendering of neurophysiological recordings 
from 4 neurons: two retinal ganglion cells neurons 
(RGC) and two V2 neurons. When the receptive 
fields (gray dotted circles) encompass locations that 
have a real contour (A), both RGC and V2 cells fire 
vigorously. In contrast, when the receptive fields 
encompass an illusory contour (B), the V2 cell fires 
vigorously but the RGC cell only fires a few baseline 
spikes. 
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there must be neurons somewhere that explicitly represent the contents of our 630	
perception, in this case the illusory contours (this is a critical postulate that we 631	
will discuss again in more depth when we take up the question of the neuronal 632	
correlates of consciousness in Chapter VII).  633	
 634	
 Indeed, neurons in area V2 respond vigorously to illusory contours 635	
(Figure 5.8). These V2 neurons respond almost equally well to an illusory line or 636	
to a real line (Lee 2003, Lee & Nguyen 2001, von der Heydt et al 1984). The 637	
responses to illusory contours are remarkable because there is no contrast 638	
change within the neuron’s receptive field. Hence, these responses must indicate 639	
a form of context modulation that is consistent with the subjective interpretation 640	
of borders. There are also neurons in V1 that respond to illusory contours but 641	
there are more such neurons in V2. 642	
 643	

5.15. A colorful V4 644	
 645	
 Neurons in area V4 are particularly sensitive to stimulus color (Zeki 646	
1983). Neurons in area V4 demonstrate sensitivity to color properties that are 647	
more complex than those observed in earlier areas such as LGN parvocellular 648	
cells or V1 blobs. Neurons in V4 have been implicated in the phenomenon of 649	
color constancy whereby an object’s color is relatively insensitive to large 650	
changes in the illumination, in contrast to the responses earlier in the visual 651	
system.  652	
 653	

5.16. Attentional modulation 654	
 655	
 As discussed for V1, neurons along the ventral visual cortex receive 656	
massive top-down signals in addition to their bottom-up inputs (Markov et al 657	
2012). Presumably through these top-down signaling mechanisms, the activity of 658	
neurons along ventral visual cortex can be strongly modulated by signals beyond 659	
the specific content of their receptive fields including spatial context and higher 660	
level cognitive influences such as task goals.  661	
 662	
 A prime example of this type of modulation involves spatial attention 663	
(Desimone & Duncan 1995, Reynolds & Chelazzi 2004). Importantly, spatial 664	
attention effects can be demonstrated outside of the fixation focus. That is, a 665	
subject can be looking at one place and paying attention to another place, a 666	
phenomenon known as covert attention (as opposed to overt attention which is 667	
the more common scenario where attention is allocated to the fixated area). 668	
Through a series of astute training paradigms, investigators have been able to 669	
train animals to deploy covert attention, thus enabling them to investigate the 670	
consequences of spatial attention on neurons with receptive fields outside the 671	
fovea. Neurons typically show an enhancement in the responses when their 672	
receptive field is within the locus of attention. The magnitude of this attentional 673	
effect follows the reverse hierarchical order, being significantly stronger in area 674	
V4 compared to area V1. 675	

676	
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