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 1	
Chapter VI. Part 1. First steps into inferior temporal 2	

cortex  3	
 4	
Inferior temporal cortex (ITC) is the highest echelon within the visual 5	

stream concerned with processing visual shape information1. As such, one may 6	
expect that some of the key properties of visual perception may be encoded in 7	
the activity of ensembles of neurons in ITC. The history of how inferior temporal 8	
cortex became accepted and described as a visual area is a rather interesting 9	
one (Gross, 1994). 10	

 11	
6.1. Preliminaries 12	
 13	
 Imagine that you are interested in finding out the functions and properties 14	
of a given brain area, say inferior temporal cortex (ITC) within the primate ventral 15	
visual stream. As we have discussed before (Chapter 4), part of the answer to 16	
this question may come from lesion studies. Bilateral lesions to ITC cause severe 17	
impairment in visual object recognition in macaque monkeys (Dean, 1976; 18	
Weiskrantz and Saunders, 1984; Afraz et al., 2015) and several human object 19	
agnosias are correlated with damage in the inferior temporal cortex(Damasio, 20	
1990; Humphreys and Riddoch, 1993; Forde and Humphreys, 1999) (Chapter 21	
4). Another piece of evidence for function could come from non-invasive 22	
functional imaging studies. While non-invasive studies have limited 23	
spatiotemporal resolution and a low signal to noise ratio, they can still provide 24	
tentative hints about the coarse mapping of stimuli to some indirect metric of 25	
brain activation. For example, upon presenting images of human faces and 26	
indirectly comparing the patterns of blood flow against those obtained when the 27	
same subject looks at pictures of houses, investigators typically report increased 28	
activity in a region of ITC called the fusiform gyrus (e.g. (Kanwisher et al., 1997)).  29	
 30	
 Localizing approximate anatomical regions relevant for visual processing 31	
is only the beginning of the story. Even if we have some indication (through 32	
lesion studies, functional imaging studies or other techniques) of the general 33	
function of a given brain area, much more work is needed to understand the 34	
mechanisms and computations involved in the function and properties of neurons 35	
in that area. We need to understand the receptive field structure and feature 36	
preferences of the different types of neurons in that area, how these preferences 37	
originate based on the inputs, recurrent connections and feedback signals and 38	
what type of output the area sends to its targets. For this purpose, it is necessary 39	
to examine function at a spatial resolution of single neurons and with millisecond 40	
temporal resolution.  41	
 42	
																																																								
1	The	famous	Felleman	and	Van	Essen	diagram	from	1991	places	the	hippocampus	
at	 the	 top.	While	 visual	 responses	 can	 be	 elicited	 in	 the	 hippocampus,	 it	 is	 not	 a	
purely	visual	area	and	it	receives	inputs	from	all	other	modalities	as	well.		
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6.2. Neuroanatomy of inferior temporal cortex 43	
 44	
 Inferior temporal cortex (ITC) is the last purely visual stage of processing 45	
along the ventral visual stream. It consists of Brodmann’s cytoarchitectonic areas 46	
20 and 21. It is a vast expanse of cortex that is usually subdivided into a posterior 47	
area (PIT), a central area (CIT) and an anterior area (AIT) (Felleman and Van 48	
Essen, 1991; Logothetis and Sheinberg, 1996; Tanaka, 1996). Biologists are 49	
fond of confusing people by using different names for the same things, a 50	
phenomenon that can be partly explained by independent investigators working 51	
on related topics in parallel and using different nomenclature to describe their 52	
findings. For example, inferior temporal cortex is also referred to as areas TEO 53	
and TE in the literature.  54	
 55	
 Like most other parts of cortex, the connectivity patterns of ITC are wide 56	
and complex  (Markov et al., 2014). When we describe computational models of 57	
vision (Chapter 8), it is quite clear that most models represent a major 58	
simplification of the actual connectivity diagram. ITC receives feed-forward 59	
topographically organized inputs from areas V2, V3 and V4 along the ventral 60	
visual cortex. It also receives (fewer) inputs from areas V3A and MT along the 61	
ventral visual cortex, highlighting the interconnections between the dorsal and 62	
ventral streams. ITC projects back to V2, V3 and V4. It also projects (outside the 63	
visual system) to the parahippocampal gyrus, pre-frontal cortex, amygdala and 64	
perirhinal cortex. There are interhemispheric connections between ITC in the 65	
right and left hemispheres through the corpus callosum (splenium and anterior 66	
commissure). ITC includes a large part of the macaque monkey temporal cortex. 67	
Anatomically it is often divided into multiple different subparts as defined above 68	
but the functional subdivision among these areas is still not clearly understood. 69	
Although there are multiple visually responsive areas beyond ITC (e.g in 70	
perirhinal cortex, entorhinal cortex, hippocampus, amygdala, prefrontal cortex), 71	
these other areas are not purely visual and also receive input from other sensory 72	
modalities. 73	
 74	
6.3. Receptive field sizes in ITC 75	
 76	
 Most, if not all, ITC neurons show visually evoked responses. ITC 77	
neurons often respond vigorously to color, orientation, texture, direction of 78	
movement and shape. PIT shows a coarse retinotopic organization and an 79	
almost complete representation of the contralateral visual field. The receptive 80	
field sizes are approximately 1.5 – 4 degrees and are typically larger than the 81	
ones found in V4 neurons. As we move to more anterior locations along the ITC, 82	
there is weaker and weaker retinotopical organization. Yet, this does not mean a 83	
lack of topography. On the contrary, nearby neurons share similar properties: for 84	
example, two nearby neurons are much more likely to respond in a similar 85	
fashion to a set of stimuli than neurons that are farther apart (Tanaka, 1996). The 86	
receptive fields in more anterior parts of ITC are often large but there is a wide 87	
range of estimations in the literature ranging from some neurons with ~2 degrees 88	
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receptive fields (DiCarlo and Maunsell, 2004) to descriptions of neurons with 89	
receptive fields that span several tens of degrees (Rolls, 1991; Tanaka, 1993). 90	
Most receptive fields in ITC include the foveal region. 91	
 92	
6.4. Feature preferences in inferior temporal cortex 93	
 94	
 Investigators have often found strong responses in ITC neurons elicited 95	
by all sorts of different stimuli. For example, several investigators have shown 96	
that ITC neurons can be driven by the presentation of faces, hands and body 97	
parts (Gross et al., 1969; Perrett et al., 1982; Rolls, 1984; Desimone, 1991; 98	
Young and Yamane, 1992). Other investigators have used parametric shape 99	
descriptors of abstract shapes (Schwartz et al., 1983; Miyashita and Chang, 100	
1988; Richmond et al., 1990). Logothetis and colleagues trained monkeys to 101	
recognize paperclips forming different 3D shapes and subsequently found 102	
neurons that were selective for paperclip 3D configurations (Logothetis and 103	
Pauls, 1995).  104	
  105	
 While this wide range of responses may appear puzzling at first, it is 106	
perhaps not too surprising given a simple model where ITC neurons are tuned to 107	
“complex shapes”. My interpretation of the wide number of stimuli that can drive 108	
ITC neurons is that these units are sensitive to complex shapes which can be 109	
found in all sorts of 2D patterns including fractal patterns, faces and paperclips. 110	
This wide range of responses also emphasizes that we still do not understand 111	
the key principles and tuning properties of ITC neurons. 112	
  113	

Figure 6.1. Example responses from 3 neurons in inferior temporal cortex (labeld 
“Site 1”, “Site 2”, “Site 3” to 5 different gray scale objects. Each dot represents a 
spike, each row represents a separate repetition (10 repetitions per object) and the 
horizontal white line denotes the onset and offset of the image (100 ms presentation 
time). Data from (Hung et al., 2005a).  
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 As emphasized earlier, the key difficulty to elucidate the response 114	
preferences of neurons involves the curse of dimensionality: given limited 115	
recording time, we cannot present all possible stimuli. A promising line of 116	
research to elucidate the feature preferences in inferior temporal cortex involves 117	
changing the stimuli in real-time dictated by the neuron’s preferences (Kobatake 118	
and Tanaka, 1994; Yamane et al., 2008). 119	
 120	
 Tanaka and others have shown that there is clear topography in the ITC 121	
response map. By advancing the electrode in an (approximately) tangential 122	
trajectory to cortex, he and others described that neurons within a tangential 123	
penetration show similar visual preferences (Fujita et al., 1992; Gawne and 124	
Richmond, 1993; Tanaka, 1993; Kobatake and Tanaka, 1994). They argue for 125	
the presence of “columns” and higher-order structures like “hypercolumns” in the 126	
organization of shape preferences in ITC. 127	
 128	
 More recent work suggests that we may need to rethink the neural code 129	
for features in ITC (and perhaps earlier visual areas as well). Following up on the 130	
ideas developed by Yamane et al to let the neuron itself reveal what it likes rather 131	
than impose a strong bias in the stimulus selection, Xiao and colleagues 132	
developed a computational algorithm that is capable of generating images guided 133	
by neuronal firing rates. They use a genetic algorithm using the neuron’s firing 134	
rate as the fitness function. In a given generation, the investigators probe the 135	
responses to a set of images. Images that trigger high firing rates are kept, and 136	
the rest are modified and recombined by the generative algorithm. In Chapter 8, 137	
we will introduce deep hierarchical models of vision that start with pixels and 138	
yield a high-level feature representation. The generative algorithm deployed by 139	
Xiao and colleagues is essentially an inverted version of those computational 140	
models, starting with high level features and ending up with the generation of the 141	
pixels in an image.  142	
 143	
 By running this generative computational algorithm while recording the 144	
activity of a neuron in ITC, they discovered images that elicited higher firing rates 145	
than any natural image that had been used before to test the responses of the 146	
neurons. These images contain naturalistic combinations of textures and broad 147	
strokes, which have been described by investigators as impressionist (e.g. 148	
Monet) renderings of abstract art like a Kandinsky. The fundamental novel 149	
concept here is that neurons may be optimally activated by combinations of 150	
complex features that cannot be easily described in words. In contrast to the 151	
language-based anthropomorphic descriptions of neuronal feature preferences in 152	
ITC (“this neuron likes faces”, “this neuron likes chairs”, “this neuron likes convex 153	
curved shapes”), the new line of work suggests that neurons might be optimally 154	
activated by complex shapes that defy a definition. A rich basis set of neurons 155	
tuned to such complex features is capable of allowing the organism to 156	
discriminate real world objects, but the basis set does not have to be based on 157	
real-world objects.  158	
 159	
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 While each neuron shows a preference for some shapes over others, the 160	
amount of information conveyed by individual neurons about overall shape is 161	
limited (Rolls, 1991). Additionally, there seems to be a significant amount of 162	
“noise”2 in the neuronal responses in any given trial. Can the animal use the 163	
neuronal representation of a population of ITC neurons to discriminate among 164	
objects in single trials? Hung et al addressed this question by recording 165	
(sequentially) from hundreds of neurons and using statistical classifiers to 166	
decode the activity of a pseudo-population3 of neurons in individual trials (Hung 167	
et al., 2005b). They found that a relatively small group of ITC neurons (~200) 168	
could support object identification and categorization quite accurately (up to 169	
~90% and ~70% for categorization and identification respectively) with a very 170	
short latency after stimulus onset (~100 ms after stimulus onset). Furthermore, 171	
the pseudo-population response could extrapolate across changes in object 172	
scale and position. Thus, even when each neuron conveys only noisy information 173	
about shape differences, populations of neurons can be quite powerful in 174	
discriminating among visual objects in individual trials.  175	

																																																								
2	The	term	“noise”	is	used	in	a	rather	vague	way	here.	There	is	extensive	literature	
on	the	variability	of	neuronal	responses,	the	origin	of	this	variability	and	whether	it	
represents	noise	or	signal.	For	the	purposes	of	the	discussion	here,	“noise”	could	be	
defined	as	the	variability	in	the	neuronal	response	(e.g.	spike	counts)	across	
different	trials	when	the	same	stimulus	was	presented.	
3	Because	the	neurons	were	recorded	sequentially	instead	of	simultaneously,	the	
authors	use	the	word	pseudo-population	as	opposed	to	population	of	neurons.	

	
Figure 6.2. Example electrode describing the physiological responses to 25 different 
exemplar objects belonging to 5 different categories. A. Responses to each of 25 
different exemplars (each color denotes a different category of images; each trace 
represents the response to a different exemplar). B. Raster plot showing every single 
trial in the responses to the 5 face exemplars. Each row is a repetition, the dashed 
lines separate the exemplars, the color shows voltage (see scale bar on right). C. 
Electrode location. 
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 176	
6.5. Tolerance to object transformations 177	
 178	
 As emphasized in Lecture 1, a key property of visual recognition is the 179	
capacity to recognize objects in spite of the transformations of the images at the 180	
pixel level. Several studies have shown that ITC neurons show a significant 181	
degree of tolerance to object transformations.  182	
 183	
 ITC neurons can show similar responses in spite of large changes in the 184	
size of the stimuli (Ito et al., 1995; Logothetis and Pauls, 1995; Hung et al., 185	
2005c). Even if the absolute firing rates are affected by the stimulus size, the 186	
rank order preferences among different objects can be mainained in spite of 187	
stimulus size changes (Ito et al., 1995). ITC neurons also show more tolerance to 188	
object position changes than units in earlier parts of ventral visual cortex (Ito et 189	
al., 1995; Logothetis and Pauls, 1995; Hung et al., 2005c). ITC neurons also 190	
show a certain degree of tolerance to depth rotation (Logothetis and Sheinberg, 191	
1996). They even show tolerance to the particular cue used to define the shape 192	
(such as luminance, motion or texture) (Sary et al., 1993). 193	
 194	
 An extreme example of tolerance to object transformations was provided 195	
by recordings performed in human epileptic patients. These are subjects that 196	
show pharmacologically-resistant forms of epilepsy. They are implanted with 197	
electrodes in order to map the location of seizures and to examine cortical 198	
function for potential surgical treatment of epilepsy. This approach provides a 199	
rare opportunity to examine neurophysiological activity in the human brain at high 200	
spatial and temporal resolution. Recording from the hippocampus, entorhinal 201	
cortex, amygdala and parahippocampal gyrus, investigators have found neurons 202	
that show responses to multiple objects within a semantically-defined object 203	
category (Kreiman et al., 2000). They have also shown that some neurons show 204	
a remarkable degree of selectivity to individual persons or landmarks. For 205	
example, one neuron showed a selective response to images where the ex-206	
president Bill Clinton was present. Remarkably, the images that elicited a 207	
response in this neuron were quite distinct in terms of their pixel content ranging 208	
from a black/white drawing to color photographs with different poses and views 209	
(Quian Quiroga et al., 2005). As discussed above for the ITC neurons, we still do 210	
not have any understanding of the circuits and mechanisms that give rise to this 211	
type of selectivity or tolerance to object transformations. 212	
 213	
6.6. The path forward 214	
 215	
 Terra incognita (extrastriate ventral visual cortex), has certainly been 216	
explored at the neurophysiological level. The studies discussed here constitute a 217	
non-exhaustive list of examples of the type of responses that one might see in 218	
areas such as V2, V4 and ITC. While the field has acquired a certain number of 219	
such examples, there is an urgent need to put together these empirical 220	
observations into a coherent theory of visual recognition. In our Lecture 6, we will 221	
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discuss some of the efforts in this direction and the current status in building 222	
computational models to test theories of visual recognition. 223	
 224	
 As a final note, I conclude here with a list of questions and important 225	
challenges in the field to try to better describe what we do not know and what 226	
needs to be explained in terms of extrastriate visual cortex. It would be of interest 227	
to develop more quantitative and systematic approaches to examine feature 228	
preferences in extrastriate visual cortex (this also applies to other sensory 229	
modalities). Eventually, we should be able to describe a neuron’s preferences in 230	
quantitative terms, starting from pixels. What types of shapes would a neuron 231	
respond to? This quantitative formulation should allow us to make predictions 232	
and extrapolations to novel shapes. It is not sufficient to show stimulus A and A” 233	
and then interpolate to predict the responses to A’. If we could really characterize 234	
the responses of the neuron, we should be able to predict the responses to a 235	
different shape B. Similarly, as emphasized multiple times, feature preferences 236	
are intricately linked to tolerance to object transformations. Therefore, we should 237	
be able to predict the neuronal response to different types of transformations of 238	
the objects. Much more work is needed to understand the computations and 239	
transformations along ventral visual cortex. How do we go from oriented bars to 240	
complex shapes such as faces? A big step would be to take a single neuron in, 241	
say, ITC, be able to examine the properties and responses of its afferent V4 units 242	
to characterize the transformations from V4 to ITC. This formulation presupposes 243	
that a large fraction of the ITC response is governed by its V4 inputs. However, 244	
we should keep in mind the complex connectivity in cortex and the fact that the 245	
ITC unit receives multiple other inputs as well (recurrent connections, bypass 246	
inputs from earlier visual areas, backprojections from the medial temporal lobe 247	
and pre-frontal cortex, connections from the dorsal visual pathway, etc). There is 248	
clearly plenty of virgin territory for the courageous investigators who dare explore 249	
the vast land of extrastriate ventral visual cortex and the computations involved in 250	
processing shapes. 251	
 252	
 253	
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