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 1	
Chapter IX.  Towards a world with intelligent 2	

machines that can see 3	
 4	
	5	

Imagine a world where machines can truly see and interpret the visual 6	
world around us. A world where machines can pass the vision Turing test.  7	

  8	
9.1. The vision Turing test 9	
 10	
 Alan Turing (1912-1954) was one of the greatest minds of the twentieth 11	
century and a pioneer in the development of the theory of computer science. In 12	
this seminal 1950 study, he proposed the “Imitation game”, whereby a series of 13	
questions is posed both to a human and to a computer (Turing, 1950). Turing 14	
proposed that if we cannot distinguish which answers came from the human and 15	
which ones came from the computer, then we should call the computer intelligent. 16	
In the domain of vision, we imagine that we present the human or the computer 17	
with an image (or a video) and we are allowed to ask any question about the 18	
image. Again, if we cannot distinguish whether the answers come from the 19	
human or from the computer, we can claim victory, we can claim that we have 20	
solved the problem of vision, at least to human levels. 21	
 22	
 There are many visual problems where computers are already 23	
significantly better than humans. A simple example of such a problem is the 24	
ability to read bar codes, such as the ones used in a supermarket to label each 25	
item. In most supermarkets around the globe, there is still a need for a human to 26	
turn the product, locate the bar code, and position it in such a way that the 27	
scanner will be able to read it. This minimal human intervention will probably 28	
vanish soon. The task may seem somewhat limited: the number of possible 29	
“questions” about these images is rather limited. And part of the challenging 30	
invariance problem is solved by the human by positioning the image in the right 31	
place.  32	
 33	
9.2. Computer vision competitions 34	
 35	
 There has been significant progress in a variety of image categorization 36	
tasks in the Computer Vision community. This progress has been fueled by a 37	
combination of increase in computational resources, access to a large number of 38	
digital images, and interesting competitions in academic conferences.  39	
 40	
 The last decade has seen an explosion in the number of digital images 41	
available on the web. In 2018, it is estimated that users upload on the order of a 42	
few billion digital images every day. In addition, many users provide more and 43	
more content in the form of “tags”, brief captions, “likes” and other commentary. 44	
Every minute, humans take more photos than ever existed in total 100 years ago. 45	
There is also a rapid increase in the amount of video material being uploaded. In 46	
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parallel to the availability of imagery, there are also accessible platforms such as 47	
Mechanical Turk where users can answer queries on images for a small fee, 48	
leading to more content annotation and labels. Images, content, and the 49	
concomitant exponential growth in computational power, have opened the doors 50	
to use networks with millions of tunable parameters for recognition tasks.  51	
 52	
 A typical example is the “ImageNet” large scale visual recognition 53	
challenge (Russakovsky et al., 2014). This dataset consists of color images from 54	
the web, each one associated with a label. In a typical instantiation of this 55	
competition, those labels can be any one of 1,000 classes including “goldfish”, 56	
“coffee mug”, “power drill”, or “strawberry” (Figure 9.1). There are a few 57	
thousand examples of each class. The fact that the images are downloaded from 58	
the web is a blessing and a curse. A blessing because they encompass a wide 59	
diversity of image properties where the target object can appear in multiple 60	
positions, at multiple scales, rotations, colors, illumination, degrees of occlusion, 61	
etc. To some coarse approximation, this may reflect the natural distribution of 62	
objects in the world. This is not exactly true because those images are filtered 63	
through the lenses and biases of human photographers. For example, there are 64	
probably very few images of a hippopotamus that are at 45 degrees and in the 65	
middle of the night. Images taken from the web are also a curse because of their 66	
uncontrolled nature and the large number of other somewhat miscellaneous 67	
contextual factors that contribute to classification. For example, in the 3 pictures 68	
of “Domes” in Figure 9.1 (top row, third column), the pixels in the upper left are 69	
mostly blue. It seems likely that when people take pictures of Domes, they are 70	
set against the sky and there will be a higher propensity of blue in the top. In 71	
contrast, none of the “Baboon” pictures (bottom row, third column) contain blue at 72	
the top. Blue at the top is not a unique identifying feature of Domes, though. 73	
Many other pictures also contain blue at the top (e.g. volcanos, elephants, 74	
castles, and even sunglasses in the example below). There are also probably 75	
lots of pictures of Domes without blue at the top and there are probably pictures 76	
of baboons with blue at the top. The point is that there are lots of correlations in 77	
the images that are only tangentially related to the object labels themselves. 78	
Depending on the particular task and objective, these contextual correlations can 79	
represent a confound or a useful property. Another curious property of this 80	
particular dataset is that several of those categories are rather intriguing. In fact, 81	
there are many category labels that I would have to look up in the dictionary to 82	
figure out what they are (e.g. tench, junco) and many of those 1,000 classes 83	
correspond to rather specialized and refined groups of animals (how many 84	
humans can distinguish between the whiptail lizard, the alligator lizard, the green 85	
lizard, the komodo lizard, and the frilled lizard?). Yet, computers are trained to 86	
recognize these categories from scratch, and the distinction between whiptail 87	
lizards and frilled lizards may be as arbitrary as the separation between 88	
sunglasses and domes).   89	
 90	
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 Armed with such a large dataset of images, the next step is to train a 91	
computational algorithm to label them. To ensure that we are not merely 92	
memorizing each image, it is critical to use cross-validation by separating the 93	
images within each category into a training set and a test set. All the model 94	
parameters can be modified ad libitum only while examining the training set. In 95	
deep convolutional network models, this step typically amounts to modifying the 96	
weights in a supervised fashion via back-propagation (see Chapter 8). However, 97	
it may also be possible to explore other aspects of the model including its 98	
architecture, number of layers, size of each layer, computational motifs, etc., as 99	
long as we limit ourselves to the training set. After training, the algorithm is tested 100	
with new images and the fraction of images that are correctly labeled is reported. 101	
A family of algorithms discussed in the previous Chapter have yielded 102	
increasingly higher performance in this type of task (Krizhevsky et al., 2012; 103	
Simonyan and Zisserman, 2014b; He et al., 2015; Szegedy et al., 2015). For 104	
example, the “Inception-v2” architecture reported a top-1 performance of ~80%, 105	
which is quite impressive considering that chance levels are 0.1%.  106	
 107	
 Labeling an image to indicate whether it contains a particular object class 108	
is known as object identification (or object categorization). Beyond assigning a 109	
label, in many applications it may be of interest to localize where a particular 110	
object is in an image, a task known as object localization (or object detection). 111	
For example, the task may be to draw a bounding box around each chair in an 112	
image (Figure 9.2). Multiple algorithms have been developed for object 113	
localization tasks (Girshick, 2015; Redmon et al., 2016; He et al., 2018), 114	
including recent fast implementation that can work at frame rates compatible with 115	
video cameras running at 30 frames per second, therefore opening the doors to 116	
essentially being able to locate objects in real-time.   117	
 118	

Figure 9.1: Example images from the ImageNet dataset. The availability of datasets 
consisting of millions of labeled images provided a big boost to supervised learning algorithms 
for object categorization. 
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 Most for historical and practical reasons, computer vision has 119	
disproportionately focused on single images, as opposed to videos. One 120	
particular domain that has been gaining traction in the computer vision 121	
community is action recognition, where the goal is to assign a label describing 122	
the action portrayed in a video. Several datasets have been developed and 123	
continue to emerge to evaluate action recognition capabilities (Soomro et al., 124	
2012; Kay et al., 2017). Several of the comments above about image datasets 125	
are also pertinent in the case of videos. For example, contextual influences can 126	
also play an important role in action recognition: a lot of green pixels are more 127	
likely to be correlated with the action “playing soccer” than “swimming” whereas a 128	
lot of blue pixels are more likely to be correlated with “swimming”. Additionally, in 129	
many cases, single frames can be sufficient for action recognition, without the 130	
need to invoke the temporal dimension. Several models have been proposed for 131	
action recognition, extending existing 2D image categorization architectures by 132	
incorporating trainable spatiotemporal filters (Simonyan and Zisserman, 2014a; 133	
Cheron et al., 2015; Feichtenhofer et al., 2016; Tran et al., 2017). 134	
 135	

 136	
9.3. Computer-vision applications in the real world 137	
 138	
 Deep convolutional network algorithms have had an enormous impact in 139	
a wide variety of vision applications. One of the earliest real-world applications 140	
was in algorithms for optical character recognition (OCR), which rapidly became 141	
mainstream in sorting letters based on their zip codes. There are even neat 142	
applications that can translate handwritten traces into mathematical formulae. On 143	
the one hand, some mathematical symbols are relatively simple; on the other 144	
hand, they are probably less stereotyped and there is less training data than in 145	
other OCR applications. 146	
 147	
 There are several situations where there is a very large number of 148	
images (or video) that needs to be classified. For example, one of the challenges 149	
in Astrophysics is to classify vast amounts of imagery to understand the shape of 150	

Figure 9.2: Object localization. The task involves taking an image (left) and localization all 
instances of a given object class (e.g., chairs in this example) by drawing a box around them 
(right). 
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galaxies. One of the ways in which this was achieved was via crowd-sourcing by 151	
engaging the public in looking at images and learning to categorize galaxies. This 152	
is an ideal setting to apply pattern recognition techniques from computer vision 153	
(Kim and Brunner, 2017). A conceptually similar example is the categorization of 154	
plants and animals (Van Horn et al., 2018).  155	
 156	
 The exciting progress in self-driving cars has also been fueled by 157	
progress in computer vision, building sensors to localize pedestrians, other cars, 158	
brake lights, traffic lights, other signs, lanes, the sidewalk, even animals, bicycles, 159	
or anomalous objects on the road. While the majority of computer vision 160	
applications rely on video or camera feeds from regular cameras, images do not 161	
have to be restricted to such sensors. For example, self-driving cars can 162	
simultaneously use information from multiple cameras as well as multiple other 163	
sensors. There has been so much progress in terms of vision that most 164	
engineers trying to build self-driving car think that the main challenges ahead 165	
depend on how to intelligently use such information to rapidly make informed 166	
decisions rather than localizing specific objects and object types.  167	
 168	
 Computer vision is making enormous strides in the domain of clinical 169	
image analyses, so much so that there are many examples of problems where 170	
machines are on par or better than humans. Humans are capricious creatures, 171	
doctors do not always agree with each other in diagnosis. Sometimes doctors do 172	
not even agree with themselves when tested on the same image recognition 173	
problem on different days! One example problem is breast cancer detection from 174	
mammograms (Lotter, 2017). The American Cancer Society recommends 175	
obtaining a mammogram, generally consisting of two x-ray images of each breast, 176	
to all women, once or twice a year depending on age. This is a lot of images, 177	
early diagnosis can have a critical impact on deciding the course of action, and 178	
there is clear documentation of the variability among radiologists (Elmore et al., 179	
2009). Current algorithms can achieve performance comparable to expert 180	
radiologists. In other words, computer vision algorithms can pass the Turing test 181	
in terms of discriminating whether a mammogram is likely to represent a tumor or 182	
not.  183	
 184	
 While this is the main question of interest in the vast majority of breast 185	
exams, occasionally, there may be other relevant questions clinicians may want 186	
to ask about an image. For example, sometimes there are incidental findings 187	
where a person is scanned to diagnose a given condition X. The scan does not 188	
reveal any finding regarding X but the radiologist detects other anomalies that 189	
lead to a different diagnosis Y. Such incidental findings may be complex for 190	
current computer vision algorithms because they may be extremely rare and the 191	
algorithms are ultra-specialized in detecting condition X. One possible initial 192	
solution would be for computer vision systems to flag such images as anomalous 193	
and route them back to a human for further inspection. In the future, it is quite 194	
possible that future generations will regard humans trying to diagnose images in 195	
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the same way that we would now imagine a human trying to interpret a bar code 196	
in the supermarket.  197	
 198	
 Incidental findings may represent one arena where humans may still 199	
surpass machines in clinical image diagnosis. The reverse is also true. Machines 200	
may be able to discover aspects of how to reason about images that were never 201	
conceived by humans before. An intriguing example of this phenomenon arose 202	
when investigators were examining retinal fundus photographs (Poplin et al., 203	
2018). They were interested in using a computer vision approach to diagnose 204	
diabetic retinopathy, a condition that may arise in diabetic patients when high 205	
blood sugar levels cause blood vessels in the retina to swell and leak. These 206	
blood vessels can be examined in fundus photographs, images of the back of the 207	
eye, used by ophthalmologists to diagnose the disease. After collecting hundreds 208	
of thousands of labeled images, a computer vision algorithm quickly learned to 209	
match clinicians in diagnosis, a feat that comes as no surprise at this stage 210	
(Figure 9.3). The diagnosis label is only one of the questions that one can ask 211	
about those images. The investigators decided to turn their machine learning 212	
algorithms to ask other questions on the same images. First, they asked whether 213	
they could guess the subject’s age and, voila, they could do so quite precisely, 214	
with an absolute error of less than 3.5 years. Next, they asked whether they 215	
could predict the subject’s gender. To everyone’s surprise, they were able to do 216	
so extremely well, with an area under the receiver operating curve of 0.97. The 217	
curve refers to the plot of the probability of correct detection versus the 218	
probability of false alarm: it is trivial to achieve high detection rates at the 219	
expense of very high false alarm rates (by claiming that every image shows 220	
disease), or very low false alarm rates without any correct detection (by claiming 221	
that no image shows disease). A good algorithm will have low false alarm rate 222	
and high probability of detection; the best that an algorithm could achieve is an 223	
area of 1.0. Trained ophthalmologists had never been able to guess somebody’s 224	
gender from fundus photographs. Perhaps they never cared to ask that question, 225	
after all, they have the subject right in front of them. However, even after telling 226	
them that the information was there and asking doctors to guess the gender, they 227	
were unable to do it. It is not entirely clear what exact image features the 228	
algorithm uses to discriminate gender. Some people have hypothesized that 229	
perhaps doctors, both male and female, position themselves slightly closer to 230	
female patients than to male patients on average and this slight bias is captured 231	
by the algorithms. Or perhaps there are real subtle differences between female 232	
and male blood vessels in the retina. Regardless of whether this explanation 233	
holds true or not, this example shows that computer vison can discover image 234	
features that are not apparent even to experts in the field. In this case, those 235	
features (age and gender) are perhaps not that interesting (doctors always have 236	
access to both without a fundus photograph). The most enigmatic finding 237	
appeared when the investigators decided to ask an even more daring question. 238	
Would it be possible to predict the risk of cardiovascular disease from fundus 239	
photographs? Intriguingly, the answer was yes, with an area the curve of 0.7, 240	
which is comparable to the best predictors such as the Framingham score based 241	
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on decades of clinical work. Computer vision algorithms can not only learn to 242	
diagnose images like doctors, they can teach us novel things from those images.    243	
   244	

 There is a 245	
wide variety of 246	
applications for 247	
automatic face 248	
recognition 249	
algorithms. The 250	
current version of 251	
the iPhone can 252	
use an image of 253	
the user’s face to 254	
log in. Facebook 255	
can now search 256	
for photos that 257	
include a 258	
particular person 259	
when that person 260	
is not tagged. 261	
State-of-the-art 262	
algorithms for 263	
face recognition 264	
surpass expert 265	
human 266	
performance 267	
including forensic 268	

facial examiners, facial reviewers, and so-called superrecognizers (Phillips et al., 269	
2018). There is also a growing industry of security applications based on facial 270	
recognition capabilities. Security applications in the near future may also rely on 271	
action recognition classification algorithms. Concomitant with advances in face 272	
recognition, there are vigorous and interesting discussions about concepts of 273	
privacy. It is quite likely that very soon, it will be rather challenging to walk down 274	
the street without being recognized.   275	
 276	
 Similar ideas have also expanded well beyond vision and are making 277	
rapid strides in fields as diverse as speech recognition, predicting voting patterns 278	
or predicting consumer choices. Interestingly, in a vast majority of cases, the 279	
basic architecture of the algorithm is the same, a deep convolutional network that 280	
mimics the cascade of processing along the ventral visual stream. What changes 281	
is the basic input: instead of using pixels in RGB space, one can use a 282	
spectrogram of the frequencies of sound as a function of time to process sounds. 283	
However, subsequent processing steps and the procedure to train those 284	
algorithms is remarkably similar if not exactly the same in many applications. In 285	
Neuroscience, this idea is sometimes phrased as “Cortex is cortex”, alluding to 286	
the conjecture that the same basic architectural principles are followed in the 287	

Figure 9.3: Clinical applications of computer vision. Example 
clinical application of computer vision, taking a photograph of the back 
of the eye (fundus photograph) and using a deep convolutional 
network to diagnose diabetic retinopathy (Poplin et al., 2018). In 
addition, computer vision algorithms can be trained to ask other 
questions from the same image, including predicting the subject’s 
gender, or even the risk of cardiovascular disease. 
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visual system, the auditory system, etc. Without doubt, there are important 288	
differences across modalities, and engineers will also fine tune their algorithms 289	
for each application, but as a first approximation, some of the basic ingredients 290	
seem to hold across multiple tasks.  291	
 292	
9.4. Challenges ahead 293	
 294	
 Exciting and rapid progress in computer vision may lead us to think that 295	
we have almost solved the problem of vision. Yet, I would argue that we are still 296	
extremely far. And the best is yet to come.  297	
 298	

 One interesting current challenge that has led to a lot of discussion is the 299	
notion of adversarial examples (Figure 9.4). These are images that appear 300	
similar to humans but that receive different labels by a computer vision system 301	
(Szegedy et al., 2014). Given any algorithm that is forced to assign a binary label 302	
to an image, A versus B, it is inevitable that there will be a boundary where you 303	
can move from A to B with small image changes. It’s like standing in the arbitrary 304	
border between two states or two countries. These adversarial images were 305	
created by using knowledge about the categorical boundaries and astutely 306	
changing a few pixels to push the image into the opposite side. Humans also 307	
suffer from such adversarial examples and many other visual illusions that 308	
deceive us into seeing things that don’t exist (Chapter 4). And there are many 309	
cases of images that deceive humans but do not confuse computer vision 310	
systems. What is intriguing about these adversarial examples is the profound 311	
difference between machines and human perception. In many real-world 312	
applications, seeing the world the way humans do may be quite relevant. In fact, 313	
there has been a whole industry of investigators designing “adversarial attacks” 314	
to confuse computer vision systems, together with a similarly vigorous 315	

Figure 9.4: Adversarial examples. The two images below appear to be indistinguishable to 
humans. Yet, state-of-the-art computer algorithms classify the one on the left as corn and the 
one on the right as snorkel. 
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community of defenses against such adversarial attacks. For example, one may 316	
ask whether the image on the right in Figure 9.4 would revert back to a corn if it 317	
is scaled, or its color changed, or using different versions of the same network 318	
(e.g. starting from different random initial conditions), or using different 319	
architectures. These examples clearly illustrate that even if current algorithms 320	
can label lots of images correctly, they do not necessarily see the world the way 321	
humans do. 322	
 323	
 An interesting application of computer vision would be to restore visual 324	
functionality to people with severe visual impairment. By restoring “visual 325	
functionality”, we do not necessarily mean getting a blind person to see in the 326	
same way that a sighted person does, but rather, the ability to convey information 327	
that they can use. Digital cameras are extremely good and relatively cheap. A 328	
blind person could easily where a camera on their forehead, or in a pendant. 329	
Imagine an algorithm that can label every object in an image. How can we 330	
convey such rich information to a blind person? An image is worth a thousand 331	
words, they say. In a glimpse, we get a rich representation of our surroundings, 332	
which is quite different from labeling every object. This representation highlights 333	
certain aspects of the image while ignoring others, it allows us to discern 334	
distances, relationships between objects, even actions and intentions. Even if we 335	
could accurately label all the objects in an image, there is a much more to visual 336	
understanding. While we are discussing blind people, we could easily extend 337	
these ideas to enhancing the visual capabilities of sighted people as well. It 338	
would be easy to wear a camera that would give us immediate access to a 360-339	
degree view of the world, or cameras that grant us real-time access to other parts 340	
of the spectrum that our eyes are not sensitive to such as infrared. Computer 341	
vision systems could help us parse those images. 342	
 343	
 Another area that is advancing rapidly, and yet there is also plenty to 344	
improve, is image captioning (also related to question-answering systems on 345	
images). Given an image, the goal is to provide a brief and “relevant” description. 346	
In contrast to categorization tasks, it is more challenging to quantitatively 347	
evaluate the results. An example of state-of-the-art in image captioning is shown 348	
in Figure 9.5, which is based on results obtained on https://www.captionbot.ai/ 349	
(circa November 2018). It is important to emphasize the date because I suspect 350	
that we will see major improvement in the years to come. The captions provided 351	
by this algorithm are quite impressive. The system is pretty good at detecting 352	
people, even whether it is one person (9.5A) or multiple people (9.5B, D). The 353	
system can also detect the gender in 9.5A and it makes a reasonable guess that 354	
people are happy in 9.5D. The system also correctly infers that the person is 355	
sitting in 9.5A, and standing in 9.5B, D. The system also detects other important 356	
aspects of the scene including the presence of a table in 9.5A, water in 9.5B and 357	
a building in 9.5D. There are many other objects that are not described, which is 358	
perhaps not too bad, given that the goal is to caption and not mark every single 359	
object. It is a bit surprising that the system does not describe the Tower of Pisa in 360	
9.5D, given that such monuments have an exorbitant amount of training data. 361	
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There is a rather salient spoon in 9.5A that was not described. And it seems 362	
likely that a lot of humans would describe the bride in 9.5B. The system is not 363	
able to describe line drawings (9.5C), but it is quite nice that it was able to realize 364	
that this is a light drawing. Differentiating line drawings from photographs is 365	
perhaps not too difficult, particularly if the image has a huge number of white 366	
pixels, a few black pixels and essentially no textures. It is relatively easy for 367	
humans to recognize that there are 3 people in the drawing in 9.5C, though it is 368	

not clear exactly how this 369	
deduction happens. Current 370	
algorithms such as this one 371	
probably have minimal, if any, 372	
training with drawings. In 373	
contrast, most humans have 374	
had exposure to the basic 375	
symbolism behind line 376	
drawings. 377	
 378	
 One easy way to 379	
break these captioning 380	
systems is to scramble the 381	
image. For example, we can 382	
divide the image into four 383	
quadrants, and rearrange the 384	
quadrants randomly. The 385	
image largely loses its 386	
meaning, yet the caption 387	
remains largely unchanged. If 388	
we present the fundus 389	
photograph from Figure 9.3 390	

(only the fundus photograph, without the rest of the Figure), the system responds 391	
with “I can’t really describe the picture but I do see light, sitting, lamp”. It’s 392	
commendable that the system realizes that it cannot quite describe the image, 393	
that it realizes that it is different from its training set. And there is indeed a light in 394	
there. The system probably saw many examples where the word “light” is 395	
correlated with the word “lamp”, throwing it into the description. It is a bit harder 396	
to deduce where the word “sitting” comes from, a characteristic that many people 397	
have criticized: given the large number of parameters in the system, it is not 398	
always easy to put in words why the system produces a given output. Of note, 399	
the same type of architectures can be trained to outperform doctors in 400	
interpreting the same fundus photographs. Doctors can evaluate fundus 401	
photographs and also understand what is happening in Figure 9.5 where as 402	
many current systems are ultra-specialized for specific tasks.    403	
  404	
 To end on a light tone, I would like to highlight an example of a problem 405	
that I consider to be extremely challenging: understanding the human sense of 406	
humor. It is clear that one can ask a large number of questions about the images 407	

Figure 9.5: Image captioning. Four example results 
from the www.captionbot.ai image captioning system. 
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in Figure 9.5. As impressive as those captions are, they do not come even close 408	
to solving the Turing test for vision. The captions completely miss to grasp 409	
fundamental aspects of scene, what is happening, who is doing what, to whom, 410	
and why. Humans can look at these images and understand the relationships 411	
between the different objects, what is their relative positions, why they are where 412	
they are, and even make inferences about happened before or what may happen 413	
next.  414	
 415	
 Even more mysteriously, all these images are meant to be somewhat 416	
curious or funny. Let us consider 9.5C as an example. Why is it funny? To grasp 417	
what’s happening, we may need to incorporate not just the pixels, not just the 418	
specific objects, but also their symbolism and relative interactions. The scale at 419	
the center, together with the few traces that represent the attire of the person in 420	
the center, plus his relative position with respect to the other person leads us to 421	
think that he is a judge. Note that it is the combination of many of these labels 422	
and their interactions that lead us to this understanding. Each one piece of 423	
information on its own would not necessarily be sufficient. The person sitting 424	
below the judge is probably the accused (or less likely a witness). This inference 425	
is perhaps partly based on the person’s shirt with horizontal stripes, but mostly 426	
based on his relative position and an understanding of the arrangement of the 427	
judge and the accused in a court of law. We can infer that the third person is a 428	
policeman, which is consistent with his outfit but also with the fact that he is 429	
standing, and that he is behind the accused. After deciphering that the person in 430	
the center is a judge, we guess that is his holding a gavel, that he is shouting, 431	
and that he is hitting the table with his gavel. The accused is also angry, making 432	
eye contact with the judge. Curiously, the accused also seems to be holding a 433	
gavel. This is unusual: the accused is not supposed to hold a gavel, let alone use 434	
it, as he is doing. This is the essence of why the image is funny: it portrays an 435	
unexpected scenario. If we take out the few pixels that represent the accused’s 436	
gavel, the image immediately becomes less interesting. There is a very large 437	
amount of world knowledge that we need to have to be able to understand to 438	
interpret Figure 9.5C. What’s more, predicting humor is further complicated by 439	
the fact that, even if you trained an algorithm to understand all the symbolism in 440	
Figure 9.5C, that would be of no help whatsoever to understand why Figure 9.5A 441	
is intriguing, nor to deduce what probably happened in Figure 9.5B.  442	
 443	
     444	
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