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Visual	Object	Recognition
Computational	Models	and	Neurophysiological	Mechanisms
Neurobiology	130/230.	Harvard	College/GSAS	78454

Class 1 [09/10/2018]. Introduction to pattern recognition [Kreiman]
Class 2 [09/17/2018]. Why is vision difficult? Natural image statistics. The retina. [Kreiman]
Class 3 [09/24/2018]. Lesions and neurological studies [Kreiman].
Class 4 [10/01/2018]. Psychophysics of visual object recognition [Sarit Szpiro]
October 8: University Holiday
Class 5 [10/15/2018]. Primary visual cortex [Hartmann]
Class 6 [10/22/2018]. Adventures into terra incognita [Frederico Azevedo]
Class 7 [10/29/2018]. High-level visual cognition [Diego Mendoza-Haliday]
Class 8 [11/05/2018]. Correlation and causality. Electrical stimulation in visual cortex [Kreiman]
Class 9 [11/12/2018]. Visual consciousness [Kreiman]
Class 10 [11/19/2018]. Computational models of neurons and neural networks. [Kreiman]
Class 11 [11/26/2018]. Computer vision. Artificial Intelligence in Visual Cognition [Bill Lotter]
Class 12 [12/03/2018]. The operating system for vision. [Xavier Boix]
FINAL EXAM, PAPER DUE 12/13/2018. No extensions.



An	object	can	cast	an	infinite	number	of	
projections	on	the	retina



A flower, as seen by a computer



Two simple and useless solutions



Task: Recognize the handwritten “A”

A “brute force” solution:
- Use templates for each letter
- Use multiple scales per template
- Use multiple positions per template
- Use multiple rotations per template
- Etc.

Problems with this approach:
- Large amount of storage for each 

object
- No extrapolation, no intelligent 

learning
- Need to learn about each object 

under each condition

A	brute	force	approach	to	object	recognition



Recognizing	objects	by	part	decomposition

Biederman (1987) Psychological Review 



A	non-exhaustive	list	of	computational	models
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M. Riesenhuber and T. Poggio, Hierarchical models of object recognition in cortex. Nature Neuroscience, 
1999. 2: 1019-1025.
G. Deco and E.T. Rolls, A neurodynamical cortical model of visual attention and invariant object recognition. 
Vision Res, 2004. 44: 621-42.
P. Foldiak, Learning Invariance from Transformation Sequences. Neural Computation, 1991. 3: 194-200.



Common	themes	across	multiple	object	
recognition	models

•Hierarchical structure
“Divide and conquer” strategy

•Increased receptive field size along the hierarchy

•Increased complexity in shape preferences along the hierarchy

•Increased tolerance to (affine) feature transformations along the hierarchy



Neocognitron

Fukushima K. (1980) Neocognitron: a self organizing neural network model for a mechanism 
fo pattern recognition unaffected by shift in position. Biological Cybernetics 36, 193-202 

Retinotopically arranged connections between layers
Feature extracting “S” cells
C-cells performing a local “OR” operation
Increasing buildup of position tolerance
Unsupervised learning in S layers



A	hierarchical	feed-forward	model	of	visual	recognition

Serre et al. Progress in Brain Research 165C:33-56 (2007)



The	CBCL	model:	A	biologically-inspired,	bottom-up,	
hierarchical	model	of	object	recognition

Cadieu, Knoblich, Kouh, Mutch, Riesenhuber, Serre, Poggio



A	biologically-inspired,	bottom-up,	hierarchical	
model	of	object	recognition



Biophysical implementation of cortical nonlinear operations
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Example:	responses	of	the	top-level	units



We	can	decode	object	information	from	the	model	units

Progress in Brain Research 2007



Daniel L. K. Yamins et al. PNAS 2014;111:8619-8624

Correlation	between	model	performance	and	IT	
variance	explained



Daniel L. K. Yamins et al. PNAS 2014;111:8619-8624

Neural-like models via performance 
optimization



Daniel L. K. Yamins et al. PNAS 2014;111:8619-8624

Example IT neural predictions 



Daniel L. K. Yamins et al. PNAS 2014;111:8619-8624

Population-level similarity



Daniel L. K. Yamins et al. PNAS 2014;111:8619-8624

V4	neural	predictions



Object	recognition	by	alignment	to	prototypes

Ullman (1996) High-level vision

Prototype

Alignment of 3 points to the prototype (black arrows)
Note: some points may not align (red ellipses)



Some	ideas	about	viewpoint	invariance:	
learning	from	examples

Poggio and Edelman, Nature 1990



Learning	about	object	transformations	by	
exploiting	slowness

Foldiak et al 1991.
Wiskott & Sejnowski 2002



Bottom-up	versus	Top-down	approaches

Bottom-up, horizontal and top-down connections intermixed throughout neocortex

The speed of visual recognition places a strong constraint on computational models:
- Scalp EEG: complex categorization by ~150 ms (Thorpe et al 1996)
- ITC responses show latencies of ~100 ms (e.g. Richmond et al 1983)
- Visual recognition in RSVP sequences (e.g. Potter et al 1969)

“Long” versus “short” loops in neuronal circuits underlying recognition
- “Short” loops: Horizontal connections; V1 à V2 à V1
- “Long” loops: ITC à V1 à ITC

There is more to life than vision… Memory, attention, emotions, planning, 
consciousness, etc. Top-down connections are likely to play key roles in this and 
other aspects of visual recognition. 



Bottom-up	saliency	models

Itti and Koch 2001



Spatial	and	feature	attention	through	feedback

Chikkerur and Poggio 2010



Top-down signals in visual search



Feedback 
signals in 
visual 
search

Miconi et al, Cerebral Cortex 2015
Zhang et al, Nature Communications 

2018



The model can search for objects in cluttered 
images



The model’s performance is comparable to human 
performance in the same visual search task
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