Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neurobiology 130/230. Harvard College/GSAS 78454

Web site:http://tinyurl.com/visionclass \rightarrow Class notes, Class slides, Readings AssignmentsLocation:Biolabs 2062Time:Mondays 03:00 – 05:00

Lectures:

Faculty: Gabriel Kreiman and invited guests

TA: Emma Giles

Contact information:

Gabriel Kreiman

gabriel.kreiman@tch.harvard.edu

Emma Giles

emmagiles@g.harvard.edu

617-919-2530

Office Hours: After Class. Mondays 5pm, or by appointment

Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neurobiology 230. Harvard College/GSAS 78454

- Class 1 [09/10/2018]. Introduction to pattern recognition [Kreiman]
- Class 2 [09/17/2018]. Why is vision difficult? Natural image statistics. The retina. [Kreiman]
- Class 3 [09/24/2018]. Lesions and neurological studies [Kreiman].
- Class 4 [10/01/2018]. Psychophysics of visual object recognition [Sarit Szpiro]
- October 8: University Holiday
- Class 5 [10/15/2018]. Primary visual cortex [Hartmann]
- Class 6 [10/22/2018]. Adventures into terra incognita [Frederico Azevedo]
- Class 7 [10/29/2018]. High-level visual cognition [Diego Mendoza-Haliday]
- Class 8 [11/05/2018]. Correlation and causality. Electrical stimulation in visual cortex [Kreiman]
- Class 9 [11/12/2018]. Visual consciousness [Kreiman]
- Class 10 [11/19/2018]. Computational models of neurons and neural networks. [Kreiman]
- Class 11 [11/26/2018]. Computer vision. Artificial Intelligence in Visual Cognition [Bill Lotter]
- Class 12 [12/03/2018]. The operating system for vision. [Xavier Boix]
- FINAL EXAM, PAPER DUE 12/13/2018. No extensions.

From the retina to cortex

Glickstein, M. (1988). The discovery of the visual cortex. Scientific American

Visual system circuitry

Felleman and Van Essen. Cerebral Cortex 1991

V1 in each hemisphere represents the contralateral visual field

Studies of gunshot lesions revealed topographic visual deficits

Holmes, G. (1918). Disturbances of vision by cerebral lesions. British Journal of Ophthalmology 2, 353-384.

Primary visual cortex in Brodmann's map

Brain shown from the side, facing left. Above: view from outside, below: cut through the middle. Orange = Brodmann area 17 (primary visual cortex)

Acuity is much higher at the fovea

Fixate here

X

TRY READING THIS [44] Retinal photoreceptor density [36] Cortical magnification factor [28]

Why is it that we do not see things upside down? [20]

Or the split between the two hemifields? [12] And do not forget about the importance of crowding! [8]

The complex circuitry of cortex as drawn by Ramon y Cajal

Dzaja et al, Frontiers in Neuroanatomy 2014

The gold standard to examine neuronal activity: microelectrode recordings

Edgar Adrian 1926

Neuronal resolution Sub-millisecond temporal resolution Direct examination of action potentials

Hubel, D. (1979). The Visual Brain. SCIENTIFIC AMERICAN 241, 45-53.

Neurophysiological recordings from primary visual cortex

Hubel – Nobel Lecture

Hubel and Wiesel 1968

Selectivity and tolerance of complex fields

Hubel and Wiesel. J. Physiol. 1962

Video of Hubel and Wiesel

http://www.youtube.com/watch?v=8VdFf3egwfg

Retinotopical map in cortex

Hubel & Wiesel, Proc. R. Soc. Lond. B, 1977

Ocular dominance columns

Visual orientation columns

Hubel & Wiesel, Proc. R. Soc. Lond. B, 1977

Horton & Adams, Phil. Trans. R. Soc. B, 2005

Columnar organization of primary visual cortex

LeVay, Hubel, & Wiesel, 1975

Yacoub, Harel, & Uğurbil, 2008

Putting it all* together: the "hypercolumn"

- Depth
- Color

Hubel & Wiesel, Proc. R. Soc. Lond. B, 1977

Different primary visual cortex neurons show a variety of interests

- Orientation selectivity
- Direction selectivity
- Speed selectivity
- •Typically monotonic response with contrast
- •Spatial frequency preferences
- •Color

Interlude 1: Multiplying a cosyne and a Gaussian function

Receptive fields for simple cells in V1

Spatial receptive field Cat primary visual cortex (area 17) Jones and Palmer 1987

Dayan and Abbott. (2001) Theoretical Neuroscience. The MIT Press

Interlude 2: MATLAB

An easy way to write computer code

http://www.mathworks.com/index.html

"High-level" computer programming languageOuite powerfull

•Quite powerful!

theta_rad=(2*pi/360)*theta; x=(-2*sigma_x):bin:(2*sigma_x);nx=length(x); y=(-2*sigma_y):bin:(2*sigma_y);ny=length(y);

```
factor1=1/(2*pi*sigma_x*sigma_y);

for i=1:nx

for j=1:ny

curr_x=x(i)*cos(theta_rad)+y(j)*sin(theta_rad);

curr_y=y(j)*cos(theta_rad)-x(i)*sin(theta_rad);

factor2=exp(-curr_x^2/(2*sigma_x^2)-curr_y^2/(2*sigma_y^2));

factor3=cos(k*curr_x-phi);

Ds(i,j)=factor1*factor2*factor3;
```

end end

% theta angle in radians % define x axis % define y axis

$$D(x,y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left[-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}\right] \cos(kx - \phi)$$

Interlude 2: MATLAB An easy way to make plots

A model for orientation tuning in simple cells

A feed-forward model for orientation selectivity in V1 (by no means the only model)

Wandell (1995), Foundations of Vision. Sinauer Books Dayan and Abbott. (2001) Theoretical Neuroscience. The MIT Press

Complex cells show position tolerance

Hubel and Wiesel, J. Physiol. 1962

Stimulus: black bar

Stimulus presentation time

Receptive field

Simple and complex cells in V1 show distinct responses to drifting gratings

Fig. 1. Response patterns of a representative simple cell (A) and complex cell (B) to gratings drifted across their receptive fields. The response (peri-stimulus time histogram, PSTH) averaged over 20 repetitions of the sinusoidal stimulus is shown above a printout of the d.c. (mean rate of firing) and the first five harmonic components (amplitude/phase). The average maintained discharge in the absence of any visual stimulus is also displayed for each cell. Note that the simple cell's response to the drifting grating shows a discharge pattern which modulates in synchrony with the fundamental temporal cycle of the stimulus, therefore most of the power appears in the 1st harmonic. The complex cell's response, on the other hand, shows an overall increase in the mean rate of firing with little modulation, therefore the response appears in the d.c. component with little power in the harmonics.

Fig. 3. Distribution of the a.c./d.c. ratio for all cells measured (n = 343). Those cells whose d.c. is larger than the a.c. (that is, Y cells) fall between 0.0 and 1.0; those cells whose a.c. is larger than the d.c. fall above 1.0. It is clear that the distribution is best described as bimodal indicating the presence of two distinct populations of cells.

A model to describe tolerance in complex cells

A feed-forward model describing the responses of complex cells arising from non-linear (e.g. OR) adding of inputs from multiple simple cells

(by no means the only model)

Wandell (1995), Foundations of Vision. Sinauer Books Dayan and Abbott. (2001) Theoretical Neuroscience. The MIT Press

End stopping

Stimulus: bar with preferred orientation

Stimulus presentation time

Receptive field

More is not necessarily better: the surround can inhibit the responses of neurons in V1

Nassi, Gomez-Laberge, Born

More is not necessarily better: the surround can inhibit the responses of neurons in V1

Nassi et al Front. Syst. Neurosci. 2014

"Canonical" microcircuits in neocortex

Felleman and Van Essen 1991 Douglas and Martin 2004

Edges can take us a long way towards object recognition

1.9% of pixels > 0

2.9% of pixels > 0

MATLAB: I: image I_edges = edge(I);

Different methods: Sobel, Prewitt, Roberts, Laplacian of Gaussian, Canny (determining how the gradients of I are computed)

Note: this is a major oversimplification. The output of V1 does not simply represent the image edges

Do we know what the early visual system does?

Up to 85% of "V1 function" has yet to be accounted for (Olshausen and Field 2005)

- Biased sampling of neurons
- Biased stimuli
- Biased theories
- Contextual effects
- Internal connections and feedback
- Joint activity

Figure 8. Summary of the effect of finite sampling on predictions. Each bar indicates mean squared prediction correlation for the 49 neurons with greater than 2000 stimulus-response samples (error bars indicate standard error). Data for image domain STRFs are shown at left, and for Fourier power STRFs at right. ρ^2 indicates the mean squared prediction correlation actually measured for the STRFs ρ^2_{valmax} indicates mean prediction after correcting for finite sampling of validation data. ρ^2_{ideal} indicates the mean prediction after correcting for finite sampling of validation data. Fourier power STRFs perform consistently better than image domain STRFs. After correcting for sampling limitations, Fourier power STRFs can account for an average of 40% of the response variance in V1. The remaining portion of the response results from nonlinear response properties ('unexplained' variance') not included in the Fourier power model.

David and Gallant, J.L. Network (2005)

Carandini et al J. Neurosci. 2005

Further reading

Further reading

- Wandell B. Foundations of Vision. Sinauer Books1995.
- Dayan and Abbott. Theoretical Neuroscience. MIT Press 2001.

Original articles cited in class

- Simoncelli and Olshausen. Annual Review of Neuroscience 2001
- Hubel and Wiesel. Journal of Physiology 1968.
- Carandini et al. Journal of Neuroscience 2005.
- Keat et al. Neuron 2001.
- Felleman and Van Essen. Cerebral Cortex 1991.
- Douglas and Martin. Annual Review of Neuroscience 2004.
- De Valois et al. Vision Research 1982

There are more top-down connections than bottom-up ones

Markov et al.

Cerebral Cortex 2014

Inactivating feedback to V1 leads to less surround suppression

Nassi et al Front. Syst. Neurosci. 2014

Cited works

- Carandini, M., Demb, J. B., Mante, V., Tolhurst, D. J., Dan, Y., Olshausen, B. A., Gallant, J. L., & Rust, N. C. (2005). Do we know what the early visual system does?. The Journal of neuroscience, 25(46), 10577-10597.
- David, S. V., & Gallant, J. L. (2005). Predicting neuronal responses during natural vision. Network: Computation in Neural Systems, 16(2-3), 239-260.
- Dayan, P., and Abbott, L. (2001). Theoretical Neuroscience (Cambridge: MIT Press).
- De Valois, R. L., Albrecht, D. G., & Thorell, L. G. (1982). Spatial frequency selectivity of cells in macaque visual cortex. Vision research, 22(5), 545-559.
- Douglas, R. J., & Martin, K. A. (2004). Neuronal circuits of the neocortex. Annu. Rev. Neurosci., 27, 419-451.
- Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1), 1-47.
- Glickstein, M. (1988). The discovery of the visual cortex. Scientific American, 259(3), 84-91.
- Holmes, G. (1918). Disturbances of vision by cerebral lesions. The British journal of ophthalmology, 2(7), 353.
- Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of physiology, 160(1), 106.
- Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of physiology, 195(1), 215-243.
- Hubel, D. H. (1979). The Visual Brain. Scientific American, 241, 44-53.
- LeVay, S., Hubel, D. H., & Wiesel, T. N. (1975). The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain. Journal of Comparative Neurology, 159(4), 559-575.
- Olshausen, B. A., & Field, D. J. (2005). How close are we to understanding V1?. Neural computation, 17(8), 1665-1699.
- Wandell, B.A. (1995). Foundations of vision (Sunderland: Sinauer Associates Inc.).
- Yacoub, E., Harel, N., & Uğurbil, K. (2008). High-field fMRI unveils orientation columns in humans. Proceedings of the National Academy of Sciences, 105(30), 10607-10612.