Visual Object Recognition
Computational Models and Neurophysiological Mechanisms
Neuro 130/230. Harvard College/GSAS 78454
Class 1 [09/09/2019]. Introduction to visual pattern recognition [Kreiman]
Class 2 [09/16/2019]. Natural image statistics and the retina [Kreiman]
Class 3 [09/23/2019]. Lesions and neurological examination of extrastriate cortex [Kreiman]
Class 4 [09/30/2019]. Psychophysics studies of visual object recognition [Kreiman]
Class 5 [10/07/2019]. Primary visual cortex [Kreiman]
October 14th: University Holiday
Class 6 [10/21/2019]. Adventures into terra incognita [Kasper Vinken]
Class 7 [10/28/2019]. High-level visual cognition [Kohitij Kar]

Class 12 [12/02/2019]. The operating system for vision [Kreiman]

Towards the neural correlates of consciousness
Mary is a brilliant scientist who is, for whatever reason, forced to investigate the world from a black and white room via a black and white television monitor. She specializes in the neurophysiology of vision and acquires, let us suppose, all the physical information there is to obtain about what goes on when we see ripe tomatoes, or the sky, and use terms like 'red', 'blue', and so on. She discovers, for example, just which wavelength combinations from the sky stimulate the retina, and exactly how this produces via the central nervous system the contraction of the vocal cords and expulsion of air from the lungs that results in the uttering of the sentence 'The sky is blue'. [...] What will happen when Mary is released from her black and white room or is given a color television monitor? Will she learn anything or not?

How can a physical system give rise to consciousness?

How can consciousness be explained in terms neurons and their interactions?

How can a physical system have *qualia*?

Why are humans conscious and not just a bunch of zombies?

Do other animals also have consciousness? How did consciousness evolve?
A (non-exhaustive) list of possible answers

• “Religious” answers. E.g. “… consciousness requires a non-physical soul…” (Plato; The bible; Descartes (modern form of dualism: res extensa and res cogitans); Aristotle, Thomas Aquinas, Karl Popper, Sigmund Freud, John Eccles)

• Science cannot understand consciousness (the “mysterian” approach)

• There is no such thing as consciousness. It’s just an illusion. (e.g. Dennett)

• We need new (as yet undiscovered) laws to explain consciousness (e.g. Roger Penrose)

• Consciousness requires behavior (and language) (e.g. Cotterill)

• Consciousness is an epiphenomenon
Some basic working assumptions

We are conscious (it is not an illusion or an epiphenomenon)

Some other animals are also conscious

We start with simple questions that we can try to study rigorously

We start with vision. Hopefully, we will be able to extrapolate some of what we learn from vision to other sensations (e.g. pain, smell, self-awareness)

We need an explicit representation

Only parts of the brain will correlate with the contents of consciousness. We search the neuronal correlates of consciousness (NCC)

We leave out many interesting topics for now: Dreams, Lucid dreaming, Out of body experiences, Hallucinations, Meditation, Sleep walking, Hypnosis, Self awareness. Qualia, Feelings

NCC: neuronal correlates of consciousness

A minimal\(^1\) set of neuronal events and mechanisms jointly sufficient\(^2\) for a specific conscious percept\(^3\)

\(^1\) “Minimal”: A solution such as “the whole healthy human brain can experience consciousness” is not very informative.

\(^2\) “Sufficient”: We are not looking for “enabling” factors such as the heart or the cholinergic systems arising in the brainstem

\(^3\) “Specific conscious percept”: e.g. seeing a face (as opposed to being conscious/unconscious)
“Zombie modes”: not all brain activity leads to consciousness

Rapid, transient, stereotyped and unconscious responses

In a zombie mode the main flow of information is feed-forward

Zombie modes are very fast and useful

The NCC representation must be *explicit*.

Explicit: A single layer of neurons can deliver the answer.

An explicit representation is necessary but not sufficient.
We are not aware of the entire visual field

We have the illusion that we “see” the whole visual field.
 But: inattentitional blindness illusion!

Attention filters information\(^1\).

Consciousness may generally require attention
 But consciousness may happen in the absence of attention\(^2\)

Two mechanisms for attention: bottom-up (saliency) and top-down (cognitive)

\(^1\)Desimone and Duncan (1995). *Annual Review of Neuroscience*

\(^2\)Li et al. (2002) *Proc Natl Acad Sci USA*
Attention is closely related to consciousness

https://www.youtube.com/watch?v=IGQmdoK_ZfY
Attention is closely related to consciousness

Whether consciousness can be dissociated from attention is a matter of debate in the field (e.g. Tsuchiya and Koch)

Resnik et al 1997
More demos

Filling in
http://smc.neuralcorrelate.com/

Change blindness
http://nivea.psycho.univ-paris5.fr/CBMovies/FarmsFlickerMovie.gif
https://www.youtube.com/watch?v=FWSxSQsspiQ

Selective attention and basketball passes
http://www.youtube.com/watch?v=vJG698U2Mvo
https://www.youtube.com/watch?v=IGQmdoK_ZfY

Person swapping experiments
http://www.youtube.com/watch?v=ElLnNAL4xY

Change blindness in a movie
http://www.youtube.com/watch?v=ubNF9QNEQLA
A framework to define the NCC (Crick and Koch)

1. The nonconscious *Homunculus*
2. A lot can be done in *zombie mode*
3. The NCC involve *coalitions of neurons*
4. An *explicit* representation is needed
5. Higher levels first
6. The NCC require strong driving projections
7. Consciousness comes in snapshots
8. Attention and binding
9. The NCC may involve specific firing patterns
10. Penumbra, meaning and qualia

Crick and Koch 2003
Experimental paradigms to examine the neural correlates of visual consciousness

Difficulty: where/how/when to search for the neural correlates?
Experimental paradigms to examine the neural correlates of visual consciousness

PLAY MOVIE 1 (Bonneh)
Neurons in area MT following the percept

Bistable percepts

Monocular rivalry (weaker)

Different stimuli are presented to the right and left eyes
The input is constant
Perception alternates between one percept and the other
What are the neuronal changes responsible for the perceptual alternation?
Binocular rivalry
Binocular rivalry: competition between percepts (as opposed to competition between eyes)

Binocular rivalry can be studied in both humans and monkeys.

Neurons in inferior temporal cortex follow the percept

Sheinberg and Logothetis 1997
Leopold and Logothetis 1999
Neurons in inferior temporal cortex follow the percept

Sheinberg and Logothetis 1997
Leopold and Logothetis 1999
Neurons in the human medial temporal lobe follow the percept

Kreiman, G., I. Fried, and C. Koch,
Single neuron correlates of subjective vision in the human medial temporal lobe.
Flash suppression in humans: summary of responses
There is an increase along the visual hierarchy in the proportion of neurons that correlate with the subjective percept. Allow us to manipulate the percept.

- Binocular Rivalry/Flash Suppression – “one-to-many” between stimulus and percept. Allow us to manipulate the percept.

- Neuronal evidence from monkeys shows that neurons in early areas (LGN, V1) show little or no percept effect.

- Neurons in later areas (IT, MTL) predominantly follow the percept.

- Candidates for the NCC?

- These studies showed correlations. What we will need in the future is causation.
What would constitute evidence that we understand the NCC?

The possibility to:

(a) Model and predict neuronal responses given a perceptual state
(b) Accurately predict perceptual state given neuronal activity
(c) Induce a specific perceptual state by selective electrical stimulation
(d) Inactivate or repress a perceptual state
Integrated Information Theory -- Axioms

Intrinsic existence Composition Information

Integration Exclusion

Giulio Tononi (2015), Scholarpedia, 10(1):4164.
Integrative Information Theory – Postulates illustration

Giulio Tononi (2015), Scholarpedia, 10(1):4164.
Central identity: an experience as a maximally irreducible conceptual structure

Giulio Tononi (2015), Scholarpedia, 10(1):4164.
Further reading

Original articles cited in class
Resnik, R.A., O'Regan, J.K., and Clark, J.J. (1997). To see or not to see: the need for attention to perceive changes in scenes. Psychological Science 8, 368-373.