
Biological	and	Computer	Vision	 	 Gabriel	Kreiman	
Chapter	I	 	 2020	

	 1	

Chapter	I. Introduction	to	the	world	of	vision		
 
Supplementary contents at http://bit.ly/2TqTDt5 
 

Understanding how the brain works constitutes the greatest scientific 
challenge of our times, arguably the greatest challenge of all times. We have sent 
spaceships to peek outside of our solar system, and we study galaxies far away to 
build theories about the origin of the universe. We have built powerful accelerators 
to scrutinize the secrets of subatomic particles. We have uncovered the secrets to 
heredity hidden in the millions of base pairs in DNA. But we still have to figure out 
how the three pounds of brain tissue inside our skulls work to enable us to do 
physics, biology, music, literature, and politics.  

 
The conversations and maneuvers of about a hundred billion neurons in our 

brains are responsible for our ability to interpret sensory information, to navigate, 
to communicate, to feel and to love, to make decisions and plans for the future, to 
learn. Understanding how neural circuits give rise to cognitive functions will 
transform our lives: it will help us alleviate the ubiquitous mental health conditions 
that afflict hundreds of millions, it will lead to building true artificial intelligence 
machines that are as smart as or smarter than we are, and it will open the doors 
to finally understand who we are.  
 
INSERT Figure I-1 AROUND HERE 
Figure I-1.	We can visually interpret an image at a glance. Who is there? What is there? 
Where is it? What are they doing? What will happen next? These are just examples among 
the infinite number of questions that we can answer after a few hundred milliseconds of 
exposure to a novel image. 

 
As a paradigmatic example of brain function, we will focus on one of the 

most exquisite pieces of neural machinery ever evolved: the visual system. In a 
small fraction of a second, we can get a glimpse of an image and capture a 
substantial amount of information. For example, we can take a look at Figure I-1 
and answer an infinite series of questions about it: who is there, what is there, 
where this place is, what the weather is like, how many people there are, and what 
they are doing. We can even make educated guesses about a potential narrative, 
including describing the relationship between people in the picture, what happened 
before, or what will happen next. At the heart of these questions is our capacity for 
visual cognition and intelligent inference based on visual inputs. 

 
Our remarkable ability to interpret complex spatiotemporal input sequences, 

which we can loosely ascribe to part of “common sense,” does not require us to sit 
down and solve complex differential equations. In fact, a four-year-old can answer 
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most of the questions outlined above quite accurately, younger kids can answer  
most of them, and many non-human animal species can also be trained to correctly 
describe many aspects of a visual scene. Furthermore, it takes only a few hundred 
milliseconds to deduce such profound information from an image. Even though we 
have computers that thrive at tasks such as solving complex differential equations, 
computers still fall short of human performance at answering common sense 
questions about an image.  

I.1. Evolution	of	the	visual	system	
 
INSERT Figure I-2 AROUND HERE 
Figure I-2.	Fossil record of a trilobite, circa 500 million years ago. Trilobites such as 
the one shown in this picture had compound eyes, probably not too different from those 
found in modern invertebrate species like flies. Trilobites proliferated and diversified 
throughout the world for about 300 million years. By Dwergenpaartje, CC BY-SA 3.0. 
 

Vision is essential for most everyday tasks, including navigation, reading, 
and socialization. Reading this text involves identifying shape patterns. Walking 
home involves detecting pedestrians, cars, and routes. Vision is critical to 
recognize our friends and decipher their emotions. It is, therefore, not much of a 
strain to conceive that the expansion of visual cortex has played a significant role 
in the evolution of mammals in general and primates in particular. It is likely that 
the evolution of enhanced algorithms for recognizing patterns based on visual 
inputs yielded an increase in adaptive value through improvements in navigation, 
discrimination of friend versus foe, differentiation between food and poison, and 
through the savoir-faire of deciphering social interactions. In contrast to tactile and 
gustatory inputs and, to some extent, even auditory inputs, visual signals bring 
knowledge from vast and far away areas. While olfactory signals can also diffuse 
through long distances, the speed of propagation and information content is lower 
than that of photons.  

 
The ability of biological organisms to capture light is ancient. For example, 

many bacteria use light to perform photosynthesis, a precursor to a similar process 
to capture energy in plants. What is particularly astounding about vision is the 
possibility of using light to capture information about the world. The selective 
advantage conveyed by visual processing is so impactful that it has led the 
zoologist Andrew Parker to propose the so-called “Light switch theory” to explain 
the rapid expansion in number and diversity of life on Earth.  

 
About five hundred million years ago, during the early Cambrian period, 

there was an extraordinary outburst in the number of different species. It is also at 
around the same time where fossil evidence suggests the emergence of the first 
species with eyes, the trilobites (Figure I-2). Trilobites are extinct arthropods 
(distant relatives of insects and spiders) that conquered the world and expanded 
throughout approximately three hundred million years. The light switch theory 
posits that the emergence of eyes and the explosion in animal diversity is not a 
mere coincidence. Several investigators have argued that eyes emerged right 
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before the Cambrian explosion. Eyes enabled some lucky early trilobite, or its great 
grandfather, to capture information from farther away, detecting the presence of 
prey or predator, endowing it with a selective advantage over other creatures 
without eyes, who had to rely on slower and coarser information for survival. Using 
this new toy, the eyes, an evolutionary arms race commenced between prey and 
predators to make inferences about the world around them and to hide from those 
scrutinizing and powerful new sensors. All of a sudden, body shapes, textures, and 
colors became fascinating, powerful, and dangerous. It seems likely that body 
shapes and colors began to change to avoid detection through the initial versions 
of camouflage, in turn leading to keener and better eyes to be more sensitive to 
motion and to subtle changes through the ability to better discriminate shapes. Let 
there be light and let light be used to convey information.  

I.2. The	future	of	vision	
 
Fast forward several hundred million years, the fundamental role of vision 

in human evolution is hard to underestimate. Well before the advent of language 
as it is known today, vision played a critical role in communication, interpreting 
emotions and intentions, and facilitating social interactions. The ability to visually 
identify patterns in the position of the moon, the sun, and the stars, led to 
understanding and predicting seasonal changes, which eventually gave rise to 
agriculture, transforming nomadic societies into sedentary ones, giving rise to the 
precursors of future towns. Art, symbols, and eventually the development of written 
language also relied fundamentally on visual pattern recognition capabilities. 

 
The evolution of the visual system is only poorly understood and remains 

an interesting topic for further investigation. The future of the visual system will be 
equally fascinating. While speculating about the biological changes in vision in 
animals over evolutionary timescales is rather challenging, it is easier to imagine 
what might be accomplished in the near future over shorter time scales, via 
machines with suitable cameras and computational algorithms for image 
processing. We will come back to the future of vision in Chapter IX; as a teaser, 
let us briefly consider machines that can achieve, and perhaps surpass, human-
level capabilities in visual tasks. Such machines may combine high-speed and 
high-resolution video sensors that convey information to computers implementing 
sophisticated simulations that approximate the functions of the visual brain in real-
time.  

 
Machines may soon excel in face recognition tasks to a level where an 

ATM will greet you by your name without the need for a password, where you may 
not need a key to enter your home or car, where your face may become your credit 
card and your passport. Self-driving vehicles propelled by machine vision 
algorithms have escaped the science fiction pages and entered our streets. 
Computers may also be able to analyze images intelligently to search the web by 
image or video content (as opposed to keywords and text descriptors). Doctors 
may rely more and more on artificial vision systems to analyze X-rays, MRIs, and 
other images, to a point where image-based diagnosis becomes the domain of 
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computer science entirely. Future generations may be intrigued by the notion that 
we once let fallible humans make diagnostic decisions. The classification of distant 
galaxies, or the discovery of different plant and animal species, might be led by 
machine vision systems, rather than astronomers or biologists.  

 
Adventuring further into the domain of science fiction, one could conceive 

of brain-machine interfaces that might be implanted in the human brain to augment 
visual capabilities for people with visual impairment or blind people. While we are 
at it, why not also use such interfaces to augment visual function in normally 
sighted people to endow humans with the capability to see in 360 degrees, to 
detect infrared or ultraviolet wavelengths, to see through opaque objects such as 
walls, or even directly witness remote events.   

 
When debates arose about the possibility that computers could one day 

play competitive chess against humans, most people were skeptical. Simple 
computers today can beat even sophisticated chess aficionados, and good 
computers can beat world champions. Recently, computers have also thrived in 
the ancient and complex game of Go. Despite the obvious fact that most people 
can recognize objects much better than they can play chess or Go, visual cognition 
is actually more challenging than these games from a computational perspective. 
However, we may not be too far from building accurate computational 
approximations to visual systems, where we will be able to trust computers’ eyes 
as much as, or even more than, our own eyes. Instead of “seeing is believing,” the 
future moto may become “computing is believing.” 

 

I.3. Why	is	vision	difficult?	
 

The notion that seeing is computationally more complicated than playing 
Go may be counterintuitive. After all, a two-year-old child can open her eyes and 
rapidly recognize and interpret her environment to navigate the room and grab her 
favorite teddy bear, which may be half-covered behind other toys. She does not 
know how to play Go. She certainly has not gone through the millions of hours of 
training via reinforcement learning that neural network machines had to go through 
to play Go. She has had approximately 10,000 hours of visual experience. These 
10,000 hours are mostly unsupervised; there were adults nearby most of the time, 
but, by and large, those adults were not providing continuous information about 
object labels or continuous reward and punishment signals (there certainly were 
labels and rewards, but they probably constituted a small fraction of her visual 
learning).   
 
INSERT Error! Reference source not found. AROUND HERE 
Figure I-3.	Any object can cast an infinite number of projections onto the eyes. Even 
though we can easily recognize these patterns, there is considerable variability among 
different renderings of each shape at the pixel level.  
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Why is it so difficult for computers to perform pattern recognition tasks that 
appear to be so simple to us? The primate visual system excels at recognizing 
patterns even when those patterns change radically from one instantiation to 
another. Consider the simple line schematics in Error! Reference source not 
found.. It is straightforward to recognize those handwritten symbols even though, 
at the pixel level, they show considerable variation within each row. These 
drawings only have a few traces. The problem is far more complicated with real 
scenes and objects. Imagine the myriad of possible variations of pictures taken at 
Piazza San Marco in Venice (Figure I-1), and how the visual system can interpret 
them with ease. Any object can cast an infinite number of projections onto the 
eyes. These variations include changes in scale, position, viewpoint, and 
illumination, among other transformations. In a seemingly effortless fashion, our 
visual systems can map all of those images onto a particular object.  

 
Identifying specific objects is but one of the important functions that the 

visual system must solve. The visual system can estimate distances to objects, 
predict where objects are heading, infer the identity of objects that are heavily 
occluded or camouflaged, determine which objects are in front of which other 
objects, make educated guesses as to the composition and weight of objects. The 
visual system can even infer intentions in the case of living agents. In all of these 
tasks, vision is an ill-posed problem, in the sense that multiple possible solutions 
are consistent with a given pattern of inputs onto the eyes.   

I.4. Four	key	features	of	visual	recognition	
 

In order to explain how the visual system tackles the identification of 
patterns, we need to account for four key features of visual recognition: selectivity, 
tolerance, speed, and capacity.  

 
INSERT Figure I-4 AROUND HERE 
Figure I-4.	 A naïve (and not very useful) approach to model visual recognition A, B. 
Two simple models that are easy to implement, easy to understand, and not very useful. 
A rote memorization model (A) can have exquisite selectivity but does not generalize. In 
contrast, a flat response model (B) can generalize but lacks any selectivity. C. An ideal 
model should combine selectivity and tolerance. 
 

Selectivity involves the ability to discriminate among shapes that are very 
similar at the pixel level. Examples of the exquisite selectivity of the visual system 
include face identification and reading. In both cases, the visual system can 
distinguish between inputs that are very close if we compare them side-by-side at 
the pixel level. A trivial and useless way of implementing Selectivity in a 
computational algorithm is to memorize all the pixels in the image (Figure I-4A). 
Upon encountering the same pixels, the computer would be able to “recognize” the 
image. The computer would be very selective because it would not respond to any 
other possible image. The problem with this implementation is that it lacks 
Tolerance.  
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Tolerance refers to the ability to recognize an object despite multiple 
transformations of the object’s image. For example, we can recognize objects even 
if they are presented in a different position, scale, viewpoint, contrast, illumination, 
or color. We can even recognize objects where the image undergoes non-rigid 
transformations, such as the changes a face goes through upon smiling. A 
straightforward but useless way of implementing tolerance is to build a model that 
will output a flat response no matter the input. While the model would show 
“tolerance” to image transformations, it would not show any selectivity to different 
shapes (Figure I-4B). Combining Selectivity and Tolerance (Figure I-4C) is 
arguably the key challenge in developing computer vision algorithms for 
recognition tasks. To consider a real-world example, a self-driving car needs to 
selectively distinguish pedestrians from many other types of objects, no matter how 
tall those pedestrians are, what they are wearing, what they are doing, or what 
they are holding.  

 
Given the combinatorial explosion in the number of images that map onto 

the same “object,” one could imagine that visual recognition requires many years 
of learning at school. Of course, this is far from the case. Well before a first grader 
starts to learn the basics of addition and subtraction (rather trivial problems for 
computers), she is already quite proficient at visual recognition, a task that he can 
accomplish in a glimpse. Objects can be readily recognized in a stream of other 
objects presented at a rate of 100 milliseconds per image. Subjects can make an 
eye movement to indicate the presence of an object in a two-alternative forced-
choice task about 200 milliseconds after showing the visual stimulus. Furthermore, 
both scalp as well as invasive recordings from the human brain reveal signals that 
can discriminate among complex objects as early as ~150 milliseconds after 
stimulus onset. The Speed of visual recognition constrains the number of 
computational steps that any theory of recognition can use to account for 
recognition performance. To be sure, vision does not stop at 150 milliseconds. 
Many aspects of visual cognition emerge over hundreds of milliseconds, and 
recognition performance under challenging tasks improves with longer 
presentation times. However, a basic understanding of an image or the main 
objects within the image can be accomplished in ~150 milliseconds. We denote 
this regime as “rapid visual recognition.”  

 
One way of making progress towards combining selectivity, tolerance, and 

speed, has been to focus on object-specific or category-specific algorithms. An 
example of this approach would be the development of algorithms for detecting 
cars in natural scenes by taking advantage of the idiosyncrasies of cars and the 
scenes in which they typically appear. Another example would be face recognition. 
Some of these category- and context-specific heuristics are useful, and the brain 
may learn to take advantage of them. For example, if most of the image is blue, 
suggesting that the image background may represent the sky, then the prior 
probabilities for seeing a car would be low (cars typically do not fly), and the prior 
probabilities for seeing a bird would be high (birds are often seen against a blue 
sky). We will discuss some of the regularities in the visual world and the statistics 



Biological	and	Computer	Vision	 	 Gabriel	Kreiman	
Chapter	I	 	 2020	

	 7	

of natural images in Chapter II. Despite these correlations, in the more general 
scenario, the visual recognition machinery is capable of combining selectivity, 
tolerance, and speed for an enormous range of objects and images. For example, 
the Chinese language has over 2,000 characters. Estimations of the Capacity of 
the human visual recognition system vary substantially across studies. Several 
studies cite numbers that are well over 10,000 items.  

 
In sum, a theory of visual recognition must be able to account for the high 

selectivity, tolerance, speed, and capacity of the visual system. Despite the 
apparent immediacy of seeing, combining these four key features is by no means 
a simple task. 

 

I.5. The	travels	and	adventures	of	a	photon	
 
 The challenge of solving the ill-posed problem of selecting among infinite 
possible interpretations of a scene in a transformation-tolerant manner within 150 
milliseconds of processing seems daunting. How does the brain accomplish this 
feat? We start by providing a global overview of the transformations of visual 
information in the brain.  
 
INSERT Figure I-5 AROUND HERE 
Figure I-5: The adventures of a photon. Schematic diagram of the connectivity in the 
primate visual system (adapted from Felleman and Van Essen 1991).  
 
 Light arrives at the retina after being reflected by objects in the 
environment. The patterns of light impinging on our eyes are far from random, and 
the natural image statistics of those patterns play an important role in the 
development and evolution of the visual system (Chapter II). In the retina, light is 
transduced into an electrical signal by specialized photoreceptor cells. Information 
is processed in the retina through a cascade of computations before it passes on 
to a structure called the thalamus, and from there onto the cortical sheet. Cortex 
directs the primary sequence of visual computation steps, converting photons into 
percepts. Several visual recognition models treat the retina as analogous to the 
pixel-by-pixel representation in a digital camera. A digital camera is an 
oversimplified description of the computational power in the retina, yet it has 
permeated into the general jargon as introduced by manufacturers who boast of a 
“retina display” for monitors.  
 
 It is not unusual for commercially available monitors these days to display 
several million pixels. Commercially available digital cameras also boast tens of 
millions of pixels. The number of pixels in such devices approximates or even 
surpasses the number of primary sensors in some biological retinas; for example, 
the human retina contains ~6.4 million so-called cone sensors and ~110 million 
so-called rod sensors (we will discuss those sensors in Chapter II). Despite these 
technological feats, electronic cameras still lag behind biological eyes in essential 
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properties such as luminance adaptation, motion detection, focusing, energy 
efficiency, and speed.  
 
 The output of the retina is conveyed to multiple areas, including the 
superior colliculus, the suprachiasmatic nucleus, and the thalamus. The superficial 
layers of the superior colliculus can be thought of as an ancient visual brain. 
Indeed, for many species that do not have cortex, the superior colliculus (referred 
to as optic tectum in these species) is where the main visual elaborations of the 
input take place. The suprachiasmatic nucleus plays a central role in regulating the 
circadian rhythm. Humans have an internal daily clock that runs slightly longer than 
the usual twenty-four-hour day, and light inputs via the suprachiasmatic nucleus 
help modulate and adjust this cycle.  
 
 The main visual pathway carries information from the retina to a part of the 
thalamus called the lateral geniculate nucleus (LGN). The LGN projects to primary 
visual cortex, located in the back of our brains. Without primary visual cortex, 
humans are mostly blind, highlighting the critical importance of the pathway 
conveying information into cortex for most visual functions. Investigators refer to 
the processing steps in the retina, LGN, and primary visual cortex as “early vision” 
(Chapter V). Primary visual cortex is only the first stage in the processing of visual 
information in cortex. Researchers have discovered tens of areas responsible for 
different aspects of vision (the actual number is still a matter of debate and 
depends on what is meant by “area”). An influential way of depicting these multiple 
areas and their interconnections is the diagram proposed by Felleman and Van 
Essen, shown in Figure I-5. To the untrained eye, this diagram appears to depict a 
bewildering complexity, not unlike the circuit diagrams typically employed by 
electrical engineers. We will delve into this diagram in more detail in Chapters V 
and VI and discuss the areas and connections that play a crucial role in visual 
cognition.  
 
 Despite the apparent complexity of the neural circuitry in Figure I-5, this 
scheme is an oversimplification of the actual wiring diagram. First, each of the 
boxes in this diagram contains millions of neurons. There are many different types 
of neurons. The arrangement of neurons within each box can be described in terms 
of six main layers of cortex (some of which have different sublayers) and the 
topographical arrangement of neurons within and across layers. Second, we are 
still far from characterizing all the connections in the visual system. One of the 
exciting advances of the last decade is the development of techniques to scrutinize 
the connectivity of neural circuitry at high resolution and in a high-throughput 
manner.  
 
 For a small animal like a one-millimeter worm with the fancy name of 
Caenorhabditis elegans, we have known for a few decades now the detailed 
connectivity pattern of each one of its 302 neurons thanks to the work of Sydney 
Brenner (1927 – 2019). However, cortex is an entirely different beast, with a 
neuronal density of tens of thousands of neurons per square millimeter. Heroic 
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efforts in the burgeoning field of “connectomics” are now providing the first 
glimpses of which neurons are friends with which other neurons in cortex. Major 
surprises in neuroanatomy will likely come from the usage of novel tools that take 
advantage of the high specificity of molecular biology.  
 
 Finally, even if we did know the connectivity of every single neuron in visual 
cortex, this knowledge would not immediately reveal the computational functions 
(but knowing the connectivity would still be immensely helpful). In contrast to 
electrical circuits where we understand each element and the overall function can 
be appreciated by careful inspection of the wiring diagram, many neurobiological 
factors make the map from structure to function a non-trivial one.   

I.6. Tampering	with	the	visual	system	
 

One way of finding out how something works is by taking it apart, removing 
different parts, and re-evaluating its function. For example, if we remove the 
speakers from a car, the car will still function pretty well, but we will not be able to 
listen to music. If we take out the battery, the car will not start. Removing parts is 
an important way of studying the visual system as well. For this purpose, 
investigators typically consider the behavioral deficits that are apparent when parts 
of the brain are lesioned through studies in non-human animals.  

 
In addition to the work in animals, there are various unfortunate 

circumstances where humans suffer from brain lesions that can also provide 
insightful clues as to the function of different parts of the visual pathway (as well 
as other aspects of cognition). Indeed, the fundamental role of primary visual 
cortex in vision was discovered through the study of lesions. Ascending through 
the visual system beyond primary visual cortex, lesions may yield specific 
behavioral deficits. For example, subjects who suffer from a rare but well-known 
condition called prosopagnosia typically show a significant impairment in the ability 
to recognize faces (Chapter IV).  

 
One of the challenges in interpreting the consequences of lesions in the 

human brain is that these lesions often encompass large brain areas, and are not 
restricted to neuroanatomically- or neurophysiologically-defined loci. Several more 
controlled studies have been performed in animal models, including rodents, cats, 
and monkeys, to examine the behavioral deficits that arise after lesioning specific 
parts of visual cortex. Are the lesion effects specific to one sensory modality, or 
are they multimodal? How selective are the visual impairments? Can learning 
effects be dissociated from representation effects? What is the neuroanatomical 
code? We will come back to these questions in Chapter IV. 

 
 Another important path to study brain function is to examine the 
consequences of externally activating specific brain circuits. One of the prominent 
ways to do so is by injecting currents via electrical stimulation. Coarse methods of 
electrically stimulating parts of cortex often disrupt processing and mimic the 
effects of a circumscribed lesion. One advantage of electrical stimulation is that 
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the effects can be rapidly reversed, and it is possible, therefore, to study the same 
animal performing the same task under the influence of electrical stimulation in a 
specific circuit or not. Intriguingly, in some cases, more refined forms of electrical 
stimulation can lead not to disrupted processing but instead to enhanced 
processing of specific types of information. For example, there is a part of the brain 
referred to as MT (middle temporal cortex), which receives inputs from primary 
visual cortex and is located near the center of the diagram in Figure I-5. Neurons 
in this area play an important role in the ability to discriminate the direction of 
moving objects. Injecting localized electrical currents into area MT in macaque 
monkeys can bias the animal’s perception of how things are moving in their visual 
world. In other words, it is possible to directly create visual motion thoughts by 
tickling subpopulations of neurons in area MT (Chapter IV). Combined with careful 
behavioral measurements, electrical stimulation can provide a glimpse at how 
influencing activity in a given cluster of neurons can affect perception. 

 
There is also a long history of electrical stimulation studies in humans in 

subjects with epilepsy. Neurosurgeons need to decide on the possibility of 
resecting the epileptogenic tissue to treat seizures. Before the resection 
procedure, neurosurgeons use electrical stimulation to examine the function of the 
tissue that may undergo resection. The famous Canadian neurosurgeon Wilder 
Penfield (1891 –1976) was among the pioneers in using this technique to map 
brain function. One of his famous discoveries is the “homunculus” map of the 
sensorimotor world: there is a topographical arrangement of regions where 
electrical stimulation leads to subjects moving or reporting tactile sensations in the 
toes, legs, fingers, torso, tongue, and face. Similarly, subjects report seeing 
localized flashes of light upon electrically stimulating primary visual cortex.    

 
How specific are the effects of electrical stimulation? Under what conditions 

is neuronal firing causally related to perception? How many neurons and what 
types of neurons are activated during electrical stimulation? How do stimulation 
effects depend on the timing, duration, and intensity of electrical stimulation? We 
will come back to these questions in Chapter IV. 

I.7. Functions	of	circuits	in	visual	cortex	
 

INSERT Figure I-6 AROUND HERE 
Figure I-6: Listening to the activity of individual neurons with a microelectrode. 
Illustration of electrical recordings from microwires electrodes (reproduced from Hubel, 
1995).  

 
The gold standard to examine function in brain circuits is to implant a 

microelectrode (or multiple microelectrodes) into the area of interest (Figure I-6). A 
microelectrode is a thin piece of metal, typically with a diameter of about 50 µm, 
that can record voltage changes, often in the extracellular milieu. This technique 
was introduced by Edgar Adrian (1889 –1977) in the early 1920s to examine the 
activity of single nerve fibers. These recordings required clever use of the 
electronics available at the time to be able to amplify the small voltage differences 
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that characterize electrical communication within neurons. These extracellular 
recordings (as opposed to the much more challenging intracellular recordings) 
allow investigators to monitor the activity of one or a few neurons in the near vicinity 
of the electrode (~200  µm) at neuronal resolution and sub-millisecond temporal 
resolution.  

 
Many non-invasive techniques aim to examine what happens in the brain 

only in a very indirect fashion by measuring signals that have a weak correlation 
with the aggregate activity of millions of different cells. These techniques probably 
include an indirect assessment of neuronal activity but also of the myriad of other 
cells present in the brain. To make matters even worse, some non-invasive 
techniques average activity over many seconds, several thousand times slower 
than the actual interactions taking place in the brain. As an analogy, imagine a 
sociologist interested in what people in Paris think about climate change; she can 
interview many individuals, which is laborious but quite precise (equivalent to 
invasive single neuron recordings), or else she can average the total amount of 
sound produced in the whole city over an entire week, which is much easier but 
not very informative (equivalent to non-invasive measurements).    

 
Recording the activity of neurons has defined what types of visual stimuli 

are most exciting in different brain areas. One of the earliest discoveries was the 
receptive field of neurons in the retina, LGN, and primary visual cortex. The 
receptive field is defined as the area within the visual field where a neuronal 
response can be elicited by visual stimulation (Figure II-9, Chapter II). Visual 
neurons are picky: they do not respond to changes in illumination at any part of the 
visual field. Each neuron is in charge of representing a circumscribed region of the 
visual space. Together, all the neurons in a given brain area form a map of the 
entire visual field; that is, a map of the accessible part of the visual field (e.g., 
humans do not have visual access to what is happening behind them). The size of 
these receptive fields typically increases from the retina all the way to those areas 
like inferior temporal cortex situated near the top of the diagram in Figure I-5. 

 
Changes in illumination within the receptive field of a neuron are necessary 

to activate visual neurons. However, not all light patterns are equal. Neurons are 
particularly excited in response to some visual stimuli, and they are oblivious to 
other stimuli.  In a classical neurophysiology experiment, David Hubel (1926 –
2013) and Torsten Wiesel inserted a microelectrode to isolate single neuron 
responses in the primary visual cortex of a cat. After presenting different visual 
stimuli, they discovered that the neuron fired vigorously when a bar of a specific 
orientation was presented within the neuron’s receptive field. The response was 
weaker when the bar showed a different orientation. This orientation preference 
constitutes a hallmark of a large fraction of the neurons in primary visual cortex 
(Chapter V).  

 
Hubel and Wiesel’s discovery inspired generations of visual scientists to 

insert electrodes throughout visual cortex to study the stimulus preferences in 
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different brain areas. Recording from other parts of visual cortex, investigators 
have characterized neurons that show enhanced responses to stimuli moving in 
specific directions, neurons that prefer complex shapes such as fractal patterns or 
faces, neurons that are particularly sensitive to color contrast.  

 
How does selectivity to complex shapes arise, and what are the 

computational transformations that can convert the simpler receptive field structure 
at the level of the retina into more complex shapes? How robust are the visual 
responses in visual cortex to stimulus transformations such as the ones shown in 
Figure I-4? How fast do neurons along the visual cortex respond to new stimuli? 
What is the neural code, that is, what aspects of neuronal responses better reflect 
the input stimuli? What are the biological circuits and mechanisms to combine 
selectivity and invariance? Chapters V-VI delve into the examination of the 
neurophysiological responses in visual cortex. 

 
There is much more to vision than filtering and processing images for 

recognition. Visual processing is particularly relevant because it interfaces with 
cognition, it connects the outside world with memories, current goals, and internal 
models of the world. A full interpretation of an image such as Figure I-1, and the 
ability to answer an infinite number of questions on the image relies on the bridge 
between vision and cognition, which we will discuss in Chapter VI. 

I.8. Towards	the	neural	correlates	of	visual	consciousness	
 
INSERT Figure I-7 AROUND HERE  
Figure I-7: The viral photograph of the dress  
 

The complex cascade of interconnected processes along the visual system 
must give rise to our rich and subjective perception of the objects and scenes 
around us. We do not quite know how to directly assess subjective perception from 
the outside. How do we know that what one person calls red is the same as 
someone else’s perception of red? Some time ago, there were wild discussions in 
the media about the color of a dress; the photograph became viral, so much so, 
that it is now known as The dress (Figure I-7). Some people swear that the dress 
is blue and black. To me, this is as mysterious as if they told me that those people 
have thirty fingers in their right hand. Why would any honest human being try to 
convince me that this evidently white and gold dress is actually black and blue? 
And yet, some people see the dress as white and gold, and others perceive it as 
distinctly black and blue.  
 
 Perception is in the eye of the beholder. To be more precise, perception is 
in the brain of the beholder. If we only worked at the perceptual level without 
communicating, we would have never figured out that people can see the same 
dress in such drastically different ways. To indirectly access subjective perception, 
we need to study behavior. The dress emphasizes that we should not let our 
introspection guide the scientific agenda. Our intuitions are fallible, as we will 
discuss again and again.  
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 A whole field with the charming name of psychophysics deals with careful 
quantification of behavior as a way of assessing perception (Chapter III). We will 
examine where, when, and how rapidly subjects perceive different shapes to 
construct their own subjective interpretation of the world surrounding them. We will 
also discuss why brains can be easily deceived by visual illusions. Behavioral 
measurements will constitute the central constraint towards building a theory of 
visual processing.  

 
Visual perception is certainly not in the toes and not even in the heart, as 

some of our ancestors believed. Most scientists would agree that subjective 
feelings and percepts emerge from the activity of neuronal circuits in the brain. 
Much less agreement can be reached as to the mechanisms responsible for 
subjective sensations. The “where,” “when,” and particularly “how” of the so-called 
neuronal correlates of consciousness constitutes an area of active research and 
passionate debates. Historically, many neuroscientists avoided research in the 
field of consciousness as a topic too convoluted or too far removed from what we 
understood to be worth a serious investment of time and effort. In recent years, 
however, the tide has begun to change. While still very far from a solution, 
systematic and rigorous approaches guided by neuroscience may one day unveil 
the answer to one of the greatest mysteries of our times, namely, the physical basis 
for conscious perception. 
 
INSERT Figure I-8 AROUND HERE 
Figure I-8. A bistable percept. A. The image can be interpreted in two different ways. B. 
In one version, the person is climbing up the stairs. C. The other version involves an 
upside-down world. 

 
Due to several practical reasons, the underpinnings of subjective perception 

have been mainly (but not exclusively) studied in the domain of vision. There have 
been heroic efforts to study the neuronal correlates of visual perception using 
animal models. A prevalent experimental paradigm involves dissociating the visual 
input from perception. For example, in multistable percepts (e.g., Figure I-8), the 
same input can lead to two distinct percepts. Under these conditions, investigators 
ask which neuronal events correlate with the alternating subjective percepts.  

 
It has become clear that the firing of neurons in many parts of the brain is 

not correlated with perception. In an arguably trivial example, activity in the retina 
is essential for seeing, but the perceptual experience does not arise until several 
synapses later when activity reaches higher stages within visual cortex (Chapter 
X). Neurophysiological, neuroanatomical, and theoretical considerations suggest 
that subjective perception correlates with activity occurring after primary visual 
cortex. Similarly, investigators have suggested an upper bound in terms of where 
in the visual hierarchy the circuits involved in subjective perception could be. 
Although lesions restricted to the hippocampus and frontal cortex (thought to 
underlie memory and associations) yield severe cognitive impairments, these 
lesions leave visual perception largely intact. Thus, neurophysiology and lesion 
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studies constrain the neural circuits involved in subjective visual perception to the 
multiple stages involved in processing visual information along the ventral cortex. 
Ascending through the ventral visual cortex, several neurophysiological studies 
show that there is an increase in the degree of correlation between neuronal 
activity and visual percepts.  

 
How can visual consciousness be studied using scientific methods? Which 

brain areas, circuits, and mechanisms could be responsible for visual 
consciousness? What are the functions of visual consciousness? Which animals 
show consciousness? Can machines be conscious? Chapter X will provide initial 
glimpses into what is known (and what is not known) about these fascinating 
questions. 

 

I.9. Towards	a	theory	of	visual	cognition	
 

Richard Feynman (1918 – 1988), a Nobel-winning physicist from Caltech, 
famously claimed that understanding a device means that we should be able to 
build it. We aim to develop a theory of vision that can explain how humans and 
other animals perceive and interpret the world around them. In one of the seminal 
works on vision, David Marr (1945 – 1980) defined three levels of understanding, 
which we can loosely map onto: (1) what is the function of the visual system?, (2) 
how does the visual system behave under different inputs and circumstances?, 
and (3) how does biological hardware instantiate those functions and behaviors?  

 
A successful theory of vision should be amenable to computational 

implementation, in which case, we can directly compare the output of the 
computational model against behavioral performance measures and neuronal 
recordings. A complete theory would include information from lesion studies, 
neurophysiological recordings, psychophysics, and electrical stimulation studies. 
Chapters VII and VIII introduce state-of-the-art approaches to building 
computational models and theories of visual recognition. 

 
In the absence of a complete understanding of the wiring circuitry, and with 

only sparse knowledge about neurophysiological responses, it is important to 
ponder upon whether it is worth even thinking about theoretical efforts. Not only is 
it useful to do so, but it is actually essential to develop theories and instantiate 
them through computational models to push the field forward. Computational 
models can integrate existing data across different laboratories, techniques, and 
experimental conditions. Computational models can reconcile apparently 
disparate observations. Computational models can formalize knowledge and 
assumptions, and provide a quantitative, systematic, and rigorous path towards 
examining computations in visual cortex. A good model should be inspired by the 
empirical findings, and should, in turn, produce non-trivial and experimentally-
testable predictions. These predictions can be empirically evaluated to validate, 
refute, or expand the models. Refuting models is not a bad thing. Showing that a 
model is wrong constitutes progress, and helps us build better models. 
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How do we build and test computational models? How should we deal with 

the sparseness in knowledge and the vast number of parameters often required in 
models? What are the approximations and abstractions that can be made? Too 
much simplification and we may miss crucial aspects of the problem. Too little 
simplification and we may spend decades bogged down by non-essential details.  

 
As a simple analogy, consider physicists in the pre-Newton era discussing 

how to characterize the motion of an object when a force is applied. In principle, 
one of these scientists may think of many variables that might affect the object’s 
motion, including the object’s shape, its temperature, the time of the day, the 
object’s material, the surface where it stands, and the exact position where force 
is applied. We should perhaps be thankful for the lack of computers in the time of 
Newton: there was no possibility of running complex machine learning simulations 
that included all these non-essential variables to understand the beauty of the 
linear relationship between force and acceleration. At the other extreme, 
oversimplification (e.g., ignoring the object’s mass in this case) would render the 
model useless. A central question in computational neuroscience is to achieve the 
right level of abstraction for each problem, the Goldilocks resolution that is neither 
unnecessarily detailed nor too simplified. Albert Einstein (1879 – 1955) referred to 
models that are as simple as possible, but not any simpler.  

 
A particularly exciting practical corollary of building theories of vision is the 

possibility of teaching computers how to see (Chapters VIII and IX). We 
continuously use vision to solve a wide variety of everyday problems. If we can 
teach some of the tricks of the vision trade to computers, then machines can help 
us solve those tasks, and they can probably solve many of those tasks faster and 
better than we can. The last decade has witnessed a spectacular explosion in the 
availability of computer vision algorithms to solve many pattern recognition tasks. 
From a phone that can recognize faces to computers that can help doctors 
diagnose X-ray images, to cars that can detect pedestrians, to the classification of 
images of plants or galaxies, the list of exciting applications continues to 
proliferate.  

 
Chapter IX will provide an overview of the state-of-the-art of computer 

vision approaches to solve different problems in vision. Humans still outperform 
computers in many visual tasks, but the gap between humans and machines is 
closing rapidly. We trust machines to compute the square root of seven with as 
many decimals as we want, but we do not have yet the same level of rigor and 
efficacy in automatic pattern recognition. Many real-world applications may not 
require that type of precision, though. After all, humans make visual mistakes too. 
We may be content with an algorithm that makes fewer mistakes than humans for 
the same task. For instance, when automatically identifying faces in photographs, 
correctly labeling 99% of the faces might be pretty good. Blind people may be very 
excited to use devices to recognize where they are heading towards, even if their 
mobile device can only recognize a fraction of the buildings in a given location.  
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Alan Turing (1912 – 1954), a famous British mathematician who helped 

decipher the codes used by the Nazis to communicate, and who is considered to 
be one of the founding fathers of computer science, proposed a simple test to 
assess how smart a machine is. In the context of vision, imagine that we have two 
rooms with their doors closed. In one of the rooms, there is a human, in the other 
room, there is a machine that we want to test. We can pass any picture into the 
room, and we can ask any questions about the picture. The machine or the human 
return the answers in a typewritten piece of paper so that we cannot identify its 
voice or handwriting, and there is no other trick. Based on the questions and 
answers, we need to decide which room has the machine and which one has the 
human. If, for any picture and any question about the picture, we cannot identify 
which answers come from a machine and which answers come from the human, 
we say that the machine has passed the Turing test for vision.  

    
It is tantalizing, exciting, and perhaps also a little bit scary, to think that well 

within our lifetimes, we may be able to build computers that pass at least some 
restricted forms of the Turing test for vision. Andrew Parker’s light switch theory 
proposed that animal life as we know it, started with the light switch caused by the 
first eyes on Earth. We might be close to another momentous transformation, the 
machine visual switch. It is quite likely that life will change radically when machines 
can see the world the way we do. Perhaps a second Cambrian explosion is on the 
horizon; an explosion that might lead to the rapid appearance of new hybrid 
species with machine-augmented human vision, where we may trust machine 
vision more than we trust our own eyes, and where machines can lead the way to 
discovery in the same way that our visual sense has guided us over the last 
millennia. 

   

I.10. Summary	
 

• The light switch theory posits that the appearance of eyes during the 
Cambrian explosion gave rise to the rapid growth in the number and 
diversity of animal species. 
 

• A theory of visual recognition must account for four fundamental properties: 
selectivity, tolerance, speed, and large capacity. 

 
• Brain lesions and electrical stimulation provide a window to causally 

intervene with vision and thus begin to uncover the functional architecture 
responsible for visual processing. 
 

• Scrutinizing the activity of individual neurons in the visual system opens the 
door to elucidate the neural computations responsible for transforming 
pixels into percepts. 
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• Perception is in the brain of the beholder. Vision is a subjective construct. 
 

• The search for the mechanisms of consciousness requires identifying 
neural correlates of subjective perception. 

 
• Inspired and constrained by neurophysiological function, neuroanatomical 

circuits, and lesion studies, we can train computers to see and interpret the 
world the way humans do. 
 

I.11. Further	reading	
 
See http://bit.ly/2TqTDt5 for more references. 
 

• Hubel D. 1979. The Brain. Scientific American 241: 45-53 
• Koch C. 2005. The quest for consciousness. Los Angeles: Roberts & 
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• Parker A. 2004. In the blink of an eye: how vision sparked the big bang of 
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• Riesenhuber M, Poggio T. 2000. Models of object recognition. Nature 
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