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Chapter V. Adventures into terra incognita: probing the neural 
circuits along the ventral visual stream 
 
Supplementary contents at http://bit.ly/2TpAg3w 
 
 Around the 1950s, a wealth of behavioral experiments had characterized 
many phenomenological aspects of visual perception that begged for a 
mechanistic explanation (Chapter III). Lesion studies had provided a compelling 
case that damage to circumscribed brain regions led to specific visual processing 
deficits (Chapter IV). These lesions studies pointed to specific brain areas to 
investigate visual processing, especially primary visual cortex in the back of the 
brain. In addition, the successful use of microelectrode electrical recordings had 
led to direct insights about the function of neurons within the retinal circuitry 
(Chapter II). The time was ripe to open the black box of the brain and begin to 
think about how vision emerges from the spiking activity of neurons in cortex.  
 

Retinal ganglion cells project to the lateral geniculate nucleus (LGN) in the 
thalamus, and the principal output projection from the LGN conveys visual 
information to primary visual cortex (V1) (Chapter II), the first stage of cortical 
processing for visual information. From V1, information is propagated into a large 
number of visual cortical areas that are responsible for transforming a pixel-like 
representation of sensory information into the rich and complex visual percepts 
(Chapter I, Figure I-5). The exploration and computational modeling of visual 
cortex is an ongoing adventure, where courageous conquistadores dare to peek 
inside the inner workings of the most complex system ever examined by science. 
Fundamental structural and functional principles of computation are beginning to 
emerge out of the sometimes seemingly enigmatic terra incognita of visual cortex. 
These basic principles are introduced in this chapter and the next one and form 
the basis of the computational models of vision discussed in Chapters VII-IX. 
 

V.1. About neocortex 
 

The neocortex is the outer structure of the neural tissue in the brain and is 
thought to be responsible for cognition. The prefix “neo” stands for new, which 
should be understood in evolutionary timescales, and contrasts with the older 
paleocortex that includes the olfactory system and the hippocampus. The human 
neocortex is about 2-4 mm thick, comprises about 40% of the brain mass, and 
contains on the order of 1010 neurons. Cortex shows a large number of folds such 
that it can fit about 2600 cm2, approximately half a basketball court, into the size 
of the brain. Because of its extensive surface and relatively shallow depth, many 
investigators think of neocortex as a quasi-2D structure. The most prominent fold 
is the longitudinal fissure separating the right and left hemispheres. The human 
neocortex has more folds than that of many other mammals; for example, the 
mouse cortex appears relatively smooth in comparison to the human cortex. 
Mechanical tension, combined with the strong constraint to save wiring and space, 
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is likely to have been an important factor in determining the shape and folds of 
cortex throughout evolution. 
 
INSERT Figure V-1 AROUND HERE 
Figure V-1.	 Cortex can be subdivided into multiple brain areas based on 
cytoarchitectonic criteria. Brodmann subdivided neocortex into multiple areas based on 
cytoarchitectonic criteria. Primary visual cortex corresponds to Brodmann area 17 in this 
diagram [source = Wikipedia]. 
 

To a pretty reasonable first-order approximation, cortex is cortex: staining 
of cortical tissue appears at a gross level to be very similar across different parts 
of the brain. Furthermore, cortical staining also appears quite similar across 
different species. It takes a connoisseur to distinguish a section of mouse cortical 
tissue from a human one. This similarity is perhaps remarkable to some people. 
Egocentric or anthropomorphic considerations might lead some people to think 
that human cortex might be substantially different; after all, mice do not play chess, 
nor do they read Shakespeare. The coarse similarities in the basic cortical 
structure suggest that approximately the same pieces of hardware can be 
combined in different and exciting ways to account for the cognitive capacities of 
different species. As a rough analogy, similar transistors can be used to build an 
electronic calculator, a smartphone, and a laptop. 

   
Upon further scrutiny, specialists can distinguish between different species 

by examining cortical tissue. Furthermore, it is also possible to demarcate different 
brain regions by examining cortex. The German neuroanatomist Korbinian 
Brodmann (1868–1918) devised a parcellation of the human and monkey brains – 
as well as many other species – based on morphological cytoarchitectonic criteria. 
Many parts of neocortex are still referred to by their Brodmann area number 
(Figure V-1). For example, primary visual cortex corresponds to Brodmann’s area 
17. Neurophysiological and lesion studies have shown that several of the structural 
subdivisions proposed by Brodmann, as well as subsequent neuroanatomical 
work, correlate with functional specialization. Attempts to separate cortical regions, 
particularly combined with attempts to attach cognitive functions to different 
regions, have a long and rich history that continues to current days.  
 

V.2. Connectivity to and from primary visual cortex  
  
INSERT Figure V-2 AROUND HERE 
Figure V-2.	Canonical cortical circuits. Cortical connectivity across visual cortex follows 
stereotypical connectivity patterns illustrated here. L1 through L6 refer to the six cortical 
layers. “Bottom-up” connectivity between areas is shown in black, “Top-down” connectivity 
between areas is shown in light gray, and connections within an area are shown in medium 
gray. 
 

Primary visual cortex is the first stage where information from the two eyes 
converges onto individual neurons. Each hemisphere in V1 represents the 
contralateral visual field. The part of the retina that is closer to the nose is called 
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nasal, while the other half of the retina is called temporal. The left visual hemifield 
(left of the center of gaze) is represented by the nasal part of the retina on the left 
eye and by the temporal part of the retina on the right eye. Information from the 
nasal retina on the left eye will cross the brain and end up represented in the right 
hemisphere in primary visual cortex. Information from the temporal retina on the 
right eye will turn at the optic chiasm and also end up represented in the right 
hemisphere in primary visual cortex.   

 
Like most other aspects of neuroanatomy, the first drawings of primary visual 

cortex were made by Santiago Ramon y Cajal, who was introduced in Chapter II. 
The basic architecture of primary visual cortex turned out to be approximately 
similar to that of other parts of visual neocortex. The neocortical sheet is 
characterized by six layers that can be distinguished with Nissl staining, a 
technique used to sparsely introduce a dye into many neurons in a given area for 
visualization. Sparse staining is important here because the density of neurons in 
cortex is so large that it would be hard to see much upon staining all neurons using 
standard microscopy. The six layers are characterized by a stereotypical 
connectivity pattern that is often referred to as the canonical cortical microcircuit. 
With some exceptions – it is Biology after all – this canonical connectivity pattern 
is shared across different visual areas and also across different sensory 
modalities.  

 
Connections among different areas of cortex are often described as “bottom-

up,” “top-down,” or “horizontal” connections, a nomenclature that is also used to 
describe connectivity in artificial neural network architectures (Chapter VII, Figure 
VII-4). A given individual neuron will only project in a bottom-up manner, or 
horizontally, or provide top-down signals, but not all of these. These different types 
of connections are defined based on the specific layer of the pre- and post-synaptic 
neurons. The connections between and within visual cortical areas follow a 
stereotypical pattern that has been used to define what area is “upstream” or 
“downstream,” and therefore which connections are bottom-up or top-down 
(Figure V-2). Bottom-up connections arrive at layer 4 — the LGN projects to 
pyramidal neurons in layer 4 in primary visual cortex. Layer 1 is the most superficial 
and contains mostly dendrites and few neuronal cell bodies; the neuron cell bodies 
for those dendritic arbors are mostly located in layers 2 and 3. Top-down 
connections from other visual cortical areas typically end in the deep layers 5 and 
6, and also to a lesser degree in layers 2 and 3. After the LGN input (or input from 
a “lower area”) arrives onto layer 4, information flows from layer 4 to layers 2/3 and 
then onto layer 5 and layer 6. Information from layer 6 provides back projections 
to the LGN (or to a “lower” visual area) and is also fed back to layer 4.  

 
An important aspect of connectivity in visual cortex is that connections between 

areas are almost invariably reciprocal. If area A provides bottom-up input into area 
B, area B provides top-down inputs to area A. Furthermore, these reciprocal 
connections are quantitatively comparable: the number of projections from A to B 
and from B to A are approximately similar. 
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By scrutinizing the connectivity patterns across layers in multiple brain areas, 

investigators have come up with an approximate map of the anatomical paths 
through which different visual areas communicate with each other (Chapter I, 
Figure I-5). Based on the separation of connections into bottom-up and top-down, 
it is possible to arrange the multiple different visual brain areas into an 
approximately hierarchical structure. The diagram in Figure I-5 provides a semi-
hierarchical description of the anatomical flow of information in the visual system.  

 
The more we study connectivity in visual cortex, the more we realize that this 

stereotypical pattern is full of exceptions. There are differences across species, 
differences between visual cortex and motor cortex, even differences between 
different visual cortical areas. To make matters more complicated, these layers 
can, in turn, be subdivided into sub-layer structures, and the connectivity patterns 
may be different depending on the types of neurons being considered. For 
example, we started this section by stating that primary visual cortex is 
approximately similar to other visual cortical areas. Perhaps because of its unique 
position in receiving more direct thalamic inputs than all other visual areas, V1 is 
actually thicker, layer 4 has different numbers of sublayers, and the pattern of 
inputs and outputs is also distinct from other visual areas.  

 
In addition to the variations in the canonical microcircuit across cortical areas 

and across species, the hierarchical nature of visual cortex should not be 
interpreted too strictly. For example, numerous “bypass” connections send 
information from area A to area C without going through the intermediate area B 
(e.g., information flows from V1 to V2 to V4, but there are also direct connections 
from V1 to V4). Despite the subdivisions, exceptions, and refinements, the basic 
principles of connectivity in visual cortex have played an important role in imposing 
method to the apparent madness and have inspired the development of the best 
computational models that we have today (Chapter VII-VIII).  

 
A word of caution about nomenclature is pertinent, particularly for computer 

scientists used to thinking about neural networks. Biologists talk about different 
cortical areas, such as V1, V2, and V4. Each of these areas has six layers, as 
described above. In Chapters VII-VIII, we will discuss computational models of 
visual processing, which often refer to computational steps instantiated in different 
“layers.” Those computational layers should not be confounded with the cortical 
layers described here. A layer in a neural network is not necessarily directly linked 
to one of the six layers in neocortex in any given brain area. The exact mapping 
between computational layers and brain areas is not always well defined by 
modelers. In fact, in many cases, people think about a layer in a neural network as 
potentially equivalent to a whole brain area in cortex. We will come back to the 
question of making a commitment in the mapping between computational models 
and biological anatomy. For the moment, here we refer to layers in the biological 
sense discussed in the previous paragraph and Figure V-2. In addition to 
information flowing from one layer to another layer within a visual area, and 
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information flowing between brain areas, there are extensive horizontal 
connections whereby information flows within a layer. Some investigators use the 
term recurrent connections to refer both to horizontal and top-down connections, 
but it is conceptually clearer to keep different terms for these two distinct types of 
signal paths. 
 

V.3. The gold standard to examine neural function 
 

Every problem has an appropriate scale of study, a Goldilocks scale so to 
speak, not too coarse, not too fine. For example, it is particularly tedious and 
challenging to attempt to read the newspaper using a microscope (too fine a 
resolution). It is also extremely challenging to read a newspaper from a distance 
of 200 meters away (too coarse). A plethora of methods are available to study the 
brain, ranging from elucidating the three-dimensional structure of specific types of 
ion channels, all the way to indirectly measuring signals that show some degree of 
correlation with blood flow, averaged over coarse spatial scales.  

 
In the case of neocortical circuits, this Goldilocks scale is the activity of 

individual neurons. Studying the three-dimensional structure of each protein inside 
a neuron is equivalent to trying to read the newspaper with a microscope – but it 
can be extremely useful for other questions such as understanding the kinetics 
and properties of ion channels in the neuronal membrane. Studying the average 
amount of blood flowing through half a cubic centimeter of cortex over several 
seconds is equivalent to attempting to extract ink tones from the newspaper from 
200 meters away – but it can be useful for other questions such as differentiating 
general and coarse properties of a part of cortex.  

 
In addition to this spatial scale, there is also a natural time scale to examine 

neuronal activity. Most neurons communicate with each other by sending electrical 
signals called action potentials lasting about two milliseconds. For most purposes, 
it is sufficient to study neuronal activity at the millisecond level. With a few 
exceptions (e.g., small differences in timing between signals arriving at the two 
ears), microsecond resolution timescales do not provide additional information. 
One day has 1,440 minutes, and therefore the analogy for studying brains at the 
microsecond instead of millisecond scale (a factor of 1,000) would be to re-read 
the same newspaper every minute. At the other end of the spectrum, techniques 
that average activity over many seconds are too coarse to elucidate cortical 
computations. The analogy for studying brains at the scale of several seconds 
instead of milliseconds (a factor of 1,000) would be to average the newspaper over 
three years.  

 
Studying the activity of neocortical circuits at the neuronal resolution at a 

scale of milliseconds is not trivial and requires inserting thin microelectrode probes 
into the areas of interest. Neuronal action potentials lead to changes in the 
electrical potential in the extracellular milieu. It is possible to amplify and measure 
this electrical potential in the extracellular space and measure the action potentials 
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emitted by individual neurons. The methodology was established by Edgar Adrian 
(1889-1977), and we already introduced example measurements of single-neuron 
activity in the retina in Chapter II. 

  
V.4. Neurons in primary visual cortex respond selectively to bars shown 

at specific orientations 
 

INSERT Figure V-3 AROUND HERE 
Figure V-3.	 Example responses of a neuron in monkey primary visual cortex. 
Physiological responses of a neuron in primary visual cortex to bars of different 
orientations. In these examples, the bar was moved in a direction perpendicular to its 
orientation. The dashed lines on the left indicate the receptive field, the black rectangle is 
the oriented bar and the arrows indicate the direction of motion. The neuronal response 
traces are shown on the right. Reproduced from Hubel and Wiesel 1968.  

 
Human primary visual cortex consists of about 280 million neurons arranged 

in a 2-mm-thick sheet that encompasses a few square inches in surface. There 
are more papers examining the neurophysiology of primary visual cortex than the 
rest of the visual cortex combined. Neurons in primary visual cortex - as well as 
those in the retina and LGN (Chapter II), and also neurons in other parts of visual 
cortex - show spatially restricted receptive fields, that is, they respond only to a 
specific part of the visual field (Figure II-9). The ensemble of all the neurons tiles 
the entire visual field. On average, the receptive field size of neurons in primary 
visual cortex is larger than the receptive field sizes in the retina and LGN, typically 
encompassing about 0.5 to 1 degree of visual angle. A typical neurophysiology 
experiment often starts by determining the receptive field location of the neuron 
under study. After determining the location of the receptive field, a battery of stimuli 
is used to probe the neuron’s response preferences. 

 
The initial and paradigm-shifting strides towards describing the 

neurophysiological responses in primary visual cortex were introduced by Torsten 
Wiesel and David Hubel (1926-2013). The history of visual neuroscience revolves 
around the history of visual stimuli. Before the Hubel-Wiesel era, investigators had 
examined the responses in primary visual cortex using diffused light or the type of 
point sources that had successfully elicited activity in the retina and LGN. By a 
combination of inspiration, perspiration, and careful observation, Hubel and Wiesel 
realized that neurons in primary visual cortex responded most strongly when a bar 
of a particular orientation was presented within the neuron’s receptive field. The 
story of how this discovery came about is particularly fascinating and is recounted 
in David Hubel’s Nobel Lecture. Hubel and Wiesel did not have particularly 
grandiose hypotheses about the function of neurons in visual cortex before they 
embarked on these investigations but rather intuited that compelling principles 
would emerge by courageously placing electrodes in V1. After a particularly long 
day recording the activity of a V1 neuron, they were frustrated by how little the 
neuron seemed to care about the presence of a light or dark annulus inside the 
receptive field. In those days, they did not have computers to present stimuli; 
instead, they used slides inserted into a projector. Their careful power of 
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observation led them to realize that the neuron would show a burst of activity every 
time they inserted the slide into the projector. It was the edge of the slide moving 
in and out of the projector that triggered activation, much more than the content of 
the slide. Excited by this finding, they went on to discover that the orientation of an 
edge placed within the receptive field mattered for the neuron: specific orientations 
led to much larger activation than others.  

 
A typical pattern of responses obtained from V1 recordings is illustrated in 

Figure V-3. In this experiment, an oriented bar was moved within the receptive 
field of the neuron under study. The direction of movement was perpendicular to 
the bar’s orientation. Different orientations elicited drastically distinct numbers of 
action potentials. While the number of action potentials (or spike count) is not the 
only variable that can be used to define the neuronal response, it provides a simple 
and adequate starting point to examine neuronal preferences. When the bar was 
approximately at a -45-degree angle (Figure V-3D), the neuron emitted more 
spikes than for any other orientation. Moreover, the activity of this neuron was also 
dependent on the direction of motion. When the bar was moving towards the upper 
right, the neuron was vigorously active, whereas there was minimal activation in 
the opposite direction of motion. 

 
Hubel and Wiesel went on to characterize the properties of V1 neurons in 

terms of their topography, orientation preference, ocular preference, color, 
direction of motion, and even how those properties arise during development. Their 
Nobel-prize winning discovery inspired generations of neurophysiologists to 
examine neuronal responses throughout the visual cortex. 

 
V.5. Complex neurons show tolerance to position changes 

 
INSERT Figure V-4 AROUND HERE 
Figure V-4.	Complex neurons show tolerance to position changes. A. Schematic 
diagram showing responses from a simple neuron that responds maximally to a -45-
degree oriented line when it is positioned in the center of the receptive field (top) but not 
when the position is shifted (rows 2,3) or when the orientation changes (bottom). B. 
Schematic diagram showing responses of a complex neuron that shows tolerance to 
position changes. 
 
 In the example shown in Figure V-3, the V1 neuron responds preferentially 
to a moving bar. Neurons in V1 also respond to flashes of static stimuli. When 
flashing a stimulus, how precise does the position of the oriented bar within the 
neuron’s receptive field have to be to trigger a response? A distinction has been 
observed between two types of neurons in V1 based on how picky they are with 
respect to stimulus position within the receptive field: simple and complex V1 
neurons. Complex neurons are less sensitive to the exact position of the bar within 
the receptive field. When using gratings containing multiple oriented bars at a given 
spatial frequency, complex neurons tolerate larger changes in the spatial 
frequency. Simple and complex neurons are often distinguished by the ratio of the 
“DC” maintained response to their “AC” response elicited by a moving grating. 
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Complex neurons show a small AC/DC ratio (typically <10), whereas simple 
neurons have a larger AC/DC ratio (typically >10). In other words, complex 
neurons show a higher degree of tolerance to the exact position of an oriented bar 
within the receptive field compared to a simple neuron whose response magnitude 
decreases when the bar is shifted away from the preferred position (Figure V-4). 
This progression from a simple neuron to a complex neuron showing increased 
tolerance has inspired the development of hierarchical computational models of 
object recognition that concatenate simple and complex-like operations as a way 
of keeping selectivity while achieving tolerance to transformations in the stimulus 
(Chapters VII-VIII).   

 
Some complex neurons also show “end-stopping,” meaning that their 

optimum stimulus includes an end within the receptive field, as opposed to very 
long bars whose ending is outside of the receptive field. The end-stopping 
phenomenon can be understood as a form of contextual modulation where the 
patterns in the region surrounding the receptive field (in this case, whether the line 
continues or stops) influence the responses to the stimulus inside the receptive 
field. Such influences from outside the receptive field are not restricted to end-
stopping. V1 neurons also show surround suppression, similar to the suppressive 
effects of light around the receptive field center for on-center retinal ganglion cells 
described in Chapter II (Figure II-10). In sum, V1 neurons are particularly sensitive 
to spatial changes, detecting edges indicative of a discontinuity in the visual field, 
and some neurons also detecting where the edge stops. 

 
V.6. Nearby neurons show similar properties 

 
 Neurons in primary visual cortex are topographically organized, in a similar 
fashion to the situation described in the retina in Chapter II. The V1 topography is 
inherited from the LGN: the connections from the LGN to primary visual cortex are 
topographically organized, meaning that nearby neurons in the LGN map onto 
nearby neurons in primary visual cortex. V1 neurons cover the visual field, with a 
much higher density of neurons covering the foveal region. These 
neurophysiological observations are consistent with the types of scotomas 
observed in cases of localized V1 lesions and also with the locations of 
phosphenes reported upon stimulation in V1 (Chapter III). 
 
 Hubel and Wiesel discovered another aspect of the topographical 
arrangement of neurons in V1 by comparing the tuning preferences of different 
neurons recorded during the same electrode penetration. In addition to sharing 
properties with their two-dimensional neighbors along the cortical sheet, neurons 
also share similar response patterns with their neighbors in the third dimension 
representing cortical depth. Advancing the electrode in a direction approximately 
tangential to the cortical surface, different neurons along a penetration share 
similar orientation tuning preferences. This observation led to the notion of a 
columnar structure: neurons within a column have similar preferences, neurons in 
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adjacent columns show a continuous variation in their orientation tuning 
preferences. 
 
 Such topography may be critical for saving wires by virtue of arranging 
neurons with similar properties that need to be connected near each other. In 
particular, interneurons that have short dendrites may require having their targets 
nearby. However, if we keep the neuron to neuron connectivity intact, we could, in 
principle, rearrange the geometry of the neurons in arbitrary ways while keeping 
the computations intact. Topography may thus be mostly dissociated from function. 
Therefore, the smooth map of tuning properties within V1 is probably not a 
requirement for V1 computations. In fact, recent work has shown that this level of 
organization may not be a universal property. Primary visual cortex in mice does 
not have such a precise topographical mapping of orientation preferences; the 
geometrical arrangement of tuning preferences is described as “salt-and-pepper.”  

 
 Even if this topography is not strictly required for computational purposes, 
it may come in quite handy for investigators. For example, recording techniques 
with a reduced spatial resolution that average the activity of many neurons may 
depend strongly on topography (because average responses from completely 
randomly arranged neurons may yield nothing). For similar reasons, as discussed 
in Section IV-10, stimulation of many neurons via current injection may also be 
dependent on topography. 

 
V.7. Quantitative phenomenological description of the responses in 

primary visual cortex 
 

INSERT Figure V-5 AROUND HERE 
Figure V-5. The spatial structure of receptive fields of V1 neurons is often 
described by a Gabor function (Equation V.1). A. Illustration of a Gabor function. B. 
Contour plot. 

 
Let D(x,y) denote the responses of a neuron at position x, y. The receptive 

field structure D(x,y) of orientation-tuned simple V1 neurons is often 
mathematically described by a Gabor function; that is, the product of an 
exponential and a cosine function: 

 
 
  Equation V.1  
  

where sx and sy control the spatial spread of the receptive field, k controls the 
spatial frequency, and f the phase. The Gabor function is characterized by an 
elongated excitatory region whose angle corresponds to the orientation preference 
of the V1 neuron, as well as a surrounding inhibitory region. An example illustration 
of a Gabor function is shown in Figure V-5.  
 
INSERT Figure V-6 AROUND HERE 
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Figure V-6. The temporal structure of receptive fields of V1 neurons (Equation 
V.2).  Shown is Equation V.2 for different values of the parameter a. 
 

In addition to the spatial aspects of the receptive field, it is important to 
characterize the temporal dynamics of responses in V1. In most cases, the spatial 
and temporal aspects of the receptive fields in V1 can be considered to be 
approximately independent; that is, they can be separated without considering 
complex interactions between space and time. The temporal aspects of the 
receptive field can be fitted by the following equation: 
 

    Equation V.2 
 
for t >=0 and 0 otherwise. This equation is a fancy way of fitting the rapid and 
transient increase in firing rate upon flashing a stimulus at time 0 (Figure V-6). The 
parameter a controls the latency and width of the temporal receptive field. 
 

V.8. A simple model of orientation selectivity in primary visual cortex 
 
INSERT Figure V-7 AROUND HERE 
Figure V-7. Building orientation tuning by combining circular center-surround 
neurons. Schematic diagram showing how multiple LGN neurons with a circular center-
surround receptive field structure can be combined to give rise to a V1 simple neuron that 
shows orientation tuning when those receptive field centers are adequately aligned 
(modified from Hubel and Wiesel, 1962.  

 
Equation V.1 provides a phenomenological description of the receptive 

field structure. In a remarkable feat of intuition, Hubel and Wiesel proposed a 
simple and elegant biophysically plausible model of how orientation tuning could 
arise from the responses of neurons with LGN-type receptive fields (Figure V-7). 
In their model, multiple LGN neurons with circularly symmetric center-surround 
receptive fields (Figure II-10) arranged along a line project onto a simple V1 
neuron. Orientation tuning is thus constructed in a bottom-up fashion by combining 
the inputs of the right set of LGN neurons.  

 
Subsequent work gave rise to a plethora of other possible models, and there 

is still an ongoing debate about the extent to which the Hubel-Wiesel purely 
bottom-up model represents the only mechanism giving rise to orientation 
selectivity in area V1. Still, this simple and elegant interpretation of the origin of V1 
receptive fields constitutes a remarkable example of how experimentalists can 
provide reasonable and profound models that account for their data. Furthermore, 
the basic ideas behind this model have been extended to explain the build-up of 
neuronal preferences for more complex shapes in other areas (Chapter VII-VIII).  

 
In addition to orientation selectivity, there are many other properties of V1 

neurons that are also arranged topographically including their spatial receptive 
fields, their ocular dominance (stronger responses to inputs coming from one or 

D(τ ) =αexp(−ατ ) (ατ )5 / 5!− (ατ )7 / 7!⎡⎣ ⎤⎦
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the other eye), their direction selectivity (stronger responses for specific directions 
of motion), and their retinal disparity (sensitivity to shifted positions between the 
right and left eyes used for stereopsis). It turns out that all of these other properties 
can also be mapped onto the specific arrangements of inputs from the LGN. 
 

Extending their model for orientation selectivity in simple neurons by 
combining the output of LGN neurons (Figure V-7), Hubel and Wiesel proposed 
that the responses of complex neurons could originate by the non-linear 
combination of responses from multiple simple neurons with similar orientation 
preferences but slightly shifted receptive fields. These pioneering ideas of a linear 
filtering operation giving rise to the responses of simple neurons in V1 followed up 
by a non-linear pooling operation giving rise to complex neurons in V1 has played 
an influential role in inspiring computational models of visual processing (Chapter 
VII).  

 
INSERT Figure V-8 AROUND HERE 
Figure V-8.	Beyond gratings and into the real world. Schematic example of how a V1 
simple neuron might respond in the real world. “+” indicates the fixation location, and the 
black circle connotes the receptive field location. In A1, the image inside the receptive 
field is similar to the neuron’s preferred orientation (B), eliciting a high response (D1), 
whereas the reverse is true in the bottom case.  

 
 Figure V-8 summarizes schematically how a V1 simple neuron would 
respond in a real-world image. This neuron has a receptive field in the upper right 
part of the visual field (black circle). Two fixations are shown in this figure. In the 
first fixation (A1), the image inside the receptive field is similar to the neuron’s 
preferred orientation (B). After a non-linear activation function (C), the neuron 
shows a strong response (D1). When the subject makes a small eye movement to 
the right, landing on fixation 2 (A2), the image inside the receptive field does not 
resemble the neuron’s preferred features anymore, and the response is weak (D2). 

 
V.9. Many surprises left in V1 

 
 Despite significant amounts of work investigating the neuronal properties 
in primary visual cortex, much remains to be explained. Multiple biases contribute 
to a partial view of V1 function. First, many of the recording procedures to date 
tend to focus on neurons that have higher firing rates and that are easier to pick 
up through extracellular recordings. Interneurons are smaller and harder to record 
from than the larger pyramidal cells. Additionally, there could be “shy” neurons that 
may be overlooked. Second, the types of stimuli that we use to probe neuronal 
responses also have biases (Section V.11, Figure V-10). Perhaps there are 
neurons in V1 that respond strongly to purple triangles with a sunflower on top, 
but, not surprisingly, nobody has tested this. Why would anyone test such a 
stimulus? None of our theories suggest that such a stimulus would be particularly 
relevant for V1 neurons. However, our theories may also be biased. Another 
important point to keep in mind is that neuronal responses in V1 are often probed 
in monkeys that are not performing any visual task other than fixating. Spatial 
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context, temporal context, internal expectations, and task demands can modulate 
the responses of V1 neurons. 
 
 The last decade has seen an exciting increase in studies of mouse V1, 
many of which have opened our eyes to a world full of surprises, even at the heart 
of the most studied cortical area. Many of the experiments in mice are performed 
while the animal is running on a ball, a sort of treadmill exercise while watching a 
movie for the mouse. One of the most shocking findings in the last decade is that 
the running speed strongly modulates V1 neuronal responses. The same visual 
stimulus can trigger very distinct responses depending on whether the animal is 
still, trotting slowly, or sprinting. If this is not astounding enough, the responses of 
those V1 neurons can also be modulated by running in the dark, in the absence of 
any visual stimulation. Continuing with the list of intriguing observations in mice, 
there are direct connections from primary auditory cortex onto V1, and it is possible 
to trigger responses in V1 neurons with auditory tones! These responses are 
weaker than visually triggered ones, but it is an auditory signal driving the most 
visual part of cortex. Whisker deflections can also modulate V1 neurons. And head 
movements too.  
 
 It remains unclear whether any of these observations extend to monkeys, 
let alone humans. It is not easy to do neurophysiological recordings in monkeys 
running around, and it is very challenging to perform neurophysiological recordings 
in human V1. To the best of our knowledge, there is no report of auditory stimuli 
modulating V1 responses in monkeys (after controlling for eye position, attention, 
and visual stimulus). The rodent brain is much smaller than the macaque monkey 
brain (the Mus musculus and Macaca mulatta diverged about 75 million years 
ago), which is, in turn, smaller than the human brain (Macaca mulatta and Homo 
sapiens diverged about 25 million years ago). Introspectively, our visual world does 
not seem to change when we are walking or running around. However, there could 
be compensatory mechanisms that account for modulatory responses in V1 during 
running (remember that we are not even aware of the massive and pervasive 
visual changes caused by blinks and eye movements, Chapter II). Auditory cortex, 
somatosensory cortex, and motor cortex, are closer to V1 in mice than in monkeys, 
and there are more convolutions that could isolate brain areas in the macaque 
brain, and even more so in the human brain. Of note, this is all speculation, and 
we will need to evaluate all of these possibilities in neurophysiological recordings 
in monkeys and humans. We should keep our brains open and expect many 
exciting surprises ahead. 

 
V.10. Divide and conquer 
 
INSERT Figure V-9 AROUND HERE 
Figure V-9.	How does cortex convert pixels to percepts? Through the cascade of 
computations along the ventral visual stream, the brain can convert preferences for simple 
stimulus properties such as orientation tuning into sophisticated features such as faces. 
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 Leaving primary visual cortex and ascending through the hierarchy of 
cortical computations, we reach the fascinating and bewildering cortical areas that 
bridge low-level visual features into the building blocks of perception. In primary 
visual cortex, there are neurons that respond selectively to lines of different 
orientations (Figure V-3). At the other end of the visual hierarchy, there are 
neurons in inferior temporal cortex (ITC) that respond selectively to complex 
shapes and help us identify chairs, faces, and planets (to be discussed in Chapter 
VI). In between V1 and the representation of complex object shapes, there is a 
vast expanse of cortex involved in the seemingly magical transformations that 
convert oriented lines into complex shapes. How do we go from oriented lines to 
recognizing cars, faces, and planets (Figure V-9)?  
 
 Despite heroic efforts by a talented cadre of investigators to scrutinize the 
responses between primary visual cortex and the highest echelons of ITC, the 
ventral visual cortex remains mostly terra incognita. Visual information flows along 
the ventral visual stream from V1 into areas V2, V4, posterior and anterior parts of 
ITC. The cortical real estate between V2 and ITC constitutes a mysterious, 
seductive, and controversial ensemble of neurons whose functions remain unclear 
and are only beginning to be deciphered. Courageous investigators armed with 
computational models, electrodes, and intuition, are beginning to describe the 
neuronal turning preferences of neurons in areas V2, V3, and V4, in terms of 
features including curvature, disparity, color, texture, and shapes. 
 
 To solve the complex task of interpreting a scene, the visual system seems 
to have adopted a divide and conquer strategy. Instead of trying to come up with 
a single function that will transform lines into complex shapes in one step, the 
computations underlying visual cognition are implemented by a cascade of multiple 
approximately sequential computations. Each of these computations may be 
deceptively simple, and yet the concatenation of such steps can lead to interesting 
and complex emergent results. As a rough analogy, consider a factory making 
cars. There is a long sequence of specialized areas, departments, and tasks. One 
group of workers may be involved in receiving and ordering different parts, others 
may be specialized in assembling the carburetor, others in painting the exterior. 
The car is the result of all of these sequential and parallel steps. To understand 
the entire mechanistic process by which a car is made, we need to dig deeper into 
each of those specialized sub-steps without losing touch with the overall objective 
that each of these sub-steps contributes to, that is, the final product.  
  
V.11. We cannot exhaustively study all possible visual stimuli 
 
INSERT Figure V-10 AROUND HERE 
Figure V-10.	The curse of dimensionality in vision.  With current techniques, we cannot 
exhaustively sample all possible stimuli. Here we consider a 5x5 grid of possible binary 
images (top) or possible grayscale images (bottom). Even for such simple stimuli, the 
number of possibilities is immense. 
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 It could be nice to be able to describe the tuning preferences of neurons 
along the ventral visual stream in an analogous way to orientation tuning and 
Gabor functions for V1 neurons. There have been many empirical attempts to 
characterize the neuronal preferences of V2, V4, and ITC neurons, yielding 
exciting insights. As in the famous parable of blind men trying to describe an 
elephant by touching separate parts, different investigators have come up with 
several examples of how neurons respond to angles, colors, curvatures, and other 
shapes.  
  
 One of the main challenges to investigate the function and preferences of 
neurons in cortex is that there are too many possible images and we only have a 
limited amount of recording time for a given neuron. Given current techniques, it is 
simply impossible to exhaustively examine the large number of possible 
combinations of different stimuli that might drive a neuron. Consider a simple 
scenario where we present image patches of size 5x5 pixels, where each pixel is 
either black or white (Figure V-10, top). There are 225 (more than 33 million) such 
stimuli. If we present each stimulus for 100 ms and we do not allow for any 
intervening time in between stimuli, it would take more than five weeks to present 
all possible combinations. There are many more possibilities if we allow each pixel 
to have gray tones from 0 to 255 (Figure V-10, bottom): 25625 such images (about 
1060 such images!). Moreover, the problem becomes even worse if we allow three 
colors (Red, Green, Blue) and if we allow images larger than a mere 5x5 pixels. 
Even after restricting our analyses to the ill-defined subset of natural images 
(Section II.1), we would still have an astronomically large number of possible 
images. We can typically hold extracellular recordings with single (non-chronic) 
electrodes for a couple of hours. Recent extraordinary efforts have managed to 
track the activity of a given neuron for up to a year. However, even with such 
chronic electrodes, it is challenging to keep an animal engaged in a visual 
presentation task for more than a few hours a day. Thus, we cannot record the 
responses of a neuron to all images. 
 
 Because of the severe limitations in the number of stimuli that can be 
tested, investigators often recur to several astute strategies to decide which stimuli 
to use in order to investigate the responses of cortical neurons. These strategies 
typically involve a combination of (i) inspiration from previous studies (past 
behavior of neurons in other studies is a good predictor of how neurons will behave 
in a new experiment); (ii) intuitions about what types of images might or might not 
matter for neurons (for example, many investigators have argued that real-world 
objects such as faces should be important); (iii) statistics of natural stimuli (as 
discussed in Chapter II, it is reasonable to assume that neuronal tuning is sculpted 
by exposure to images in the natural world); (iv) computational models (to be 
discussed in more detail in Chapters VII-IX); (v) serendipity (the role of rigorous 
scrutiny and systematic observation combined with luck should not be 
underestimated). Combining these approaches, several investigators have probed 
the neural code for visual shapes along the ventral visual cortex.   
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V.12. We live in the visual past: response latencies increase along the 
ventral stream 

 
 Visual processing is very fast. Indeed, we argued in Chapter I that the 
speed of vision is likely to have conferred critical advantages to the first species 
with eyes and may well constitute one of the key reasons why evolution led to the 
expansion of visual capabilities. However, even though the world seems to 
materialize in front of us upon opening our eyes, we noted in Chapter II that 
processing in the retina takes time. The intuition that vision is instantaneous is 
nothing more than an illusion. It takes about 30 to 50 ms for signals to emerge from 
retinal ganglion cells into the thalamus, and it takes further time for signals to 
propagate through cortex.  
 
 A small fraction of this time has to do with the speed of propagation along 
dendrites and axons within a neuron. However, within-neuron delays are relatively 
short. In particular, action potential signals within axons that are insulated by 
myelin can propagate at speeds of about 100 meters per second. Thus, signals 
from a single myelinated axon could, in principle, traverse the entire length of the 
human brain of approximately 15 centimeters in about 1.5 milliseconds. Dendrites 
tend to be shorter than axons, and propagation speeds within dendrites are also 
quite fast. The main reason why vision is far from instantaneous is the multiple 
computations and integration steps in each neuron combined with the synaptic 
hand-off of information from one neuron to the next executed throughout the multi-
synaptic circuitry of cortex.  
 
INSERT TABLE V.1 AROUND HERE 
 
 At each processing stage in the visual system, it is possible to estimate the 
time it takes for neurons in that area to realize that a flash of light was presented. 
Response latencies to a stimulus flash within the receptive field of a neuron 
increase from ~45 ms in the LGN to ~100 ms in inferior temporal cortex (Table 
V.1). There is an increase in the 
average latency within each area 
from the retina to the LGN to V1, to 
V2, to V4, to ITC. This progression 
of latencies has further reinforced 
the notion of the ventral processing 
stream as an approximately 
hierarchical and sequential 
architecture. Each additional 
processing stage along the ventral 
stream adds an average of ~15 ms 
of computation time.  
 
 It should be emphasized 
that these are only coarse values 

Table V.1: Response latencies in different areas 
in the macaque monkey (from Schmolesky et al. 
1998). 

Area Mean (ms) S.D. (ms) 
LGNd M layer 33 3.8 
LGNd P layer 50 8.7 

V1 66 10.7 
V2 82 21.1 
V4 104 23.4 
V3 72 8.6 
MT 72 10.3 

MST 74 16.1 
FEF 75 13 
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and there is significant neuron-to-neuron variability within each area. An analysis 
of neural recordings in anesthetized monkeys by Schmolesky and colleagues 
showed latencies ranging from 30 ms all the way to 70 ms in primary visual cortex. 
Because of this heterogeneity, the distributions of response latencies overlap, and 
the fastest neurons in a given area (say V2) may fire before the slowest neurons 
in an earlier area (say V1). Not only is there heterogeneity in response latencies 
from one neuron to another within a given visual area, but even the same neuron 
can also show different latencies depending on the nature of the stimulus. For 
example, response latencies tend to be inversely proportional to the stimulus 
contrast. The notion of sequential processing is only a coarse approximation. 
However, the response latencies constitute an important constraint to the number 
of possible computational along the visual system. 
 
 Because of these latencies, we continuously live in the past in terms of 
vision. The notion that we only see the past events is particularly evident when we 
consider distant stars. The light signals that reach the Earth left those stars a long 
time ago. Although much less intuitive, the same idea applies to visual processing 
in the brain. Of course, the time it takes for light to bounce on a given object and 
reach the retina is negligible, yet signal propagation in the brain takes on the order 
of a hundred milliseconds as discussed above. Through learning, the brain might 
be able to account for these delays by predicting what will happen next. For 
example, how is it possible for a Ping-Pong player to respond to a smash? The 
ball may be moving at about 50 km/h (apparently, the world record is about 112 
km/h), and thus the ball traverses the ~3 m length of the table in about 200 ms. By 
the time the opponent has to hit the ball back, his or her visual cortex is processing 
sensory inputs from the time when the ball was passing the net in the best-case 
scenario. Not to mention the fact that orchestrating a movement also takes time 
(signals need to propagate from vision to the decision centers of the brain, and 
then from there to the muscles; all of these steps cost time). The only way to play 
Ping-Pong and other sports is to use the visual input combined with predictions 
learned through experience. Because of these predictions, players not only 
capitalize on smashing speed but also recur to other strategies such as embedding 
the ball with spinning effects to confuse the opponent.   
 
V.13. Receptive field sizes increase along the ventral visual stream 
 
 Concomitant with the prolonged latencies, as we ascend through the visual 
hierarchy, receptive fields become larger (Figure V-11). Receptive fields range 
from below one degree in the initial steps (LGN, V1) all the way to several degrees 
or even tens of degrees in the highest echelons of cortex. Each area has a 
complete map of the visual field; thus, the centers of the receptive fields go from 
the fovea to the periphery. As discussed for primary visual cortex, within each area, 
the size of the receptive field increases as we move farther away from the fovea. 
There is always better resolution in the fovea, across all visual areas. The range 
of receptive field sizes within an area also increases with the mean receptive field 
size. The distributions are relatively narrow in primary visual cortex, but 
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investigators have described a wide range of receptive field sizes in V4 and inferior 
temporal cortex. The scaling factor between receptive field size and eccentricity is 
more pronounced in V4 than in V2 and in V2 compared to V1.  
 
INSERT Figure V-11 AROUND HERE 
Figure V-11.	Receptive field sizes increase with eccentricity and along the ventral 
stream. Receptive field size increases within eccentricity for a given area. Additionally, 
receptive field size increases along the ventral visual stream at a fixed eccentricity. A. 
Experimental measurements based on neurophysiological recordings in macaque 
monkeys. B. Schematic rendering of receptive field sizes in areas V1, V2, and V4. 
Reproduced from Freeman and Simoncelli 2011. 
 
 The increase in receptive field size from one area to the next may be a 
natural consequence of pooling-like operations in a hierarchical network, as we will 
discuss in more detail when we introduce computational models of visual cortical 
processing in Chapter VIII. The increase in receptive field size provides several 
interesting properties: (i) a specific mechanism of discarding precise positional 
information in favor of (ii) extracting visual features that show progressively larger 
degrees of invariance to the exact position or scale of relevant visual features, and 
(iii) the ability to combine shapes from slightly shifted locations to build 
progressively more complex visual feature descriptors. 
 
V.14. What do neurons beyond V1 prefer? 
 
 There have been a few systematic parametric studies of the neuronal 
preferences in areas V2 and V4. These studies have opened the doors to 
investigate the complex transformations along the ventral visual stream. Even 
though multiple interesting studies compared responses in V1, V2, and V4, we do 
not yet have a clear, unified theory of what neurons “prefer” in these higher visual 
areas. Of course, the term “prefer” is an anthropomorphism. Neurons do not prefer 
anything. They fire spikes whenever the integration of their inputs exceeds a given 
threshold. Investigators often speak about neuronal preferences in terms of what 
types of images will elicit high firing rates.  
 
 The notion that V1 neurons show a preference for orientation tuning is well 
established, even if this only accounts for part of the variance in V1 responses to 
natural stimuli. There is significantly less agreement as to the types of shape 
features that are encoded in V2 and V4. There have been several studies probing 
responses with stimuli that are more complex than oriented bars and less complex 
than everyday objects. These stimuli include sinusoidal gratings, hyperbolic 
gratings, polar gratings, angles formed by intersecting lines, curvatures with 
different properties, among others. Simple stimuli such as Cartesian gratings can 
certainly drive responses in V2 and V4. As a general rule, neurons in V2 and V4 
can be driven more strongly by more complex shapes. As discussed above in the 
context of latency, there is a wide distribution of stimulus preferences in V2 and 
V4. 
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 Perhaps one of the challenges is that investigators seek an explanation of 
neural coding preferences in terms of colloquial English expressions such as 
orientation, color, or curvature. An attractive idea that is gaining momentum is the 
notion that neurons in these higher visual areas filter the inputs from previous 
stages to produce complex tuning functions that defy language-based 
descriptions. A neuron may be activated by a patch representing complex shapes 
and textures that cannot be simply defined as an angle or a convex curve. 
Ultimately, the language of Nature is mathematics, not English or Esperanto. 
Neuronal tuning properties do not have to map in any direct way to a short 
language-based description; we will come back to this idea in Chapters VII-VIII 
when we discuss computational models of vision.  
 
V.15. Brains construct their interpretation of the world: the case of illusory 

contours 
 
INSERT Figure V-12 AROUND HERE  
Figure V-12. V2 neurons can represent lines that do not exist except in the eyes of 
the beholder. The figure shows the Kanizsa triangle visual illusion and a schematic 
rendering of neurophysiological recordings from 4 neurons: two retinal ganglion cells 
(RGC) and two V2 neurons. When the receptive fields (gray dotted circles) encompass 
locations that have a real contour (A), both RGC and V2 neurons fire vigorously. In 
contrast, when the receptive fields encompass an illusory contour (B), the V2 neuron fires 
vigorously, but the RGC neuron only fires a few baseline spikes. 
 
 A pervasive illusion is the notion that our senses contain a veridical 
representation of precisely what is out there in the world. This notion can be readily 
debunked through the study of visual illusions. In Chapter III, we argued that our 
brains make up stuff by constructing an interpretation of the outside world. Our 
brains “making up stuff” implies that there should be neurons that explicitly 
represent those constructs. Let us revisit the Kanizsa triangle (Figure V-12), where 
we have the strong illusion of perceiving an equilateral triangle in the midst of the 
three Pacman icons. The small parts of the sides of the triangle near the vertices 
are composed of real black contours. However, the center of each side is 
composed of a line that does not really exist. These lines represent illusory 
contours, that is, edges created without any change in luminance.  
 
 It is relatively easy to “trick the eye.” Except that the eye is typically not 
tricked in most visual illusions. Visual illusions represent situations where our 
brains construct an interpretation of the image that is different from the pixel level 
content. In most such illusions, the responses of retinal ganglion cells (RGC) follow 
the pixel-level content in the image relatively well. Consider recording the activity 
of an RGC whose receptive field center corresponds to position A in Figure V-12, 
right along one side of the Pacman. There is a luminance change inside the 
receptive field, and we expect the neuron to fire vigorously at this location upon 
flashing the Kanizsa figure. Now consider an RGC with a receptive field center 
located at position B, smack in the middle of the illusory contour. We do not expect 
this neuron to fire above baseline levels because there is no stimulus inside the 
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receptive field. In other words, the activity of RGCs does not correlate with our 
perception. If the retina does not reflect perception, then who does? It seems 
reasonable to conjecture that there must be neurons somewhere that explicitly 
represent the contents of our perception, in this case, the illusory contours. This 
explicit representation is a critical postulate that we will discuss again in more 
depth when we take up the question of the neuronal correlates of consciousness 
in Chapter X.  
 
 Indeed, neurons in area V2 respond to illusory contours (Figure V-12). A 
V2 neuron that prefers horizontal edges would fire strongly if its receptive field is 
at location A because there is a real horizontal line there. Remarkably, a V2 neuron 
that prefers leftward edges would also fire if its receptive field is at position B, 
where there is an illusory edge. V2 neurons respond almost equally well to an 
illusory line or to a real line. The responses to illusory contours are remarkable 
because there is no contrast change within the neuron’s receptive field. Hence, 
these responses indicate a form of context modulation that is consistent with the 
subjective interpretation of borders. There are also neurons in V1 that respond to 
illusory contours, but there are more such neurons in V2. Interestingly, the 
responses to illusory contours show a short delay with respect to the responses to 
real lines. These delays may reflect the need for additional computational steps 
required to infer the presence of a line when there is none. 
 
V.16. A colorful V4 
 
 Neurons in the retina (cones), LGN (parvocellular neurons), and primary 
visual cortex (particularly those within so-called blobs in V1) are all sensitive to the 
color of the stimulus within their receptive field. Neurons in area V4 demonstrate 
sensitivity to color properties that are more complex than those in earlier areas. A 
notable property is that neurons in V4 have been implicated in the phenomenon of 
color constancy whereby an object’s color is relatively insensitive to large changes 
in the overall illumination, in contrast to the responses earlier in the visual system.  
 
 There are many visual illusions based on the phenomenon of color 
constancy. A banana typically appears to be yellow to our eyes, whether we see it 
at noon, or in the early evening, or under the kitchen light. The actual spectrum of 
light reaching the eyes depends quite strongly on the environment illumination, and 
cones in the retina signal the actual wavelengths reflected off the banana. 
However, our perception discounts the background illumination and interprets the 
banana to be yellow. The integration of color signals emanating within the 
receptive field with those in the surround to perform this type of discounting is 
thought to take place in V1, but particularly in V4 neurons. The responses of V4 
neurons better correlates with how primates perceive colors. Furthermore, the rare 
condition of cortical color blindness known as achromatopsia has been associated 
with damage to area V4 (Chapter IV). 
 
V.17. Attentional modulation 
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 As noted earlier in this chapter, neurons along the ventral visual cortex 
receive numerous top-down signals in addition to their bottom-up inputs. Through 
these top-down signaling mechanisms, the activity of neurons along ventral visual 
cortex can be strongly modulated by signals beyond the specific visual content 
within their receptive fields, including spatial context, temporal context, 
expectations, and higher-level cognitive influences such as task goals.  
 
 Despite keen interest in such top-down signals, there have been many 
more studies about the role of bottom-up inputs on neuronal responses. At least 
partly, this imbalance is due to the fact that it is much easier to change what is 
shown on the screen than to change an animal’s internal expectations and goals.  
 
 A prime example of the study of top-down modulatory signals in visual 
processing involves spatial attention. One way to allocate attention to one part of 
the visual field is by moving the eyes. However, spatial attention effects can also 
be demonstrated outside of the fixation focus. A subject can be looking at one 
location and paying attention to another place, a phenomenon known as covert 
attention (as opposed to overt attention, which is the more common scenario 
where attention is allocated to the fixation area). Through a series of astute training 
paradigms, investigators have been able to train animals to deploy covert spatial 
attention, thus enabling them to investigate the consequences of spatial attention 
on neurons with receptive fields outside the fovea.  
 
 An animal is trained to fixate in the center of the screen, and its eye 
movements are strictly monitored to ensure that attentional effects are not driven 
by saccades. In some trials, the animal is rewarded for detecting a visual stimulus 
in a certain location on the right, and that tells the animal to allocate attention to 
that region of the visual field without breaking fixation. Compliance can be checked 
by randomly probing a stimulus presented at another location and showing that 
performance is better (faster, more accurate) in the attended area. 
 
 Under these experimental conditions, neurons typically show an 
enhancement in the responses when their receptive field is within the focus of 
attention, particularly upon presentation of a visual stimulus. In other words, 
imagine a neuron in V2 with a receptive field location that is right at the center of 
the attended area in some trials and outside the attended area in other trials. The 
neuron will respond to an identical visual stimulus with more spikes in those trials 
when attention encompasses the receptive field. The effect of spatial attention is 
not all-or-none. Neurons still respond vigorously to a stimulus placed within their 
receptive field regardless of whether the animal is paying attention to that location 
or not. Attention leads to about 5 to 30% increased firing rates. The magnitude of 
this attention effect follows the reverse hierarchical order, being significantly 
stronger in area V4 compared to area V1.  
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 Neuronal responses can also be modulated in a feature-specific manner. 
Instead of paying attention to a particular location, the animal can be trained to pay 
attention to a specific stimulus feature such as the color red, or vertical lines. When 
the animal is paying attention to the neuron’s preferred features, the neuron shows 
an enhanced firing rate. 
 
V.18. Summary 

 
• Visual computations transpire in the six-layered neocortical structure. 
 
• Cortex is characterized by stereotypical connectivity patterns from one 
area to the next, forming approximately canonical microcircuits. 
 
• The gold standard to study cortical function is to scrutinize the activity of 
individual neurons. 
 
• Neurons in primary visual cortex show orientation tuning, responding more 
strongly to a bar in a specific orientation within the receptive field. 
 
• Complex neurons in primary visual cortex show tolerance to the exact 
position of the preferred stimulus within the receptive field. 
 
• A Gabor function can phenomenologically fit the responses of V1 neurons. 
 
• A mechanistic model posits that V1 simple cell receptive fields can be 
created by adequately combining the outputs of center-surround neurons from the 
lateral geniculate nucleus positioned to create the desired orientation. 
 
• A model posits that V1 complex cell receptive fields can be created by 
adequately combining the outputs of V1 simple cells with the same orientation 
preferences but slightly shifted receptive fields. 
 
• Visual cortex uses a divide and conquer strategy, subdividing visual 
processing into a sequence of computations in tens of different brain areas 
arranged into an approximate hierarchy. 
 
• Ascending through the visual hierarchy, neurons show increased receptive 
field sizes, more complex tuning preferences, and longer latencies. 
 
• Neurons in area V2 respond to illusory contours. 
 
• Spatial context, temporal context, and task demands like attention can 
modulate neuronal responses along ventral visual cortex. 

 
 
V.19. Further reading 
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See http://bit.ly/2TpAg3w for more references. 
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