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Chapter VI. From the highest echelons of visual processing to 
cognition  

 
Supplementary contents at http://bit.ly/364H8WR 
 

Inferior temporal cortex (ITC) is the highest echelon within the visual 
stream concerned with processing visual shape information. The Felleman and 
Van Essen diagram (Chapter I, Figure I-5) places the hippocampus at the top. 
While visual responses can be elicited in the hippocampus, people with bilateral 
lesions to the hippocampus can still see very well. A famous example is a patient 
known as H.M., who had no known visual deficit but gave rise to the whole field of 
memory studies based on his inability to form new memories.  The hippocampus 
is not a visual area and instead receives inputs from all other sensory modalities 
(Chapter IV).  

 
The history of how inferior temporal cortex became accepted and 

described as a visual area is fascinating and follows the refinements in the ability 
to make more precise lesions and controlled behavioral experiments. In stark 
contrast to the hippocampus, bilateral lesions to ITC are associated with 
impairment in visual object recognition in macaque monkeys, and with several 
object agnosias in humans (Chapter IV). We are beginning to decipher the neural 
code that represents how visual scenes are interpreted. 
 
VI.1. A well-connected area 

 
 Inferior temporal cortex (ITC) spans Brodmann’s cytoarchitectonic areas 
20 and 21 (Figure V-1). ITC is a vast expanse of cortex that is usually subdivided 
into a posterior area (PIT), a central area (CIT), and an anterior area (AIT). 
Biologists are fond of confusing people by using different names for the same 
thing, a phenomenon that can be partly explained by independent investigators 
working on related topics in parallel and coming up with new nomenclature to 
describe their findings. ITC is also referred to in the literature as areas TEO and 
TE. The degree of functional specialization among different parts of ITC remains 
poorly understood, and it is extremely likely that we will have to subdivide ITC into 
many different subareas beyond the current coarse subregions, based on 
connectivity, neurophysiological, and computational properties.  
 
 Like most other parts of cortex, the connectivity patterns of ITC are 
extensive and complex. When we describe computational models of vision in 
Chapters VII-VIII, it will be apparent that most models represent a major 
simplification of the actual connectivity diagram. ITC receives feed-forward 
topographically organized inputs from areas V2, V3, and V4 along the ventral 
visual cortex. ITC also receives fewer inputs from areas V3A, MT, and MST, 
highlighting the interconnections between the dorsal and ventral streams (Chapter 
IV). ITC projects back to V2, V3, and V4. There are also interhemispheric 
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connections between ITC in the right and left hemispheres through the main set of 
fibers connecting the two hemispheres, the corpus callosum. 
 
 ITC also has extensive projections to and receives signals from non-visual 
regions, including (1) areas that provide critical inputs to the medial temporal lobe 
memory system such as the perirhinal cortex, parahippocampal gyrus, and 
entorhinal cortex; (2) areas involved in processing emotions such as the amygdala; 
and (3) areas in prefrontal cortex that are relevant for decision making, planning, 
and working memory. Thus, from an anatomical standpoint, ITC is ideally situated 
to interpret visual inputs in the context of current goals and previous history, and 
to convey this information to make behavioral decisions and create episodic 
memories.  
 
VI.2. ITC neurons show shape selectivity 

 
 Over the last five decades, a heroic school of investigators has studied ITC 
responses in monkeys due to the overall similarity between their visual system and 
that of humans. Most, if not all, ITC neurons show visually evoked responses, 
responding vigorously to color, orientation, texture, direction of movement, and 
shape. Posterior portions of ITC show a coarse retinotopic organization and an 
almost complete representation of the contralateral visual field. The receptive field 
sizes of posterior ITC neurons are about 1.5 to 4 degrees; on average, the 
receptive fields are more extensive than those found in V4 neurons.  
 
 In more anterior locations along the ITC, there is a weaker retinotopic 
organization. The receptive field sizes in more anterior parts of ITC are often large. 
Estimates vary widely, ranging from ~2 degrees receptive fields to neurons with 
receptive fields that span several tens of degrees. Most receptive fields in anterior 
ITC include the foveal region. 
 
 Example responses from 3 ITC neurons in response to five pictures are 
shown in Figure VI.1. In this figure, each picture was repeated ten times, and the 
stochasticity of the neuronal responses is evident in the heterogeneous patterns 
from one trial to the next. This trial-to-trial variability is not specific to ITC and is 
prevalent throughout the visual cortex. There is considerable discussion in the field 
about the origin of this variability, which does not seem to be intrinsic to neurons, 
but may constitute a network phenomenon that reflects different levels of attention, 
expectations, eye positions, and other changes, across trials. 
 
 Despite this trial-to-trial variability, there are several consistent features 
that are evident in the neuronal responses in Figure VI.1. All three neurons show 
an increased firing rate that commences approximately 100 milliseconds after 
stimulus onset (approximately near the end of the white horizontal line denoting 
the duration of stimulus presentation). This latency should not be interpreted as a 
response triggered by the stimulus offset; if the stimulus duration were longer, the 
neurons would still start to fire at around 100 milliseconds after stimulus onset. 
These 100 milliseconds reflect the latency for all the computations that transpire 
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throughout the ventral visual cortex before reaching these ITC neurons (Section 
V.12). The neurons are picky in their stimulus preferences. The “blue” neuron 
showed a stronger response to the first two pictures (toy, food) compared to the 
last two pictures (synthetic rendering of a cat, car). In contrast, the “red” neuron 
showed an increased response to the third and fourth pictures (monkey face, cat).     
 
INSERT FIGURE VI-1 AROUND HERE 
Figure VI-1. ITC neurons are picky. Example responses from 3 neurons in inferior 
temporal cortex (labeled “Site 1”, “Site 2”, “Site 3”) to 5 different grayscale images. Each 
dot represents a spike, each row represents a separate repetition (10 repetitions per 
object), and the horizontal white lines denote the duration of the image (100 ms 
presentation time). Data from Hung et al. 2005.  
 
 Investigators have effectively tested the responses of ITC neurons to a 
wide range of visual stimuli. For example, some studies have used parametric 
descriptors of abstract shapes. Logothetis and colleagues trained monkeys to 
recognize paperclips forming different 3D shapes and subsequently found neurons 
that were selective for specific 3D configurations of paperclips. ITC neurons can 
be driven by pictures of cars, toys, faces, and fruits. 
 
 This wide range of response preferences might seem puzzling at first. 
Perhaps one would like to conjecture that an area that plays a vital role in object 
recognition would have neurons that respond specifically to objects in the real 
world. There could be banana neurons (i.e., a neuron that responds if and only if 
investigators show a picture of a banana to the monkey), peanuts neurons, chair 
neurons, face neurons, paperclip neurons, hand neurons, and spaghetti with 
meatball neurons. Indeed, if we ignore momentarily the “if and only if” part, it is 
possible to find neurons activated selectively by these types of images. As 
illustrated by the examples in Figure VI.1, the responses are not all-or-none. ITC 
neurons do not seem to be activated only upon presentation of one specific type 
of object in the real world with baseline level responses to everything else. Instead, 
ITC neurons show graded activations with stronger responses to some stimuli 
compared to others.  
 
 It is unclear whether ITC neurons show any special treatment to naturally 
occurring objects like chairs or faces. ITC neurons may represent a sufficiently rich 
dictionary of complex features. These features can be used to represent any 
number of naturally occurring objects in an analogous way to forming words by 
combining different letters or sentences by combining words. Those features can 
be found in fractal patterns, in paperclips, in faces, and chairs. We will come back 
to a more quantitative description of these properties and the responses of ITC 
neurons when we describe current computational models of visual processing in 
Chapters VII-VIII.  
  
 As discussed in the case of neurons in earlier visual areas (Chapters II 
and V), there is a clear topography in the ITC response map. By advancing the 
electrode in a trajectory that is approximately tangential to cortex, investigators find 
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neurons that have similar tuning. This level of organization can be represented by 
“columns” of neurons with similar preferences. Moving horizontally, neighboring 
neurons in ITC also show similar, but not identical preferences. 
 
VI.3. Selectivity in human ventral visual cortex 

  
INSERT Figure VI-2 AROUND HERE 
Figure VI-2. Human ITC also shows shape selectivity. Example electrode describing 
the physiological responses to 25 different exemplar objects belonging to 5 different 
categories. A. Responses to each of 25 different exemplars (each color denotes a different 
category of images; each trace represents the response to a different exemplar). B. Raster 
plot showing every single trial in the responses to the five face exemplars. Each row is a 
repetition, the dashed lines separate the exemplars, the color shows voltage (see scale 
bar on the right). C. Electrode location. Reproduced from Liu et al. 2009.	
 
 Less is known about the internal machinery that processes visual 
information in the human brain. The primary source of information about the inner 
workings of human ventral visual cortex comes from invasive neurophysiological 
recordings in epilepsy patients, which were introduced through the work of Penfield 
in Chapter IV. A fraction of patients with epilepsy can be treated 
pharmacologically. In cases of focal epilepsies that do not respond to current drug 
treatments, an important approach has been to surgically remove the epileptogenic 
focus. In most cases, this surgical procedure requires first carefully mapping brain 
activity to discern where seizures are coming from and also to ensure that the brain 
excisions do not interfere with future cognitive function. For this purpose, 
neurosurgeons typically implant electrodes inside the human brain. Because 
current non-invasive techniques are too coarse to map the origin of seizures, the 
neurosurgeons typically implant many tens of electrodes in different brain areas 
with the hope of pinpointing the seizure onset. After implantation, the patients stay 
in the hospital for about one week for observation, granting investigators a rare 
and unique opportunity to scrutinize human brain function at high spatiotemporal 
resolution and with high signal-to-noise ratio compared to anything that can be 
done from outside the brain. 
 
 The location of the electrodes is strictly dictated by clinical needs. 
Sometimes, those electrodes are placed along ventral visual cortex. An example 
of visually selective responses in human ITC is shown in Figure VI-2. The human 
intracranial field potential signals show many of the hallmarks of the macaque ITC 
responses. Signals along the human ventral visual cortex also show circumscribed 
receptive fields, which increase in size from the fovea to the periphery, and from 
one area to the next. Field potentials along the human ventral visual cortex are 
also selective and graded (Figure VI-2A). The intracranial field potential signals 
also show trial-to-trial variability, yet the visually evoked responses can be readily 
appreciated in single trials (Figure VI-2B). There have been many more 
neurophysiological studies scrutinizing responses in monkeys compared to 
humans. Many details about the response properties along the human ventral 
visual cortex remain unexplored. For example, to the best of our knowledge, 
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nobody has investigated responses in human ventral visual cortex to fractal 
patterns or paperclips, as shown in monkey studies. However, the absence of 
evidence does not imply evidence of absence. As far as we can tell, responses 
along the human ventral visual cortex show selectivity to a wide variety of visual 
shapes like their macaque monkey counterparts. 
 
 Response latencies in the human brain seem to be slightly longer than 
those in macaque monkeys, perhaps because of the larger brain size, or perhaps 
because there might be more computational steps before the information reaches 
human ITC. Within the scarce and preliminary neurophysiological evidence 
available today, and to a reasonable extent, many of the properties of the macaque 
ITC are recapitulated in the human ITC.  
 
 It should be noted that it is not entirely clear how to meaningfully compare 
brain areas and functional responses between humans and monkeys (or any other 
pair of species separated by long evolutionary timespans). First of all, we should 
be cautious about comparing spikes in monkeys to intracranial field potential 
signals in humans. It turns out that field potential signals show similar selectivity 
patterns to spiking signals in monkey ITC. The coarser field potential responses 
are somewhat less picky than spikes in terms of their ability to distinguish different 
stimuli, perhaps due to averaging over many neurons.  
 
 A more challenging consideration involves establishing rigorous 
homologies between species. It seems evident that the eyes in monkeys are 
homologous to the human eyes. Additionally, although the neuroanatomical 
connections in humans remain unclear, it is quite tempting to assume that the 
monkey primary visual cortex may be homologous to the human primary visual 
cortex. As we go deeper into ventral visual cortex beyond V1, homologies become 
murkier. Regardless of whether we can establish a unique evolutionarily rigorous 
one-to-one map between specific structures in different species, it is nevertheless 
clear that human ventral visual cortex shows rapid and selective responses to 
complex shapes that are qualitatively similar to those observed in monkeys.   
    
VI.4. What do ITC neurons really want?  

 
 ITC neurons seem to respond to a wide variety of different shapes that 
investigators have used to probe their stimulus preferences. Recording time is 
limited, and investigators need to make choices about which stimuli to use in an 
experiment; we introduced this problem in Section V.11. Typically, investigators 
choose stimuli based on a combination of inspiration from previous studies (if a 
particular type of stimulus worked before to drive neurons in a given area, it should 
work now too) or intuitions based on the prevalence of natural stimulus statistics 
(it seems logical to assume that neurons may represent the types of inputs that the 
animal experiences daily), or arguments about the presumed evolutionary 
importance of certain classes of stimuli. Additionally, important advances about 
neuronal tuning properties have been based on semi-serendipitous discoveries. 
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 These types of experiments carry the potential biases injected by the 
investigators in selecting the stimuli. Obviously, we can only find tuning for those 
stimuli that we probe. Even the title of this section has a strong anthropomorphic 
spin. Neurons do not really “want” anything. The question is meant to allude to 
what types of visual stimuli maximally activate a given neuron (in the sense of 
triggering more spikes). As emphasized in Section V.11, the critical difficulty in 
elucidating the response preferences of neurons involves the curse of 
dimensionality: too many possible images and too little time.  
 
INSERT Figure VI-3 AROUND HERE 
Figure VI-3. Letting neurons reveal their tuning preferences. An approach to 
investigate neuronal tuning in an unbiased manner. A generative neural network is used 
to create images by inverting a model of visual recognition (Chapter VII). The synthetic 
images are presented while recording neuronal activity. The neuronal responses are used 
as a fitness index to guide a genetic algorithm to select a new generation of improved 
images. Reproduced from Ponce et al. 2019.	
 
 A promising line of research to elucidate the feature preferences in ITC 
involves changing the stimuli in real-time dictated by the neuron’s preferences. 
Recent work based on this approach suggests that we may need to rethink the 
neural code for features in ITC (and perhaps earlier visual areas as well). One of 
the first applications of this approach was developed by Charles Connor’s group 
to let neurons themselves reveal what they like rather than impose a strong bias 
in the stimulus selection. Recent work by Will Xiao involved developing a 
computational algorithm that is capable of generating images guided by neuronal 
firing rates (Figure VI-3). The investigators combined an image generator and a 
genetic algorithm based on the neuron’s firing rate as a fitness function to guide 
the evolution of stimuli in real-time. In a given generation, the investigators probe 
the responses to a set of images. Images that trigger high firing rates are kept, and 
the rest are modified and recombined by the genetic algorithm in combination with 
the image generation algorithm.  
 
 In Chapter VIII, we will introduce deep hierarchical models of vision that 
start with pixels and yield a high-level feature representation of the image. In 
Chapter IX, we will introduce generative adversarial networks that create images 
by inverting a deep hierarchical model. The generative algorithm deployed by Xiao 
and colleagues, inspired by work in machine learning to build image generators, is 
essentially an inverted version of deep hierarchical computational models, starting 
with high-level features and ending up with the generation an image.  
 
 By running this generative computational algorithm while recording the 
activity of a neuron in ITC, Xiao and colleagues discovered images that elicited 
higher firing rates than natural images that had been used before to test the 
responses of the neurons. The investigators refer to these synthetic images as 
“super-stimuli.” These super-stimuli contain naturalistic combinations of textures 
and broad strokes, which have been likened to impressionist renderings of abstract 
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art. The fundamental novel concept here is that neurons may be optimally 
activated by combinations of sophisticated features that cannot be easily described 
in words. In contrast to anthropomorphic descriptions of feature preferences in ITC 
(“this neuron likes faces,” “this neuron likes chairs,” “this neuron likes curved 
shapes”), the new line of work suggests that neurons might be activated by 
complex shapes that defy a language-based definition. A rich basis set of neurons 
tuned to such complex features is capable of allowing the organism to discriminate 
real-world objects, but the basis set does not have to be based on icons of real-
world objects.  
 
VI.5. ITC neurons show tolerance to object transformations 

 
 As emphasized in Chapters I and III, an essential property of visual 
recognition is the capacity to recognize objects despite the transformations of the 
images at the pixel level (Figure III-6). It is therefore interesting to ask whether the 
visual selectivity at the neuronal level, as described in the previous sections, is 
maintained across image transformations. For example, would the neuron shown 
in the top row in Figure VI-1 continue to respond selectively to the first two objects 
if they are shown at a different scale, a different position with respect to fixation, or 
a different color?  
 
 ITC neurons show a significant degree of tolerance to certain object 
transformations. ITC neurons have larger receptive fields and therefore show more 
tolerance to object position changes compared to neurons in earlier parts of ventral 
visual cortex. ITC neurons also show similar responses in spite of substantial 
changes in the retinal size of the stimuli. Tolerance does not necessarily imply that 
the firing rate in response to a given object should be identical across different 
transformations. Even if the absolute firing rates are affected by a transformation, 
like changing the stimulus size, the rank order preferences among different 
objects, and therefore the relative stimulus preferences, are maintained. ITC 
neurons also show a certain degree of tolerance to depth rotation. Additionally, 
while luminance changes typically define most shapes, ITC neurons also respond 
to shapes defined by other cues. For example, shape can be defined by noise 
patterns that move in a coherent fashion or by texture changes without luminance 
edges. 
 
 An extreme example of tolerance to object transformations was provided 
by recordings of single-neuron responses from the medial temporal lobe (not ITC) 
in human epilepsy patients. Recording from the hippocampus, entorhinal cortex, 
amygdala, and parahippocampal gyrus, investigators found neurons that show 
responses to multiple objects within a semantically-defined object category. They 
also found some neurons that show a remarkable degree of selectivity to individual 
persons or landmarks. For example, one neuron showed a selective response to 
images where the ex-president Bill Clinton was present; another neuron preferred 
pictures of the famous actress Jennifer Aniston. Remarkably, the images that 
elicited a response in these neurons were quite distinct from each other in terms 
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of their pixel content ranging from a black/white drawing to color photographs with 
different poses and views. Such an extreme combination of selectivity and 
tolerance has not been described in ITC areas but rather in areas of the medial 
temporal lobe. As noted at the beginning of this chapter, these medial temporal 
lobe structures receive visual inputs but are not strictly visual areas. In fact, 
damage to medial temporal lobe structures does not seem to be associated with 
any apparent visual impairment, or any other perceptual deficit, but rather with 
memory problems. Therefore, it is likely that this combination of selectivity and 
tolerance reflects a readout of activity from a population of ITC neurons to 
transform sensory inputs into episodic memories.  
 
VI.6. Neurons can complete patterns 

 
 During natural vision, objects are often only partially visible due to poor 
illumination or because there are other objects in front of them (Section III.5). In 
early visual areas with small receptive fields, occlusion may cover the entire part 
of the visual field that a given neuron is interested in. In contrast, in higher visual 
areas with larger receptive fields, occlusion may only obstruct part of the input to 
a given neuron. The degree of tolerance to object transformations described in the 
previous section suggests that neurons might potentially also tolerate inputs that 
only contain some of the preferred features.  

 
 Indeed, ITC shows a large degree of robustness to occlusion. The neural 
responses in ITC can complete patterns and maintain their selectivity even when 
more than half of the preferred object features are invisible. Both at the behavioral 
level (Chapter III.5), as well as at the neurophysiological level, pattern completion 
requires additional computation time: the latencies of the visually selective evoked 
responses elicited by partially visible objects are about 50 milliseconds longer than 
those triggered by fully visible objects. These observations suggest the need for 
additional processing to make inferences from partial information. We will come 
back to this point in Chapter VIII when we discuss the computational mechanisms 
of pattern completion. 
 
 In the previous section, we noted that tolerance to object transformations 
does not necessarily imply that the neural responses to transformed versions of 
an object should be identical. Scaling, rotation, color changes, and other 
transformations can alter a neuron’s firing rate, and tolerance refers to the 
maintained neural selectivity. In the same fashion, completing patterns does not 
imply that neural responses to heavily occluded objects are identical to the 
responses to the fully visible counterparts; pattern completion at the neuronal level 
indicates that selectivity is maintained.  
 
 Whereas certain image transformations, such as scale or position 
changes, maintain the same object features visible (albeit in different places or 
sizes), other image transformations like 3D rotation or heavy occlusion alter which 
features are visible and which ones are not. Therefore, it is perhaps unsurprising 
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that the disappearance of certain object features and the appearance of new 
features during rotation may lead to different firing rates. What is remarkable is 
that some of the relative stimulus preferences are maintained under these 
conditions that carry substantial changes at the pixel level. 
  
VI.7. IT takes a village 

 
INSERT Figure VI-4 AROUND HERE 
Figure VI-4. Decoding population responses. Basic steps involved in training and 
testing a classifier. A: Illustration of an experiment where images of cats and fish were 
shown in random order to a subject while simultaneous recordings were made from five 
neurons/channels. The grayscale level denotes the activity of each neuron/channel. B: 
Data points and the corresponding labels are randomly selected to be in either the training 
set or in the test set. C: The training data points and the training labels are passed to an 
untrained classifier that ‘learns’ which neural activity is useful at predicting which image 
was shown – thus becoming a ‘trained’ classifier. D: The test data are passed to the trained 
classifier, which produces predictions of which labels correspond to each unlabeled test 
data point. These predicted labels are then compared to the real test labels (i.e., the actual 
labels that were presented when the test data were recorded), and the percent of correct 
predictions is calculated to give the total classification accuracy. Modified from Meyers 
and Kreiman 2011. 
 
  The observation that individual neurons can show a high degree of 
selectivity and tolerance to image transformations should not be taken to imply that 
there is a one-to-one map between the activity of a single neuron and recognition 
of a specific object. The idea of a one-to-one map between neurons and specific 
objects is erroneously referred to as the “grandmother cell” theory. A one-to-one 
system would be extremely unwieldy and fragile. Losing that one neuron might 
lead to an inability to recognize that particular object. Additionally, in most cases, 
read-out neurons depend on inputs from hundreds to thousands of other neurons 
and cannot be reliably or exclusively driven by a single input.  
 
 As noted in Section VI.2, nearby neurons in visual cortex tend to show 
similar feature tuning properties. Even if we cannot currently monitor the activity of 
every neuron in a local area, finding a neuron with a specific tuning function is likely 
to imply the existence of a large number of other nearby neurons with similar tuning 
properties. In fact, the idea of a “grandmother cell,” as coined by Jerry Letvin in 
1969, referred to a whole population of cells with identical selectivity and tolerance 
properties (in the original description, he referred to a “mother cell” rather than a 
“grandmother cell”). Understood as in the original definition, the idea of a 
grandmother cell -- that is, a population of probably nearby neurons that show 
selectivity and tolerance to related stimulus properties -- is an adequate description 
of neuronal tuning throughout the visual cortex. Retinal ganglion cells are 
grandmother cells for changes in illumination at sparse and specific locations in 
the visual field, primary visual cortex neurons are grandmother cells for oriented 
lines, and ITC neurons are grandmother cells for complex shape features.  
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 While each neuron shows a preference for some shapes over others, the 
amount of information conveyed by individual neurons about overall shape is 
limited. Additionally, there seems to be a significant amount of “noise” in the 
neuronal responses in any given trial. The term noise is somewhat of a misnomer, 
as it refers to the trial-to-trial variability in the spike timing and spike counts as 
noted in Figure VI.1. Whether this is real noise or part of the signal, and what the 
origin of this variability is, remain topics of debate in the field. For suprathreshold 
stimuli, perception is quite robust: you can look at the shape of the letter “A” a 
thousand times, and it will always look like an “A.” Therefore, somewhere in the 
brain, a post-synaptic neuron receiving inputs from capricious pre-synaptic 
neurons that emit different responses to presumably identical inputs in each trial 
still needs to be able to discount the variability and decipher what is out there in 
the world. 
 
 Can animals use the neuronal representation of a population of somewhat 
capricious ITC neurons to discriminate among objects in single trials? The critical 
emphasis is on single trials. Unlike what many investigators do when they analyze 
neural recordings, the brain cannot average over trials (we do not need to look at 
the letter “A” ten times to be able to recognize it). The brain is not constrained to 
making inferences from the activity of a single neuron. Any given neuron in cortex 
receives input from approximately 10,000 other neurons. Such a population could 
show interesting properties that ameliorate or eliminate the challenges associated 
with interpreting the output of a single neuron.  
 
 Chou Hung and colleagues addressed this question by recording activity 
(sequentially) from hundreds of ITC neurons and using machine learning 
classifiers to decode the activity of a pseudo-population of neurons in single trials. 
The term pseudopopulation refers to the notion that these neurons were not 
simultaneously recorded. The machine learning decoding approach aims to learn 
a map between (1) the activity patterns of a population of neurons in response to 
a set of images and (2) the labels of objects in those images (Figure VI.4). 
Consider an experiment where we present pictures of cats or pictures of fish. Let 
jxi represent the activity of neuron i in response to image j. For example, x could 
represent the total number of spikes emitted by the neuron in a given window. Due 
to the latency of ITC responses (Figure VI.1), we can consider a window between 
100 and 300 ms after stimulus onset. The population response of N neurons to 
image j is jx = [jx1, …, jxN].  
 
 If we imagine that all of these inputs might project to a given post-synaptic 
neuron, we can write the total aggregated input to the post-synaptic neuron as the 
weighted sum of all these inputs: w1 jx1 + … + wN jxN. Those weights can be thought 
of as a measure of the synaptic strength, the impact that a given input will have on 
the post-synaptic neuron. Can such a downstream neuron detect the presence of 
a cat or a fish? We can build a detector that can read out from the population 
activity whether the image shown in a given trial contained a cat or a fish. We will 
set a threshold on the total combined inputs, g(w • x) for short, where g indicates a 
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non-linear function like a sigmoid, w and x are the vectors defined above of 
dimension N, and the “ •” represents a dot product. We can define that if 
g>threshold, the image contains a cat, and if g<threshold, then the image contains a 
fish. Machine learning algorithms offer several astute ways of choosing those 
weights w to minimize the number of classification errors that the algorithm makes. 
We will not go into the details here; but just to be concrete, we can imagine that 
we use a support vector machine (SVM) classifier with a linear kernel, which is a 
robust way of choosing those weights and which is the approach followed by Chou 
Hung and colleagues. This approach can be extended to many categories, not just 
binary classification. The key inference is that, if a reliable and simple (e.g., linear) 
classifier can be learned, then the pseudopopulation of neurons contains sufficient 
information about the stimuli that can be readily extracted by biologically plausible 
computations (dot product followed by non-linearity).  
 
 Using this approach, Hung et al. found that a relatively small group of ITC 
neurons (N ~200) could support object categorization quite accurately: up to ~90% 
accuracy in a task consisting of 8 possible categories (where chance is one in 8). 
Furthermore, the pseudo-population response could extrapolate across changes 
in object scale and position. In other words, it is possible to fit the w values using 
the responses x1 to images at a particular scale, and then subsequently use the 
responses x2 to images at a different scale to accurately predict object labels. 
Thus, even if each neuron conveys only noisy information about shape differences, 
a small population of neurons can be powerful in discriminating among visual 
objects in individual trials, even extrapolating to transformed versions of the 
images used for training.  

 
VI.8. ITC neurons are more concerned with shape than semantics 

 
INSERT Figure VI-5 AROUND HERE 
Figure VI-5. ITC neurons are more concerned with shape similarity than semantics. 
These images share more physical similarity along the horizontal dimension and more 
semantic similarity along the vertical dimension. Responses in ITC more closely reflect 
the physical properties of the stimulus, including color, size, and shape.  
 
 In the previous section, we considered whether it is possible to 
discriminate which object category was presented to the monkey by reading out 
neural activity from ITC. Instead of decoding the object category, it is also possible 
to ask which specific exemplar was presented to the monkey. A population of ITC 
neurons excels at this question as well. Quantitatively comparing exemplar 
identification and categorization performance is tricky because the two tasks are 
not equated in terms of difficulty. First, in the experiment discussed in the previous 
section, there were eight categories and close to 80 exemplars. Therefore, even 
by chance, it is easier to get the object category right. Equating chance levels can 
be easily achieved by randomly subsampling and picking only eight exemplars. 
Yet, this does not quite address a more challenging problem in this type of 
comparison: it is easier to distinguish a picture of a face from a picture of a house 
than to distinguish between two different houses.  
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 Do ITC neurons carry any type of categorical information, or is shape the 
main variable that is represented in ITC? To answer this question, we need to 
better define what we mean by “category.” The word category is typically 
associated with semantic labels. One way to dissociate semantic information from 
pure shape information is to consider objects that are physically similar but 
semantically distinct and vice versa (Figure VI-5). For example, a lemon is similar 
to a tennis ball in terms of its color, size, and approximate shape. However, a 
lemon is semantically closer to a watermelon or a tree, and a tennis ball is 
semantically closer to a tennis court or a tennis racquet. There is no evidence to 
date that ITC neurons can link a tennis ball to a tennis court, or link a lemon to a 
watermelon. Instead, there is evidence that ITC neuronal responses to physically 
similar images are closer than responses to semantically similar but physically 
distinct objects.  
 
 An elegant series of experiments that tackled the question of 
categorization was conducted by Earl Miller’s group. They created synthetic 
images of cats and dogs and morphed between them in such a way that they could 
continuously change shape similarity without affecting categorical ownership or 
change category ownership with small changes in shape similarity. They found that 
ITC neuronal responses correlated with shape similarity better than with 
categorical ownership. They also recorded responses from neurons in prefrontal 
cortex, which is one of the targets of ITC neurons. In contrast with the ITC neurons, 
the responses of those prefrontal cortex neurons did reflect the task-dependent 
categorical boundaries. 
 
 Another intriguing case where neuronal responses seemed to be 
dissociated from pure shape information is the case of those neurons recorded 
from the human medial temporal lobe discussed earlier (Section VI.5). Those 
neurons do seem to carry semantic information that transcends physical shape 
similarity, and those neurons receive either direct or indirect information from 
anterior ITC, but they are not part of the ITC.  
 
 As repeatedly stated, the absence of evidence should not be interpreted 
as evidence of absence. It is conceivable that there may be semantic information 
that can be dissociated from pure shape information in ITC, but there is no clear 
evidence for this yet. Semantic information is a critical component of how we use 
language. In addition to the medial temporal lobe and prefrontal cortex, structures 
responsible for language are likely to contain neurons that represent semantic 
information. Furthermore, it is plausible that such semantic neurons may project 
back to ventral visual cortex and modulate or sharpen visually evoked responses.  
 
VI.9. Neuronal responses adapt 

 
 Neurons throughout visual cortex are particularly sensitive to change. 
Neuronal responses dynamically depend on the temporal context. Temporal 
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context can dramatically alter visual experience (Chapter III.8), as in the illusory 
perception of upward motion after fixating on a waterfall, due to adaptation. As a 
consequence of adaptation, the responses of ITC neurons, as those in earlier parts 
of visual cortex, are transient (Section II.9, Section V.7). If a constant stimulus is 
shown for many seconds, the neuronal responses only last a few hundred 
milliseconds. 
 
INSERT Figure VI-6 AROUND HERE 
Figure VI-6. Neural adaptation increases the salience of novel stimuli. A. Oddball 
paradigm where one stimulus is presented with high probability (blue) and another 
stimulus is presented with low probability (orange). B-C. Normalized average population 
responses from neurons in rat primary visual cortex (B) and the latero-intermediate area 
(C) as a function of trial number for low- and high-probability stimuli. Modified from Vinken 
et al. 2017. 
 
 Adaptation is an evolutionarily conserved property of visual processing 
that is also prevalent in other sensory systems. One function of adaptation is 
probably to save energy by reducing the number of spikes triggered by an 
unchanging stimulus. At least partly, the biophysical mechanisms underlying such 
suppression may be due to intrinsic changes in a neuron through transient 
modulation of its membrane conductance. However, adaptation is also evident at 
much longer time scales than the presentation of a single stimulus. For example, 
exposure to an adapter stimulus leads to a reduction in the neural response to 
subsequent presentations of the same or similar stimuli, a phenomenon known as 
repetition suppression. The repetitions need not be adjacent in time. Suppression 
is also evident even when there are other intervening stimuli, though the strength 
decreases with the time interval between repetitions.  
 
 Adaptation is evident at multiple time scales. As discussed in Section II.9 
and Section V.7 (Figure V.6), neuronal responses are typically transient and are 
quickly attenuated during a single trial over scales of hundreds of milliseconds, 
even if the stimulus remains on the screen. Repetition suppression is a 
manifestation of adaptation at a scale of multiple trials, typically occurring over 
several seconds. Figure VI-6 shows an example paradigm where the effects of 
adaptation that can take place over minutes. In the so-called oddball paradigm, a 
given stimulus is repeated multiple times (high probability stimulus shown in blue), 
whereas another stimulus is shown only rarely (low probability stimulus shown in 
orange). Figure VI-6B-C shows average population responses from multiple 
neurons in the rat primary visual cortex (V1) and in a higher visual area called the 
latero-intermediate area (LI). Whereas there is general agreement about what 
constitutes primary visual cortex across species, it is less evident how to establish 
homologies between higher visual areas across species, and therefore the 
nomenclature diverges across species. Repeated presentation of the high-
probability stimulus leads to a sharp reduction in the neural responses over trials 
(blue). In contrast, the low probability stimulus evokes a larger response in area 
LI. This effect can help detect novel stimuli or changes in the environment.  
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 Adaptation occurs throughout the visual system. The consequences of 
adaptation are stronger in higher areas like ITC, or area LI in the rat, compared to 
earlier neurons like those in V1, probably due to the cumulative effects through a 
hierarchical cascade of neurons, each showing increasingly larger effects of 
adaptation that impact the next stage. In other words, adaptation leads to a 
reduction in response in RGCs and in the LGN, which in turn implies a weaker 
input to V1, and this is compounded with the intrinsic effects of adaptation in V1. 
The weaker V1 signals lead to a reduced input to V2, which is compounded with 
the intrinsic adaptation effects in V2, and so on. Another effect that could contribute 
to the increased adaptation in higher stages is that earlier areas are more sensitive 
to small eye movements, hence reducing the similarity in the inputs for prolonged 
stimulus durations or repetitions of the same stimulus.   
 
VI.10. Representing visual information in the absence of a visual stimulus 
 
 Perceptually, prolonged exposure to a stimulus often leads to a temporarily 
reduced sensitivity to its features. The lingering effects after removal of the 
stimulus are called aftereffects, which have been described for a wide range of low 
to high-level visual stimulus properties, and they are considered to be related to 
adaptation.  
 
INSERT Figure VI-7 AROUND HERE 
Figure VI-7. Selective neuronal response during working memory. Responses of a 
neuron during a delayed match to sample task when the cue was a good stimulus (solid) 
or a poor stimulus (dashed). The horizontal black bar denotes the cue duration (300 ms). 
Reproduced from Chelazzi et al. 1998. 
 
 In addition to aftereffects, exposure to a stimulus leaves a memory trace 
that allows subjects to remember what they have just seen. A classical experiment 
used to study memory effects at short time scales is the delayed match-to-sample 
task. Subjects are presented with an image, the image disappears, and there is a 
delay of several seconds. After this delay, a second image is shown, and subjects 
have to indicate whether the second stimulus matches the first one (either because 
it is identical, or because it is a scaled or rotated version of the same object, or 
because they match in color or any other property). Typically, the delay period 
consists of a blank screen. For subjects to be able to execute this task, neurons 
somewhere in the brain need to be able to maintain information about the 
preceding stimulus, even during the blank screen. Such information stored for a 
few seconds is typically referred to as working memory. 
 
 It turns out that, although the responses of neurons in ITC are drastically 
reduced in the absence of visual stimulation, the activity does not fully return to 
baseline (Figure VI-7). Instead, ITC neurons maintain a small activation above 
baseline during the delay. Furthermore, this delay activity is stimulus selective: a 
neuron will maintain higher delay activity if its response to the preceding stimulus 
was higher.  
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 Some investigators have interpreted those neuronal responses during the 
delay period in the absence of visual stimulation as an example of visual 
imagination. They argue that the subjects are imagining the sample stimulus to 
hold it in memory during the delay. To the extent that this is the case, it would seem 
that ITC neurons may show a selective response that matches the animal’s 
internally generated percept irrespective of sensory inputs. It is difficult to directly 
test this idea due to the challenge in elicit volitional visual imagery in animals. In 
humans, several investigators have measured neuronal correlates of volitional 
imagery, but those responses have been investigated in the medial temporal lobe 
rather than in ITC.  
 
 Taking these ideas a step further, another situation where visual percepts 
can be generated in the absence of concomitant visual inputs is during dreams. 
Humans often report vivid visual imagery during dreams. Whether visual cortex is 
involved in the representation of those visual percepts remains to be determined. 
We will come back to this discussion in Chapter X. 
 
VI.11. Tasks goals modulate neuronal responses  

 
 We have described properties of ITC neuron responses as if they were 
static and immutable, but this is far from the case. For example, the reduced 
response to repeated presentation of the same stimulus (Section VI.9, Figure VI-6) 
shows that temporal aspects of the task can modulate neuronal responses. 
Beyond the temporal reduction in the response, other aspects of the current task 
goals can also modulate responses throughout ventral visual cortex. 
 
 One of the most studied forms of task-dependent modulation of neural 
responses is the effect of attention introduced in Chapter V. A typical paradigm to 
study spatial attention is to train a monkey to fixate in the middle of the screen 
while devoting covert attention to either the left or right hemifields. Under these 
conditions, monkeys show enhanced performance and faster reaction times during 
visual discrimination tasks when a stimulus is presented within their locus of 
attention. Furthermore, the same visual stimulus, presented at the same location 
in the receptive field of the neuron under study, evokes a stronger response when 
the monkey is paying attention to the location encompassing the stimulus (Figure 
VI-8). Such attentional modulation is evident throughout the entire range of 
stimulus preferences.  
 
INSERT Figure VI-8 AROUND HERE 
Figure VI-8. Spatial attention modulates responses in area V4. Reproduced from 
McAdams and Maunsell 1999. 
 
 Other aspects of the task goals can also modulate neuronal responses 
along the ventral visual cortex. During visual search experiments, the subject is 
looking for a particular object or a particular feature (e.g., looking for Waldo). For 
example, Robert Desimone’s group trained monkeys to look for red oriented bars. 
Under these conditions, neuronal responses to red objects were enhanced 
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throughout the visual field. Other typical tasks involve flashing images while 
subjects have to indicate in a forced-choice yes/no fashion whether a particular 
target object is present or not. Here again, trials containing the target object or 
object category trigger enhanced neural responses. In Chapter III, we described 
two forms of temporal contextual modulation: priming and backward masking. Both 
of these manipulations also impact the responses in ITC. In sum, while the 
contents of what is on the screen at a particular moment are the main determinants 
of the responses of ITC neurons, current goals, spatial context, temporal context, 
and other task demands can modulate the responses throughout the ventral visual 
cortex. 
 
VI.12. The role of experience in shaping neuronal tuning preferences 

 
 Neuronal responses can be altered during a task as a consequence of 
adaptation (Section VI.9), memory (Section VI.10), or task-oriented goals 
(Section VI.11). Neuronal responses can also be altered over longer time scales. 
Neuronal tuning preferences are malleable and depend strongly on the diet of 
visual experience that the animal is subject to. A perennial debate focuses on the 
relative role that nature and nurture play in shaping the architecture of visual cortex 
and neuronal response tuning functions. 
 
 Genetics largely dictates the basic architecture of the visual system. 
Animals are born with visual structures like the eyes, LGN, and different cortical 
areas. While there are differences between species, the six cortical layers, as well 
as their canonical connectivity with each other and between cortical areas, seem 
to be either already present at birth, or formed shortly thereafter. Furthermore, 
there is a small but clear degree of orientation selectivity that can be measured in 
primary visual cortex right at the time of eye-opening in ferrets, cats, and monkeys.  
  
 Mature tuning properties are a consequence of experience. Several 
experiments have shown that visual inputs shape the mature neural tuning in 
primary visual cortex. For example, monocular deprivation (i.e., eliminating inputs 
from one eye), leads to an expansion of neuronal preferences for the active eye at 
the detriment of neurons responding to inputs from the deprived eye. Dark rearing 
leads to impaired orientation tuning throughout primary visual cortex. Furthermore, 
experiments in which cats are reared in environments where they are 
predominantly exposed to vertical lines rather than horizontal lines lead to a 
preponderance of V1 neurons preferring vertically oriented bars rather than 
horizontal ones.   
 
 Given that even the early stages in cortical processing depend on visual 
experience, it is perhaps less surprising that subsequent stages can also be 
modified by changing the statistics of the visual inputs. As mentioned earlier, 
neurons in macaque ITC can respond selectively to shapes like paperclips after 
the monkey is exposed to those images. It is clear that monkeys are not born with 
neurons tuned to arbitrary paperclip shapes. Furthermore, monkeys can be trained 
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to recognize symbols, like numbers or letters; after training, ITC neurons can also 
respond selectively to those novel shapes, and again such tuning is not present at 
birth or without training. The presumed ethological relevance of natural stimuli like 
faces has led some investigators to suggest that tuning for those shapes could be 
innate. However, careful experiments have refuted this hypothesis. If monkeys are 
reared in an environment without any exposure to faces, then investigators do not 
find clusters of neurons tuned to faces. In sum, current evidence suggests that in 
the development of visual response functions, genetics provides the underlying 
architecture and the plasticity rules, while environmental statistics guide the 
learning of tuning functions for neurons throughout visual cortex.   
 

The shaping of ITC neuron tuning happens not only during development but 
also in adults. The paperclip and numeric symbol experiments were both 
conducted in adult monkeys who were exposed to those novel images over periods 
of several months.  

 
Neuronal tuning can also even be changed much more rapidly. For 

example, it is likely that if we learn to recognize characters in a new language, or 
if we learn to recognize a new person, we would find changes in neuronal tuning 
in ITC. Indeed, elegant experiments in monkeys have shown that it is possible to 
alter the tuning properties of ITC neurons over the course of a recording session 
lasting less than an hour.   
 
VI.13. The bridge between vision and cognition  
 
 The studies discussed here constitute a non-exhaustive list of examples 
of the type of responses that investigators describe in the highest parts of inferior 
temporal cortex. While the field has acquired a considerable number of such 
examples, there is an urgent need to put together these empirical observations 
into a coherent theory of visual recognition, which will be the focus of the next 
chapters.  
 
 It is critical to develop more quantitative and systematic approaches to 
examine feature preferences in extrastriate visual cortex (and other sensory 
modalities). The methodology described in Section VI.4 provides initial steps 
towards unbiased ways of interrogating neuronal tuning functions in visual cortex. 
At the same time, we should aim to describe a neuron’s preferences in quantitative 
terms, starting from pixels. What types of shapes would a neuron respond to? This 
quantitative formulation should allow us to make predictions and extrapolations to 
novel shapes. It is not sufficient to show stimulus A and A” and then interpolate to 
predict the responses to A’. If we could truly characterize the responses of the 
neuron, we should be able to predict the responses to any different shape B. 
Similarly, as emphasized multiple times, feature preferences are intricately linked 
to tolerance to object transformations. Therefore, we should be able to predict the 
neuronal response to different types of transformations of the objects. Much more 
work is needed to understand the computations and transformations along ventral 
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visual cortex. How do we go from oriented bars to complex shapes such as faces? 
A big step would be to take a single neuron in, say, ITC, be able to examine the 
properties and responses of its afferent V4 units to characterize the 
transformations from V4 to ITC.  
 
 This formulation presupposes that a large fraction of the ITC responses is 
governed by their V4 inputs. However, we should keep in mind the complex 
connectivity in cortex and the fact that ITC neurons receive multiple other inputs 
as well (recurrent connections, bypass inputs from earlier visual areas, 
backprojections from the medial temporal lobe and prefrontal cortex, and 
connections from the dorsal visual pathway). There is clearly plenty of unexplored 
territory for the courageous investigators who dare explore the vast land of 
extrastriate ventral visual cortex and the computations involved in processing 
shapes. Another incipient area of active research that is still in its infancy and will 
require serious scrutiny in the near future is to further our understanding of how 
high-level visual information interfaces with the rest of cognition.   

 
VI.14. Summary 
 

• Inferior temporal cortex (ITC) sits at the pinnacle of the visual cortical 
hierarchy, receiving strong inputs from both ventral and dorsal cortical areas 
and projecting widely to areas involved in episodic memory formation, 
decision making, and cognitive control. 
 

• Monkey and human ITC neural responses are selective for a wide range of 
shapes, including abstract patterns and natural objects like chairs or faces. 
 

• ITC neurons represent an extensive overcomplete dictionary of features, 
are more concerned with shape rather than semantics, and show invariance 
to image transformations. 
 

• ITC neurons can complete patterns from partially visible stimuli. 
• The activity of neural populations in ITC in single trials can be used to 

decode object information with linear classifiers. 
 

• Neural responses continue representing selective visual information even 
in the absence of a visual stimulus. 

 
• Neuronal tuning properties are the result of experience with the statistics of 

the visual world. 
 
VI.15. Further reading 
 

• Arcaro MJ, Schade PF, Vincent JL, Ponce CR, Livingstone MS. 2017. 
Seeing faces is necessary for face-domain formation. Nature Neuroscience 
20: 1404-12 



Biological	and	Computer	Vision	 	 Gabriel	Kreiman	
Chapter	VI	 	 2020	

	 19	

• Freedman D, Riesenhuber M, Poggio T, Miller E. 2001. Categorical 
representation of visual stimuli in the primate prefrontal cortex. Science 291: 
312-16 

• Hung CP, Kreiman G, Poggio T, DiCarlo JJ. 2005c. Fast Read-out of Object 
Identity from Macaque Inferior Temporal Cortex. Science 310: 863-66 

• Liu H, Agam Y, Madsen JR, Kreiman G. 2009. Timing, timing, timing: Fast 
decoding of object information from intracranial field potentials in human 
visual cortex. Neuron 62: 281-90 

• Logothetis NK, Sheinberg DL. 1996. Visual object recognition. Annual 
Review of Neuroscience 19: 577-621 

 
 
 
 



Figure VI-1 

Biological	and	Computer	Vision.	Gabriel	Kreiman.	2020	



Figure VI-2 

Biological	and	Computer	Vision.	Gabriel	Kreiman.	2020	



Figure VI-3 

Biological	and	Computer	Vision.	Gabriel	Kreiman.	2020	



Figure VI-4 

Biological	and	Computer	Vision.	Gabriel	Kreiman.	2020	



Figure VI-5 

Biological	and	Computer	Vision.	Gabriel	Kreiman.	2020	



Figure VI-6 

Biological	and	Computer	Vision.	Gabriel	Kreiman.	2020	



Figure VI-7 

Biological	and	Computer	Vision.	Gabriel	Kreiman.	2020	



Figure VI-8 

Biological	and	Computer	Vision.	Gabriel	Kreiman.	2020	


