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Chapter	IX 	Towards	a	world	with	intelligent	machines	that	can	
interpret	the	visual	world	
	
Supplementary contents at http://bit.ly/2t53QRd 
	

In the previous chapter, we introduced the idea of directly comparing 
computational models versus human behavior in visual tasks. For example, we 
assess how models classify an image versus how humans classify the same 
image. In some tasks, the types of errors made by computational models can be 
similar to human mistakes. Here we will dig deeper into what current computer 
vision algorithms can and cannot do. We will highlight the enormous power of 
current computational models, while at the same time emphasizing some of their 
limitations and the exciting work ahead of us to build better models.  

  
There are many visual problems where computers are already significantly 

better than humans. A simple example is the ability to read barcodes, such as 
the ones used in a supermarket to label each product. Even if humans could, in 
principle, go through enormous training to read barcodes, it would be extremely 
challenging to achieve machine-level performance in this task. In most 
supermarkets, there is still a need for a human to turn the product, locate the 
barcode, and position the barcode in such a way that the scanner can process it. 
This level of human intervention will probably vanish soon, yet in some sense, it 
is interesting to note that localizing the barcode and adequately positioning it is 
still easier for humans than machines.  

 
There is a double dissociation here in terms of which tasks humans find easy 

(locating a barcode and positioning the product the right way) and which tasks 
are easy for machines (deciphering the barcode). The task may seem somewhat 
limited: it all comes down to measuring bar widths and distances. The human 
solves the challenging invariance problem (recognition of an image at different 
scales, positions, angles, as in Figure III-6) by positioning the object in the right 
place. A similar case can be made for reading quick response (QR) codes. As we 
will discuss soon, there are many other visual tasks where computers already 
match or outperform humans. There are also many visual tasks where machines 
still have a long way to go to reach human performance levels. Hans Moravec, 
Rodney Brooks, and Marvin Minsky articulated this dissociation between 
machine and human performance in Moravec’s paradox. The paradox states that 
it is relatively easy to endow computers with adult-level performance on 
traditional intelligence tests and incredibly challenging to give machines the skills 
of a one-year-old in terms of perception and mobility. 
	

What would it mean for computational algorithms to match or outperform 
humans in every possible visual task? Imagine a world where machines can truly 
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see and interpret the visual world around us — a world where machines can 
pass the Turing test for vision.  

  
IX.1. The Turing test for vision 

 
 Alan Turing (1912-1954) was one of the great minds of the twentieth 
century and pioneered in the development of the theory of computer science. In 
his seminal 1950 paper, he proposed the “Imitation game,” whereby a series of 
questions is posed both to a human and to a computer. Turing proposed that, if 
we cannot distinguish which answers came from the human and which ones 
came from the computer, then we should call that computer intelligent.  
 
 The term intelligence is ill-defined and used in many different ways. 
Furthermore, the notion of machine intelligence is often a moving target: once 
computers can solve a given task (such as beating world champions at the game 
of Chess or Go), then critics invariably argue that such a feat is not an actual 
demonstration of intelligence (even though the same experts claimed otherwise 
before computers beat humans). Those people often have in mind a useless 
definition of intelligence: intelligence is whatever computers cannot do! To avoid 
such tautologies, the Turing test has become the standard goal to assess 
intelligence.  
 
INSERT Figure IX-1AROUND HERE 
Figure IX-1. Turing test for vision.  
Given an arbitrary image and any question about the image, if we cannot distinguish 
whether the answers come from a human or a computational algorithm, we say that the 
algorithm has passed the Turing test for vision. 
	
 We can define a specialized version of the Turing test for visual 
intelligence (Figure IX-1). Suppose that we present a human or computer with an 
image (or a video without sound). It is important that there are no restrictions on 
the image: it can be a frame extracted from a Disney movie, a Kandinsky or a 
photograph like the one in Figure IX-1. We are allowed to ask any question about 
the image. For example, we can ask whether it contains a tree, how many cars 
there are, whether any person is wearing a hat, whether the person wearing a 
hat is closer to the viewer than the tree, whether our friend John is in the picture, 
whether John looks happy in that picture, whether the picture is funny or sad, 
how many people are riding a bicycle, and so on. If we cannot distinguish 
whether the answers come from the human or the computer, we can claim 
victory. We claim that, from a behavioral standpoint, humans interpret images in 
the same way that the computer vision algorithm. 
 
 A few clarifications and further specifications are pertinent here. If 
someone asked me questions about an image, and the questions were posed in 
Chinese, I would not be able to answer the question. This is not a failure of my 
visual system; this merely shows that I cannot speak Chinese. I would pass the 
Turing test for vision, but I would not pass a Turing test for Chinese! Therefore, 
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the definition of the Turing test for vision assumes that we have some way of 
encoding the questions and answers in a format that the computer understands. 
For example, if we ask whether John appears to be happy or not, the computer 
needs to be able to interpret what “happy” means. We seek to circumscribe the 
Turing test strictly to visual processing and dissociate it form language 
understanding.  
 
 Language is, of course, another fascinating aspect of cognition, and we 
want computers to be able to use language too. One could even extend the 
Turing test to include both vision and language. For example, we will briefly 
discuss later in this chapter the task of image captioning, that is, coming up with 
a short description for an image. However, the main concern in this chapter is to 
pass the test of visual processing. Therefore, we define the Turing test strictly in 
the domain of vision. We still want the computer to be able to answer any 
question, but we are not going to be concerned with whether the computer knows 
the words and the grammar in the question or not.  
 
 For a computer to answer whether John appears to be happy or not, one 
would need to train the computer with pictures rendering happy people and 
pictures rendering people who do not look happy. Alternatively, we could figure 
out some other ways to educate the computer about what happy people look like. 
This training to interpret the task holds for all other questions as well. If we want 
to know whether a woman is riding a blue bicycle, the computer needs to 
understand what woman, riding, blue, and bicycle mean. Of course, the same 
holds for human vision, even though we tend to take this for granted and 
underestimate this obvious point. In the same way that I would fail in answering 
questions in Chinese, if we ask a human whether there is a beldam in the picture, 
the person will not be able to answer unless they understand what the word 
beldam means (beldam is an archaic noun meaning an old woman).  
 
 It is important in this definition that the number of questions remains 
infinite. For example, one could build a computational model that excels at 
recognizing whether our friend John is in the picture or not, that is, a perfect John 
detector that can recognize John even better than we do. Such a computational 
model would be quite nice, but it would not pass the Turing test for vision. 
Similarly, one could build a model that can label every pixel in the image (this 
pixel is part of a tree, this pixel is part of a red car, this pixel is part of John). Such 
a model would be even more impressive, but it would not be able to answer any 
arbitrary question on the image, such as whether John is happy or not, and 
therefore the model would not pass the Turing test for vision either.  
 
 While the Turing test, as defined thus far, focuses on human vision, we 
can also define a Turing test for rat vision, meaning an algorithm that is 
indistinguishable from a rat’s behavior in visual tasks. We can also define a 
Turing test for visual processing of a one-year-old infant, meaning an algorithm 
that is indistinguishable from the behavior of a one-year-old human infant. 
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Similarly, some people may possess rather specialized knowledge, like a 
birdwatcher that can classify different types of birds or a doctor that can diagnose 
certain conditions based on clinical images. One could define restricted versions 
of the Turing test for those cases, such as a machine that cannot be 
distinguished from a world expert birdwatcher in terms of classifying birds from 
images. 

 
IX.2. Computer vision everywhere 

 
 Despite enormous progress in computational modeling of visual 
processing, we are still far from being able to build algorithms that can pass the 
Turing test for vision. Most computer vision studies focus on specific sets of 
questions or tasks en route towards building systems that can pass the general 
Turing test. Many exciting algorithms have been developed to address several 
interrelated problems in computer vision (Figure IX-2).  
 
 One of the most common tasks is object classification (Figure IX-2A): the 
computer is presented with an image, and it has to produce one of a fixed 
number of possible labels. For example, does the image contain a tree [yes | 
no]? Which of the following objects is in the image: [people | tree | building | 
flower]? Another instance of object classification is the task of clinical diagnosis 
based on images; for example, does the mammogram image contain a tumor 
[yes | no]? Yet another instance of object classification is the task of face 
recognition (Figure IX-2E); for example, is [Susan | Mary | Ann | Lilly] in this 
image?   
 
INSERT Figure IX-2 AROUND HERE 
Figure IX-2.	Typical computer vision tasks.  
A. Object classification. B. Object classification and localization. C. Object detection. D. 
Instance segmentation. E. Face classification. F. Action classification. 
 
 When assigning a label to an image, those labels could be nested into 
structures and hierarchies. For example, some psychologists refer to object 
categorization (does the image contain a car or a face?), as distinct from object 
identification (which particular car is it, which particular face is it?). From a 
computational standpoint, these are essentially the same problem, and it is 
possible to design hierarchical algorithms that will answer these questions 
sequentially or in parallel.  
 
 An intriguing and ubiquitous aspect of human language is the definition of 
categorical distinctions that transcend the exact visual features in the image; the 
notion of semantic categories was discussed in Section VI.8 (Figure VI-5). For 
example, we can put together images of ants, snakes, lions, birds, and dolphins, 
and categorize them as animals. If we train a computer vision that excels at 
recognizing ants and snakes, exclusively ants and snakes, the algorithm may not 
be able to understand that a bird is another type of animal. This failure to 
extrapolate to another animal may seem like a significant problem for computer 
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vision: of course, essentially any human can tell that a bird is an animal. However, 
it is unclear whether humans could succeed in this same task, with the same 
type of training that the computers were subject to. Imagine a person who is an 
expert in ants and snakes but has never seen any other animal. Given a picture 
of a bird (without movement, without contextual information, or any other cue; 
remember that we want to match the human task to the computer task as closely 
as possible; otherwise, humans have an unfair advantage), would the person be 
able to understand that the bird is another type of animal? One may think that the 
answer is yes. However, it is difficult to imagine what his or her understanding of 
“animalness” would be if their entire visual expertise were restricted exclusively 
to static pictures of ants and snakes. We often tend to underestimate the amount 
of visual experience that we have. 
 

Another version of object classification is the problem of object verification: 
given two (or more) images, the task is to determine whether the images 
correspond to the same object or not. For example, the airport security officer 
may examine a passport and the person in front of him or her, and assess 
whether the person matches the picture or not. Yet another related problem is 
that of image retrieval; given an image, retrieve all instances of similar images 
from a dataset. For example, one may want to retrieve all the images on the web 
that are visually similar to a given picture.  
 
 Extending the task of object classification, algorithms have been 
developed for object detection or object localization (Figure IX-2B-C). In these 
tasks, the goal is to place a bounding box around the object of interest in an 
image. For example, “locate all the pedestrians on the image.” Progress in object 
localization rapidly accelerated with the development of the MSCOCO dataset, 
which contains detailed tracing contours around objects from 80 common 
categories. One example of object detection is the ability to put a box around a 
face in an image (face detection), which is routinely used nowadays for digital 
cameras to focus on faces. Current algorithms can detect and place bounding 
boxes around multiple objects in an image. This type of effort has provided a 
tremendous boost to the possibility of developing self-driving cars, which are 
equipped with sensors to detect other cars, pedestrians, car lanes, and many 
other objects of interest.  
 
 Related to the problem of object detection is the question of object 
segmentation, where the goal is to trace the contour of a given object (Figure 
IX-2D). An initial map of segmented objects in an image can be extracted by 
adequately detecting edges. However, more complex problems often involve a 
deeper understanding of the interrelationships among different object parts. An 
example challenging problem for object segmentation is the case of a zebra: the 
algorithm should separate the zebra as a whole, rather than marking every stripe 
as a separate object. Another typical challenge in segmentation arises when 
there is occlusion. For example, consider the rotated B letters in Figure III-8: the 
object segmentation algorithm should isolate every letter rather than merely mark 
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each letter fragment as a separate object. Investigators may be interested in 
algorithms to segment all the objects in an image rather than localizing every 
single object of a specific class. Semantic edge detection refers to drawing the 
outlines of objects in an image without labeling edges that do not separate 
objects. 
 
 There has been extensive discussion in the literature about the chicken-
and-egg problem of whether segmentation comes before recognition or whether 
recognition comes first. There is no clear biological evidence for segmentation 
taking place prior to recognition or vice versa. It is likely that both computations 
happen in parallel. In many practical applications, object classification, detection, 
and segmentation are often combined.  
 
INSERT Figure IX-3 AROUND HERE 
Figure IX-3.	Image segmentation algorithms can help map neuronal connections.  
a. Electron micrograph from a 40 x 20 µm section of mouse cerebral cortex. b. 
Automatic computer segmentation, where each cellular object is shown as a separate 
color overlaid on the original image. Reproduced from Lichtman et al. 2014. 
 
 An example application combining all three tasks involves analyzing 
microscopy images in cellular biology. Biologists are interested in an algorithm 
that can automatically detect cells with a given shape, mark them with a given 
color, and to count them. A particularly challenging and exciting challenge along 
these lines was advanced by a community of researchers working towards 
mapping connectivity in the nervous system based on electron microscopy 
images (Figure IX-3). These images consist of section after section of high-
resolution rendering of the inner structure of nervous tissue; the goal is to 
automatically trace the connectivity of every neuron from these images. Instance 
segmentation refers to separating and labeling every pixel in an image. For 
example, we want to label every neuronal dendrite, soma, axon, glial cell, and 
other cell types, in the electron microscopy images. We especially want to follow 
dendrites and axons across multiple sections to map where they originate and 
where they synapse onto another neuron.  
  
INSERT Figure IX-4 AROUND HERE 
Figure IX-4.	Dataset design can make problems easy or hard in action recognition.  
A. UCF-101 dataset of videos with labeled actions (Soomro et al. 2012). The first frame 
in eight examples out of the 101 action categories are shown here. Titles indicate the 
category number and description. B-C. A challenging dataset for action recognition 
where subjects need to indicate in a binary fashion whether a subject is drinking or not 
(B), or reading or not (C). 
 
 Action recognition refers to the ability to identify actions in an image or 
video (Figure IX-2F, Figure IX-4). Is a person playing soccer [yes | no]? Which of 
these actions is the person performing [playing cello | brushing teeth | bowling | 
soccer juggling]? Action recognition can be based on individual images, but it has 
also triggered the development of databases based on videos. In sports, people 
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are interested in building computer vision systems that can automatically analyze 
the game in excruciating detail, including detecting individual players, tracking 
them, identifying what they are doing (e.g., running with the ball, passing the ball, 
dodging the opponent, or shooting).  
 
 Action recognition and tracking are examples where many of the 
computer vision tasks defined above are intertwined and need to be combined. 
Action recognition applications have also become widespread among biologists 
studying animal behavior. Traditionally, quantifying animal behavior has been a 
tedious and time-consuming task: a graduate student interested in mouse 
behavior may easily mount a camera to record hours and hours of behavioral 
data. Analyzing those data typically involved long hours of scrutinizing those 
videos and subjectively describing the animal’s behavior. Nowadays, some 
systems can objectively and reliably perform these types of annotations: 
computer vision approaches can automatically analyze the videos, quantify the 
amount of time spent in different behaviors, and describe the sequence of 
different types of movements. Yet another widespread application for action 
recognition systems is surveillance. One may be interested in detecting 
“anomalous” behavior near a house, at an airport, or a crowded concert. 
Computer vision scientists refer to this problem as anomaly detection. 
 
 Action recognition is a good example to illustrate how experimental 
design and databases can make tasks easy or hard. Distinguishing whether 
someone is playing the cello or juggling a soccer ball based on the types of 
images shown in Figure IX-4A can be easy. However, determining whether a 
person is reading or not based on the types of images shown in Figure IX-4C can 
be substantially harder. We will discuss this point again in Section IX.12.  
 
 The list of computer vision applications is so extensive and grows so 
rapidly that it is likely that by the time the reader has access to these lines, there 
will already be a plethora of impressive new feats.  
 
IX.3. Incorporating temporal information using videos 

 
 Historically, many computer vision studies have been restricted to 
analyzing static images. In part, work has focused on static images because both 
humans and machines can recognize objects in images quite well. The focus on 
static images is also partly a historical accident: it was easier to create databases 
with static images, images occupy less hard drive space, and they require fewer 
computational resources to process. These practical restrictions are less relevant 
today.  
 

Under natural viewing conditions, there are several cues that depend on 
integrating information over time. These dynamic cues can significantly enhance 
object classification. A paradigmatic case where temporal integration can be 
essential is action recognition. Although it is possible to recognize actions purely 
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from static images (e.g., Figure IX-4), it is generally significantly easier to do so 
using videos both for computers and for humans. For example, it can be difficult 
to discern whether a person is talking or not using only a static image. Modern 
models for action recognition from spatiotemporal input based on deep 
convolutional neural network architectures can be partitioned into three groups: 
(i) Networks with 3D convolutional filters, where spatial and temporal features are 
processed together via 3D convolutions; (ii) Two-stream networks where one 
stream processes spatial information and another stream obtains optical flow 
from consecutive frames, and the two streams are merged at a late stage for 
classification; (iii) Networks that feed onto a recurrent architecture such as a 
Long Short-Term Memory (LSTM) (Section VIII.17) that integrates spatial 
features over time. 
 

Temporal information is relevant for many other tasks beyond action 
recognition. Object segmentation generally becomes significantly easier with 
video data. The importance of temporal change for segmentation has been 
exploited by the ubiquitous use of camouflage in the animal world. In the 
absence of movement, matching colors, contrast, and textures can help animals 
avoid predators, or at least buy sufficient time to escape. It is particularly 
challenging to segment objects in the visual periphery, yet neurons with receptive 
fields located at large eccentricities remain highly sensitive to visual motion. 
Furthermore, motion is one of the most robust bottom-up saliency cues. 
 

Temporal information can also play a critical role in visual learning. In an 
elegant experiment, cats were reared under stroboscopic lighting conditions, that 
is, with flashes of lights turning on and off like those used at a disco, which 
prevent seeing continuous motion. The development of primary visual cortex in 
those cats was abnormal in terms of orientation selectivity, binocular integration, 
motion detection, and receptive field sizes. These results further corroborate the 
discussion in Chapter II about natural stimulus statistics governing the tuning 
properties of neurons in the visual system.  

 
Additionally, because objects do not just simply vanish instantaneously, using 

video data can naturally help humans and models learn to recognize objects from 
multiple viewpoints. Video sequences automatically provide a biologically 
plausible way to perform “data augmentation” by getting many similar images of 
an object from a single label (Section VIII.9). Another example of how temporal 
information can be used for visual learning is the case of self-supervised learning 
to predict future events, discussed in the PredNet algorithm in Section VIII.17 
(Figure VIII.11).  
 
IX.4. Major milestones in object classification 

 
In Section VIII.7, we introduced several image databases, such as 

ImageNet, which have played an essential role in the development of 
computational models of visual recognition (Figure VIII-4). These databases 
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were created for large-scale visual recognition challenges where investigators 
compete to get low classification errors. 
 

A good way to report performance in these competitions is to cite top-1 
classification accuracy where the model produces a single label per image, and 
the result is either right or wrong. Many computer vision applications have 
reported a more lenient and more confusing metric: top-5 classification accuracy, 
where the model is allowed to produce five different labels for each image, and 
the result is considered to be correct if any of these labels is correct. One excuse 
for considering the top-5 metric is that some natural images extracted from the 
web contain multiple objects. An image may contain both a dog and a tree, the 
association between that image and a label of tree is therefore arbitrary; the 
same image could have easily been labeled dog as well. While this makes sense, 
reporting top-5 accuracies exaggerates the accuracy of the algorithms and 
makes it more difficult to directly compare against human performance. For 
example, consider an image from the ImageNet dataset (where there are 1,000 
possible labels) showing exclusively a tree in the street. The image label is “tree.” 
A computational algorithm may provide the following five labels: elephant 
(probability = 0.62), refrigerator (0.31), car (0.02), tree (0.02), ice (0.01), sorted in 
decreasing probability order given by the numbers in parenthesis. These 
probabilities add up to 0.98 and not 1 because the remaining 1,000-5=995 
categories add up to 0.02. These five labels would be considered a correct 
answer according to the top-5 accuracy measure, yet they are somewhat strange. 
Humans would not say that the image has 0.62 probability of containing an 
elephant and 0.31 probability of containing a refrigerator! Other databases like 
MSCOCO label multiple objects per image, and therefore it is possible to check 
the accuracy of multiple labels.  
 
INSERT Figure IX-5 AROUND HERE 
Figure IX-5.	Evolution of performance on the ImageNet dataset.  
Top-1 classification performance in object classification based on the ImageNet dataset. 
Each column refers to a different computational algorithm. Chance = 0.1%. 
 

Figure IX-5 shows top-1 performance in ImageNet for several 
computational models, many of which have won object classification 
competitions over the last decade, and some of which were already mentioned in 
Chapter VIII. Current top-1 performance is slightly above 80%, and current top-5 
performance is almost 95%. These metrics are quite impressive, considering that 
there are 1,000 classes, and hence chance level is 0.1%. It is not easy to directly 
compare these performance metrics with humans, particularly top-5 measures 
given the arguments in the previous paragraph. Humans are not very good at 
1,000-way classification: it is hard to remember those 1,000 labels, and humans 
may have lots of biases towards remembering and using some labels more than 
others. Additionally, as we discussed in Chapter VIII, some of the image 
categories in ImageNet are somewhat esoteric (how many times have you seen 
an isopod, a jetty, or a cuirass?). Humans could potentially be trained in the 
same way that the algorithms in Figure IX-5 have been trained to become experts 
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at distinguishing an isopod, a jetty, a cuirass, or any of the other 997 labels. 
Regardless of these considerations, informal measures of human performance in 
this dataset yield accuracy rates that are between 90 and 95%. Hence, even with 
all their limitations, current algorithms can perform object classification on 
ImageNet images as well as or even better than humans.   

 
It should be noted that top-1 performance is not always a great metric. For 

example, in the next section, we will consider the problem of analyzing clinical 
images. Consider a particular disease that is present in 1 out of 10,000 people. 
Suppose that we train an algorithm, and the algorithm achieves 99.99% 
performance. At first glance, this performance seems quite impressive. However, 
it is easy to achieve 99.99% performance by simply indicating that all the images 
do not show evidence for the disease! Trivially, such an algorithm would not be 
useful at all. The algorithm would have 9,999 true negatives, 0 true positives, 1 
false negative, and 0 false positives. Particularly in situations where there is a 
difference between the number of images with each label (an imbalanced 
classification problem), it is useful to define two metrics, precision and recall: 
 
recall = true positives / (true positives + false negatives)    

 
precision = true positives / (true positives + false positives) 

 
The above algorithm that simply indicates that none of the images have 

the disease has 0 recall and 0 precision, even though it reached 99.99% 
accuracy. Conversely, consider another algorithm that is also not useful, which 
labels all the images as showing evidence for the disease. This algorithm would 
have 0 true negatives, 1 true positive, 0 false negatives, and 9,999 false positives. 
The recall would be 1, which may seem quite nice, except that the precision 
would be very low, despite the high accuracy. The same ideas are often 
discussed in statistics classes as Type I error (false positives) and Type II error 
(false negatives). For the aficionados, some investigators also use another metric 
called the F1 score, which is the harmonic mean of the precision and recall: 𝐹" =
	2 &'()*+*,-	∙'()/00

&'()*+*,-1'()/00
. 

 
Depending on the nature of the problem, and the consequences of errors, 

false positives could be much worse than false negatives, or vice versa. It is 
possible to assign weights in loss functions to differentially penalize the different 
types of errors. For example, if recall is considered to be b times as important as 
precision, one can define 𝐹2 = (1 + 𝛽7) &'()*+*,-	∙	'()/00

(29	∙&'()*+*,-1'()/00)
  (which is equivalent to 

F1 when b = 1).  
 
Independently of the specific metrics, it is clear that there has been 

notable progress in object classification tasks (Figure IX-5). AlexNet itself showed 
a substantial boost with respect to all its predecessors, giving rise to a rapid 
exploration of deeper and more complex architectures that have boosted 
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performance by more than 20% in less than a decade. This notable improvement 
in academic competitions attracted the attention of many people looking to solve 
pattern recognition applications.   

  
IX.5. Real-world applications of computer vision algorithms for object 

classification 
 
INSERT Figure IX-6 AROUND HERE 
Figure IX-6.	Computer vision can help clinical diagnosis based on images.  
Example algorithm to detect cancer in breast mammograms. Modified from Lotter 2018. 

 
Success in image labeling competitions inspired a large number of efforts in 

image classification across many domains. One of the earliest real-world 
applications was optical character recognition (OCR), which rapidly became 
mainstream in sorting mail based on the handwritten zip codes. Now, there are 
even neat applications that can translate handwritten traces into mathematical 
formulae. On the one hand, some mathematical symbols are relatively simple; on 
the other hand, mathematical symbols are probably less stereotyped, and there 
is less training data than in other OCR applications. Computer vision algorithms 
have already made rapid progress in a wide array of exciting applications; we 
discuss next only a few examples.  

 
 A field that is rapidly being transformed by computer vision is clinical 
image analysis. Clinical diagnosis based on images can sometimes be simplified 
into a visual pattern recognition problem. Clinicians may combine information 
from image-based diagnosis with a wealth of other information, including medical 
history, genetic information, symptoms, and more. How to combine these 
different sources of information into automatic diagnosis methods is an 
interesting problem in and of itself, but this is beyond the scope of our current 
discussion. Here we restrict the problem of diagnosis strictly to image analysis. 
For example, a radiologist can examine a mammogram to determine whether it 
contains a breast tumor or not (Figure IX-6). A database consisting of many 
mammogram images annotated by experts can be readily used to train computer 
vision algorithms. The American Cancer Society recommends obtaining a 
mammogram, generally consisting of two x-ray images of each breast, to all 
women once or twice a year depending on age. This number of mammograms 
leads to a lot of images (about 40 million images a year in the US alone). The 
problem is important because early diagnosis can have a critical impact on 
deciding the course of action. It is estimated that radiologists read on the order of 
10,000 cases per year; a radiologist with three decades of experience may have 
seen 300,000 cases. Nowadays, a computer vision algorithm can be trained with 
many more examples than a human clinician can see in his/her lifetime. 
 
 Computer vision algorithms have thrived in a wide variety of image 
diagnosis efforts. To train and test these computer vision algorithms, ground truth 
labels provided by clinicians are needed. It should be noted that humans are 
capricious creatures. Clinicians do not always agree with each other on the 
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diagnosis of a given image (between-expert variability). Furthermore, clinicians 
sometimes do not even agree with themselves when repeatedly tested on the 
same images (within-expert variability)! In the case of breast tumor detection, 
computational algorithms are now on par or even better than human clinicians. In 
other words, the differences between a state-of-the-art computer vision algorithm 
and a human expert are the same as the within-expert and between-expert 
variability. Future generations may regard humans trying to diagnose images in 
the same way that we now regard a human trying to interpret a barcode in the 
supermarket or trying to compute the square root of 17 by hand.  
 
INSERT Figure IX-7 AROUND HERE 
Figure IX-7. Computational algorithms can make new observations.  
Example clinical application of computer vision, taking a photograph of the back of the 
eye (fundus photograph), and using a deep convolutional network to diagnose diabetic 
retinopathy (Poplin et al. 2018). In addition, computer vision algorithms can be trained to 
ask other questions from the same image, including predicting the subject’s gender, or 
even the risk of cardiovascular disease. 
 
 While the presence or absence of a tumor is the central question of 
interest in the vast majority of breast exams, occasionally, there may be other 
relevant questions clinicians may want to ask about an image. For example, 
sometimes there are incidental findings where a person is scanned to diagnose a 
given condition X (e.g., breast cancer), the scan does not reveal any finding 
regarding X, but the radiologist detects other anomalies that lead to a different 
diagnosis Y. Such incidental findings may be challenging for current computer 
vision algorithms because they may be extremely infrequent. The algorithms are 
ultra-specialized and outperform radiologists in detecting condition X but were 
never trained in detecting the rare condition Y. One possible compromise as an 
initial solution for this challenge would be for computer vision systems to flag 
such images as anomalous and route them back to a human for further 
inspection.  
 
 Incidental findings may represent one arena where humans may still 
surpass machines in clinical image diagnosis, where humans can find patterns 
that computers miss. The reverse is also true: machines may be able to discover 
novel patterns that were not previously found by humans in clinical images. An 
intriguing example of this phenomenon arose when investigators were 
developing computer vision approaches examining retinal fundus photographs to 
diagnose a condition known as diabetic retinopathy (Figure IX-7). Diabetic 
retinopathy is a condition that may arise in diabetic patients when high blood 
sugar levels cause blood vessels in the retina to swell and leak. These blood 
vessels can be examined in fundus photographs, which are images of the back 
of the eye, used by ophthalmologists to diagnose the disease. After collecting 
hundreds of thousands of labeled images, a deep learning computer vision 
algorithm quickly learned to match clinicians in diagnosis, a feat that comes as 
no surprise at this stage.  
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 The diagnosis label is only one of the questions that one can pose about 
those images. The investigators decided to turn their machine learning 
algorithms to other questions on the same images. In a surprising twist, computer 
scientists asked whether they could extract other types of information from the 
fundus photographs. For example, instead of learning yes/no labels for diabetic 
retinopathy, they trained the same algorithms to predict the subject’s age. The 
algorithms were able to predict age quite accurately, with an absolute error of 
less than 3.5 years. Next, the investigators assessed whether they could predict 
the subject’s gender. Surprisingly, they were able to do so exceptionally well, 
with an area under the receiver operating characteristic (ROC) curve of 0.97. The 
ROC curve is a plot of the probability of correct detection versus the probability of 
false alarm. It is trivial to achieve high detection rates at the expense of high false 
alarm rates (by claiming that every image shows disease, see previous section), 
or low false alarm rates without any correct detection (by claiming that no image 
shows disease). A good algorithm will have a low false alarm rate and high 
probability of detection; the best that an algorithm could achieve is an area of 1.0, 
chance levels would yield an area of 0.5. Trained ophthalmologists had never 
been able to estimate somebody’s gender or age from fundus photographs. 
Perhaps they never cared to ask that question; after all, the clinicians will have 
the subjects and their records right in front of them. However, even after telling 
clinicians that the gender and age information was present in these images, and 
asking doctors to infer the gender or age, they were unable to do so. It is not 
entirely clear what exact image features the algorithm uses to discriminate 
gender or age. One could hypothesize that perhaps doctors, both male and 
female, might position the apparatus to take fundus photographs slightly closer to 
female patients than to male patients, on average, when acquiring these images. 
The algorithms could well capture such a slight unconscious bias. Alternatively, 
perhaps there exist real subtle differences between female and male blood 
vessels in the retina. Regardless of whether this explanation holds, this example 
shows that computer vision can discover image features that are not apparent 
even to experts in the field.  
 
 Estimating a subject’s age and gender from fundus photographs is 
perhaps not particularly exciting from a practical standpoint. The most enigmatic 
finding emerged when the investigators decided to ask an even more daring 
question: would it be possible to predict the risk of cardiovascular disease from 
fundus photographs? Computer scientists discovered that they were able to 
predict cardiovascular disease from the fundus photographs with an area under 
the ROC curve of 0.7. This result is quite remarkable because this is a question 
that ophthalmologists had not thought about, it is a question that is extremely 
relevant from a clinical standpoint, and the computational analyses constitute 
additional information that comes for free from the fundus photograph without 
any additional clinical testing. What is perhaps even more remarkable is that the 
computer vision algorithm was able to predict cardiovascular disease better than 
the Framingham score, which is considered to be one of the best indicators of 
cardiovascular risk based on decades of clinical work. Computer vision 
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algorithms can not only learn to diagnose images like doctors, but they can also 
teach us novel things about those images.    
 
 There are several situations where there is an enormous number of 
images (or videos) that needs to be classified. Automatic image classification has 
found applications well beyond clinical diagnosis. For example, computer vision 
has shed light on the gargantuan task of classifying galaxies and exoplanets from 
telescope images. There are vast amounts of imagery to help us understand the 
shape of galaxies and characterize planets outside the solar system, but we do 
not have enough astrophysicists to classify all those images. Astrophysicists 
turned to crowd-sourcing by engaging the public in looking at images and 
learning to categorize galaxies. This is an ideal setting to apply pattern 
recognition techniques from computer vision: the last few years have seen many 
exciting discoveries made by machine learning algorithms. A conceptually similar 
example is the categorization of plants and animals. Computer vision has been 
used to classify flora and fauna, quickly surpassing any naïve observer and 
becoming the envy of expert biologists.  
 
 Another image classification problem that has been radically transformed 
by computer vision is face identification. There is a wide variety of applications 
for automatic face recognition algorithms. Many smartphones have algorithms 
that use faces to log in, which used to be the domain of science fiction movies 
not too long ago. Facebook can now search for photos that include a particular 
person when that person is not tagged. Quantitative studies of face identification 
have shown that computer vision systems are better than forensic experts and 
also better than so-called “superrecognizers,” people with an extraordinary 
capacity to recognize and remember faces. There is also a growing industry of 
security applications based on facial recognition capabilities. Security 
applications in the near future may also rely on action recognition classification 
algorithms. Concomitant with advances in face recognition, there are vigorous 
and timely discussions about concepts of privacy. It is quite likely that, very soon, 
it will be rather challenging to walk down the street without being recognized. 
George Orwell’s Big Brother scenario with cameras that can recognize people is 
now technically feasible. 
  
 The exciting progress in self-driving cars has also been fueled by 
progress in computer vision, with tasks such as localizing pedestrians, cars, 
brake lights, traffic lights, other signs, lanes, the sidewalk, and even animals, 
bicycles, or anomalous objects on the road. While the majority of computer vision 
applications rely on video or camera feeds from regular cameras, images do not 
have to be restricted to such sensors. For example, self-driving cars can 
simultaneously use information from multiple cameras and many other sensors. 
There has been so much progress in terms of computer vision that most 
engineers trying to build self-driving cars think that the main challenges ahead  
transcend vision and involve decision-making, legal issues, and vulnerability. 
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 Other applications of computer vision algorithms are still under 
development but will be ready quite soon. For example, there is much interest in 
intelligent content-based image or video search (referred to as image retrieval in 
the computer vision literature). Searching the web by content (as opposed to 
searching for the word “dog” and using the label to search for text or images with 
a dog tag) will open the doors to a whole set of applications. Initial prototypes of 
this type of searches are already in place.  
 
 The previous section introduced advances in face identification. These 
algorithms will allow searching for people from photographs, which may have a 
lot of exciting applications such as searching for missing people or finding a 
friend from long ago. Progress in face identification may soon lead to ATMs that 
can recognize customers. Cars and houses may also soon recognize their 
owners from their faces. Progress in person recognition and action recognition 
may radically transform security screening in crowded environments, including 
airports, stadiums, and perhaps every street in large cities. Efforts in computer 
vision applications for security screening, and perhaps other purposes, are 
already ongoing in several major cities. 
 
IX.6. Computer vision to help people with visual disabilities 

 
INSERT Figure IX-8  AROUND HERE 
Figure IX-8. Computer vision could help visually impaired people.  
Example potential approach to use computer vision to help people with visual 
impairment. A blind person may carry a camera that connects to a computer vision 
algorithm and which can interpret the surrounding scene. The computer vision algorithm 
can deliver information about people, objects, distances, and relative locations in real-
time. 
 

A particularly exciting application of computer vision systems is to help people 
with visual deficits, particularly the blind (Figure IX-8). In the US alone, there are 
approximately one million people who are legally blind and about 3.25 million 
people with visual impairment. Combined with high-quality and relatively 
inexpensive cameras, computer vision algorithms can help digest the output of 
digital cameras to convey information to the blind. Most phones these days can 
determine a person’s location by using GPS coordinates, yet one may soon be 
able to get even more precise information by pointing the phone and having the 
phone determine the direction of certain shops, bus stops, or landmarks. Phones 
can also help read signs and restaurant menus. However, blind people need and 
deserve much more. 

 
 An interesting application of computer vision would be to restore visual 
functionality to people with severe visual impairment. By restoring “visual 
functionality,” we do not necessarily mean getting a blind person to see in the 
same way that a sighted person does. Instead, visual functionality refers to the 
ability to rapidly and accurately convey information that blind people can use. A 
blind person could easily wear a camera on their forehead, or in a pendant. 
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Imagine an algorithm that can label every object in an image (instance 
segmentation). How can we convey such rich information to a blind person? An 
image is worth a thousand words. In a glimpse, we get a rich representation of 
our surroundings, which is quite different from labeling every object. This 
representation highlights certain aspects of the image while ignoring other, less 
relevant information. For example, we may not be interested in the shape of 
every branch in a nearby tree, though we could access that information by 
attending to it if we wanted to. Instead, we may be more interested in whether a 
bicycle is coming towards us at full speed. In a glimpse, we can discern 
distances, relationships between objects, even actions and intentions. Even if we 
could accurately label all the objects in an image, there is much more to visual 
understanding, a theme that we will come back to at the end of this chapter. The 
main challenge in helping the blind is to provide relevant information in real-time.  
 
 As a side note, we could easily extend these ideas to enhancing the 
visual capabilities of sighted people as well. It would be easy to wear a camera 
that would give us immediate access to a 360-degree view of the world, or 
cameras that grant us real-time access to other parts of the light spectrum that 
our eyes are not sensitive to, such as infrared. We are all “blind” in the infrared 
and ultraviolet frequency bands, or behind our heads, but we have instruments 
that can detect those signals. Computer vision systems could help us parse and 
interpret those images. Of note, the basic operations of convolution, 
normalization, pooling, and rectification (Chapter VIII) do not depend on whether 
the signals come from the visible part of the spectrum or infrared, ultraviolet, or 
other sources. In sum, computer vision could help restore, and perhaps even 
augment, human vision. 
 
IX.7. Deep convolutional neural networks work outside of vision too 

 
 The same mathematical operations used to analyze images taken from 
photographs can be extended to non-visible parts of the spectrum. Furthermore, 
there is no reason to restrict ourselves to light patterns. Although our focus is the 
discussion of computer vision systems, it is interesting to point out that the same 
mathematics, the same types of architectures, and the same types of training 
algorithms have extended well beyond vision.  
 
 Vision has led the way to success in a wide variety of other problems. 
For example, systems for speech recognition, systems that suggest automatic 
replies to emails, systems to predict the weather, the stock market, or consumer 
behavior, and many other questions have now been revolutionized by deep 
convolutional neural networks originally developed to label images. Each of these 
domains requires training with different types of data, changing the inputs, and in 
some cases, also making adjustments to the architectures themselves. However, 
at the heart of these domains outside of vision is a similar mathematical problem: 
training a neural network to learn to extract adequate features from the data and 
then classifying the resulting features. What changes is the input: instead of 
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using pixels in RGB space, in the case of speech recognition, one can use a 
spectrogram of the frequencies of sound as a function of time to process sounds. 
However, the subsequent processing steps and the procedure to train those 
algorithms are remarkably similar if not exactly the same in many applications.  
 
 In Neuroscience, the idea that similar computational principles can be 
used for different problems is sometimes phrased as “Cortex is cortex” (Section 
VIII.2), alluding to the conjecture that the same basic architectural principles are 
followed in the visual, auditory, or tactile systems. Without a doubt, there are 
important differences across modalities, and engineers will also fine-tune their 
algorithms for each application. However, as a first approximation, some of the 
primary ingredients seem to hold across multiple seemingly distinct tasks.  

 
IX.8. Image generators and GANs 

 
 The basic paradigm in most of the computer vision applications that we 
have discussed thus far follows the structure shown in Figure VIII-2. An image is 
processed through a neural network that learns to extract features for the task at 
hand. Another remarkable development from deep convolutional neural networks 
has been the idea of turning this process in reverse mode and using features to 
generate images. The computational models discussed thus far are 
discriminative algorithms that assign descriptive labels to images or parts thereof. 
In contrast, the goal of generative algorithms is not to assign a label but rather to 
create a new sample from a given distribution. In the context of vision, this 
typically amounts to creating novel images or videos. A particularly successful 
approach to generating images is the use of generative adversarial networks 
(GANs, Figure IX-9). 
 
INSERT Figure IX-9 AROUND HERE 
Figure IX-9. Generative adversarial networks (GAN) play police versus thief games.  
A generative adversarial network is an algorithm that creates new samples from a given 
distribution, for example, generating new images. The algorithm consists of two main 
components: an image generator and an image discriminator. The generator can be 
thought of as an inverted deep convolutional neural network, using features as inputs 
and creating images as output. The discriminator takes samples from the generator and 
real images and determines whether the generated images are real or fake.  
 
 GANs consist of two main components: an image generator, and an 
image discriminator. The image generator can be thought of as an inverted deep 
convolutional neural network. In a typical deep convolutional neural network, the 
input is an image, and the output is a series of features. In an image generator, 
the input is a series of features, and the output is an image. For example, using 
random initial inputs, the goal may be to create images of realistic faces. The 
image discriminator takes as input both real images and images created by the 
generator; the task of the discriminator is to ascertain whether an image is real or 
fake. The two components are jointly trained, the generator trying to fool the 
discriminator, and the discriminator trying to catch the impostor generator.   
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 Such image generators have found fun applications in several domains. 
One of these domains is style transfer. One can take an arbitrary picture and re-
render it according to the style of a famous painting. One can use a GAN to 
merge different faces, to make a face look like a celebrity, or to visualize how a 
given person might look like when he or she gets older. Another application is to 
create graphic art. Recently, an image generated by a GAN, The Portrait of 
Edmond Belamy, was sold by Christie’s for the sizable prize of $432,500.  
 
 Other GANs have focused on trying to create realistic-looking 
photographs. In fact, to the naïve eye, it can be difficult to distinguish a fake from 
a real photograph. Beyond Hollywood, these algorithms raise a lot of interesting 
questions. The notion that “seeing is believing” may require some serious 
revision in the era of sophisticated digital fakes.   

 
IX.9. DeepDream and XDream: elucidating the tuning properties of 

computational units and biological neurons 
 
INSERT Figure IX-10 AROUND HERE 
Figure IX-10. Image generators can help probe neuronal tuning in an unbiased 
manner.  
A. A promising recent application of image generators is the development of closed-loop 
algorithms to investigate neuronal tuning. Schematic of the XDream algorithm consisting 
of an image generator, neuronal recordings, and a genetic algorithm. B. The firing rate of 
an inferior temporal cortex neuron increases with each iteration of the XDream algorithm 
(synthetic images, black), creating images that are better than reference natural images. 
C. While the average responses of this neuron to natural images may lead some 
investigators to infer tuning for faces, the synthetic images trigger even higher firing 
rates. 
 
 A particularly exciting use of image generators is to help address the 
curse of dimensionality when studying the tuning properties of neurons in visual 
cortex (Figure V-10). A family of techniques initially referred to under the poetic 
name of DeepDream was introduced by computer scientists to visualize the 
types of images preferred by units in deep convolutional neural networks. When 
considering these neural networks, we know the architecture and all the weights; 
in other words, we can mathematically define perfectly well the activation of 
every unit. Under these conditions, we can reverse the process to ask what types 
of images will yield high activation for a given unit. Here the “loss function” is the 
unit activation (which is to be maximized), and we can still apply the gradient 
descent algorithm introduced in Chapter VIII, except that we calculate 
derivatives with respect to the image itself instead of changing the network 
weights. 
 
 Now imagine that we want to generate images that will maximally 
activate a neuron in the brain rather than a unit in a neural network. The situation 
is far more complicated when it comes to the neural networks in biological brains, 
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where we do not know the architecture, let alone the weights. To circumvent 
these challenges, Will Xiao and colleagues developed the XDream algorithm 
(eXtending DeepDream with real-time evolution for activation maximization, 
Figure IX-10), which was briefly introduced in Section VI.4. The algorithm 
consists of three components: (i) an image generator, (ii) a mechanism to assess 
the fitness of each image, and (iii) a search method to create the next set of 
images (Figure IX-10A). The image generator is an inverted deep convolutional 
neural network along the lines of the algorithms introduced in the previous 
section. The image generator takes a set of features as input and creates a color 
image. The initial conditions are random images. Next, the algorithm evaluates 
the images created by the generator, and rank orders them according to a fitness 
function defined by what we want to maximize. For example, the algorithm may 
maximize the activation of a particular unit in the network, the average activity of 
all units in a given layer, or the standard deviation of the activity of units within a 
layer. In Neuroscience, the fitness function could be the firing rate of a given 
neuron in response to the images (as shown in multiple examples in Chapters V-
VI). After ranking the images based on the fitness function, XDream uses a 
genetic search algorithm to select, delete, and recombine the initial set of 
features to create a new round of images. Importantly, XDream does not make 
any a priori assumptions about neuronal tuning, nor does it require any 
knowledge about the architecture or weights in the neural network or brain; the 
algorithm only requires a way to evaluate fitness values for each image.   
 
 XDream can visualize the features preferred by units in neural networks. 
It can discover images that trigger high activation, extrapolating across different 
layers, different architectures, and even different training regimes. Remarkably, 
XDream is also very effective in discovering images that trigger high activation in 
real biological neurons (Chapter VI). Without any assumption about cortical 
connectivity or preconceptions about neuronal preferences, and within the 
constraints introduced by biological recordings, the algorithm generates images 
that trigger high firing rates (Figure IX-10B). These synthetic images turn out to 
be as effective as, or in several cases, more effective than, the types of random 
natural images that have been used in Neuroscience for decades (Figure IX-10C). 

 
IX.10. Reflections on cross-validation and extrapolation 
 
 In this chapter, we have highlighted some of the remarkable 
achievements of computer vision algorithms. We shift gears now to emphasize 
some of the critical challenges for current algorithms, and some of the exciting 
opportunities ahead. Let us start with the critical question of generalization. In 
Section VIII.8, we introduced the critical concept of cross-validation. To reduce 
the risk of overfitting and deluding ourselves into thinking our algorithms are 
better than they actually are, it is critical to separate the data into a training set 
and an independent test set.   
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 What is not well defined in most computer vision applications is how 
different the test set should be from the training set. In most typical scenarios, we 
have a large dataset, and we randomly select some images for training and the 
rest for testing. How excited we should be about the results depends critically on 
how distinct the test set really is. In a trivial example, we alluded earlier to the 
potential problem of duplicate images in datasets (Section VIII.8). Suppose that 
image 5,000 and image 8,000 are actually identical, and suppose that the 
random selection assigns image 5,000 to the training set and image 8,000 to the 
test set. Of course, this is not real cross-validation, and correctly classifying 
image 8,000 should not be considered to be an achievement of the algorithm. In 
a barely more complex example, suppose now that image 8,000 is identical to 
image 5,000 except for one pixel, or that image 8,000 is a slightly cropped 
version of image 5,000. Although we can follow all the rules of cross-validation 
and adequately separate images into an independent test set, adequately 
assessing performance is problematic if the test images are very similar to those 
in the training set.  
 
 There are more subtle and pernicious versions of this problem. Many 
databases are based on pictures from the web. There may be strong biases and 
spurious correlations in the types of pictures that people upload on the web. For 
example, imagine that we want to build an algorithm to recognize the tower of 
Pisa in Italy. Tourists who visit the leaning tower of Pisa tend to take pictures of 
the famous tower and upload those pictures on the web. There are only so many 
positions from which one can take a picture of the tower of Pisa, and there are 
many, many tourists (about 106 tourists every year). There may be many biases 
in the locations from which people take those pictures. For example, people may 
tend to approach the tower from certain streets, there may be specific locations 
where people tend to sit, and few people use drones to take aerial pictures. 
There may be biases also in terms of what exactly the pictures show (for 
example, most people photograph the entire tower as opposed to parts of it, most 
pictures may contain much of the surrounding grass area around the tower). 
There may even be general biases in the color of the sky surrounding the tower 
(for example, there may be many more pictures on a sunny day, and very few 
pictures during a thunderstorm). Collecting all the leaning tower of Pisa pictures 
and performing adequate cross-validation to ensure that the test images are not 
too similar to those in the training set is difficult. Unless cross-validation is done 
extremely carefully, an algorithm might achieve high accuracy in recognizing the 
tower of Pisa, yet fail miserably with an unusual picture taken from a drone on a 
rainy day. In other words, it is easy for the algorithm to overfit to the training data, 
despite our best intentions and despite our best efforts to separate the training 
and test datasets.   
 
 This problem is not restricted to famous landmarks. For example, many 
people are fond of showing off the food that they prepared by uploading pictures 
to social media. Consider all the pictures of omelets on the web. Are they mostly 
taken from the same angle? Are the omelets typically on a plate? Is the plate 
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white in many pictures? Are most of the pictures taken with more or less uniform 
kitchen illumination? Do some of them also contain forks and knives? How many 
pictures of an omelet hanging from a tree branch in the park on a rainy day are 
there on the web?   
 
 Yet another example of this family of problems can be gleaned from the 
action recognition task illustrated in Figure IX-4. The frames in Figure IX-4A are 
taken from a well-known video database for action recognition, UCF101. Without 
any sophisticated processing, using only single frames and pixel-level 
information, one can infer that if the image contains many blue pixels, it is likely 
to correspond to “breaststroke,” whereas if the image contains many green pixels, 
it is likely to correspond to “soccer juggling.” Other actions also contain a lot of 
blue or green, but it is nonetheless possible to get well above chance 
performance in this task without any acute understanding of the images, let alone 
any comprehension of what the action labels mean. In contrast, the controlled 
datasets shown in Figure IX-4B are significantly harder: here, the task is to 
determine whether the person is drinking or not. There are lots of different ways 
of drinking (from a cup, from a bottle, using a straw, using hands as a vessel, 
from a drinking fountain). A true action classifier capable of discriminating 
pictures showing drinking should be able to generalize to all of these conditions. 
We cannot get significantly above chance performance in the task in Figure IX-4B 
by merely considering the number of blue pixels. Above chance performance in 
pixel-level classification is a good indication that the task is too easy, that there 
are strong similarities between training and test images, and that there could be 
a significant degree of overfitting.  
 
 Because of these types of correlations in the images within a dataset, 
contextual information tends to play a prominent role in computer vision 
algorithms. Algorithms can adequately infer the right label even if the object itself 
is completely occluded, purely based on the statistics of contextual information. 
For example, pictures of traffic lights tend to be in a street environment, and the 
traffic light tends to be positioned in the upper part of the picture. While this may 
be seen as favorable capitalization on image statistics, the converse is also true: 
neural networks can misclassify an object placed out of context. Contextual 
information can help humans too (Section III.7); however, humans tend to be 
more immune to image manipulations like placing objects out of context. 
 
 Not all real-world applications depend on generalization. For example, if 
Facebook wishes to automatically tag the tower of Pisa in pictures uploaded by 
their users, they may be satisfied with achieving 99% accuracy and miss those 
few instances of an aerial picture during a thunderstorm. Other applications may 
critically require preparing for the unexpected. We want self-driving cars to be 
able to detect a cow crossing the highway, even if this is a rare circumstance.  
 
 The problem of cross-validation is related to the question of bias in 
training datasets (referred to as dataset bias in the computer vision community). 
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For example, suppose that we build an algorithm to detect breast tumors using 
mammograms from white women between fifty and sixty years old who live in 
California. Will the algorithm work with similarly aged white women from 
Massachusetts? And from Europe? Would the algorithm work with African 
American or Asian women? Would the algorithm work with women in their thirties 
or their eighties? The issue of biases in training data has recently been 
highlighted in the news for the task of face identification systems that performed 
better for certain ethnic groups than for others.  
 
 Of note, the problem of biases is not unique to computer vision. Visual 
recognition biases are prevalent in human vision too. Radiologists trained to 
recognize breast tumors in mammograms from white women in their fifties may 
also fail when tested with mammograms from other groups of women. In the 
case of face identification, there are well-known human biases based on where 
people grow up and the amount of exposure they have had to faces from 
different ethnic groups.   
 
 Generalization is an essential and desirable property for computational 
algorithms. The ability to generalize from cross-validated data is not well defined 
and depends on how distinct the test set is. One way to attempt to quantify this 
problem is to distinguish between interpolation (within-distribution generalization) 
and extrapolation (out-of-distribution generalization). Again, precisely what is 
meant by distribution is not well defined, but at least this provides a way to begin 
to quantify the ability of algorithms to extrapolate beyond their training set.  

 
IX.11. Adversarial images 

 
INSERT Figure IX-11 AROUND HERE 
Figure IX-11. Adversarial examples are misclassified by computational algorithms, 
yet they seem indistinguishable to the human brain.  
The two images below appear to be indistinguishable to humans. However, state-of-the-
art computer algorithms classify the one on the left as “Corn” and the one on the right as 
“Snorkel.” The image on the right was created by introducing small amounts of noise 
along specific directions to the image on the left. 

 
We have highlighted some of the exciting advances in how computational 

algorithms process images and how machine vision can match or even surpass 
human performance in many applications. However, caution should be exercised 
before thinking that machines might be about to pass the general Turing test for 
vision. There are still many visual tasks that machines cannot solve. Furthermore, 
it is relatively easy to fool machines in visual tasks (e.g., Figure IX-4).  

 
One example of perplexing behavior by deep convolutional neural 

networks is the case of adversarial images, whereby minimal changes to an 
image drastically change the predicted class (Figure IX-11). Adversarial images 
appear similar, almost identical, to humans, yet, they receive different labels by a 
computer vision system. For example, the two images in Figure IX-11 are virtually 
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indistinguishable to human observers, yet the deep convolutional network 
correctly classified the one on the left as “Corn,” and incorrectly labeled the one 
on the right as “Snorkel.”  Given an algorithm that is forced to assign a binary 
label to an image, A versus B, it is inevitable that there will be a boundary where 
we can move from A to B with small image changes. The separation between 
two labels in image space is akin to standing in the often arbitrary border 
between two states, or trying to define precisely where the rain starts when it is 
raining in location A and not B.  

 
These adversarial images are typically created by using knowledge about 

the categorical boundaries and astutely changing a few pixels to push the image 
into the opposite side of the label. As in the DeepDream algorithm introduced in 
Section IX-10, the process of creating adversarial images involves gradient 
descent on the pixels of the image itself. 

 
What is intriguing about the adversarial examples is the profound 

difference between machine and human perception. In many real-world 
applications, seeing the world the way humans do may be quite relevant. In fact, 
there has been a whole industry of investigators designing “adversarial attacks” 
to confuse computer vision systems, together with a similarly vigorous 
community of defenses against such adversarial attacks. For example, one may 
ask whether the image on the right in Figure IX-11 would revert back to a corn 
upon scaling it, changing its color, or by using different versions of the same 
network (e.g., starting from different random initial conditions), or using different 
architectures. These examples clearly illustrate that, even when current 
algorithms can correctly label many images, state-of-the-art deep convolutional 
neural networks do not necessarily see the world the way humans do. 

 
Adversarial examples are not unique to the field of computer vision. 

Humans also suffer from such adversarial examples; it is just much harder to 
generate such examples for humans because we cannot compute gradients on 
biological networks as we do with artificial neural networks. Even without such 
gradients, psychologists have discovered many images that confuse humans. 
Humans are fallible in many visual illusions that deceive us into seeing things 
that do not exist (Chapter III).  

 
In sum, humans and state-of-the-art computer vision systems make 

similar mistakes in object classification tasks (Section VIII.12). However, many 
images that can trick computer vision systems and not humans, and vice versa. 
These results show that even our best computer vision systems still do not fully 
account for human visual recognition capabilities. Because it is possible to find 
such double dissociations between machine and human vision, these results also 
show that current deep convolutional neural networks still cannot pass the Turing 
test. We can easily tell a machine from a human by showing the image on the 
right in Figure IX-11. 
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IX.12. Deceptively simple tasks that challenge computer vision algorithms 
 
INSERT Figure IX-12 AROUND HERE 
Figure IX-12. Some apparently simple tasks pose a challenge to current 
algorithms.  
The task involves learning to classify images into two groups according to certain fixed 
but unknown rules. Here are shown three types of rules: A. same or different, B. 
inside/outside, C. large object in the middle. Positive examples are shown on the top row 
and negative examples on the bottom row. Reproduced from Fleuret et al. 2011. 
 
 Adversarial examples are especially constructed to fool computational 
algorithms. It is also possible to challenge computational algorithms in basic 
visual tasks that are not designed with the specific purpose of moving images 
across categorical boundaries. While there are many visual questions where 
computers outperform humans, such as barcode reading, there are also many 
common visual questions where it is easy to trick computers (Figure IX-11). 
 
 Many visual questions that are simple for humans represent a formidable 
challenge for current architectures. Consider the examples in Figure IX-12, taken 
from a set of 23 visual reasoning tasks introduced by Don Geman’s group. Given 
a set of positive (top row) and negative (bottom row) examples, we need to figure 
out what the rule is to be able to classify novel images. Humans quickly realize 
that the rule is “same or different” except for translation for the two shapes in 
Figure IX-12A, “inside or outside” in Figure IX-12B, and whether the largest of the 
three shapes is in between the other two or not in Figure IX-12C.  Even if humans 
have never seen these particular examples and tasks before, they can quickly 
infer what the rules are. Humans can then use those rules to reason about new 
examples. Thomas Serre’s group has shown that current computer vision models 
struggle with these tasks despite extensive training with up to a million examples. 
 
 A related example is the CLEVR dataset consisting of images containing 
multiple geometrical shapes like spheres, cubes, and cylinders of varying sizes, 
colors, and material properties. The task involves answering questions such as 
whether the red cylinder to the left of the blue cube is larger than the red cylinder 
to the right of the blue cube, or whether the number of large objects is the same 
as the number of metallic objects. Current networks appear to adequately learn 
to answer these questions when trained and tested on the same combinations of 
shapes and color properties. However, when tested on novel combinations of 
shapes and colors (e.g., when the network has never encountered a blue 
cylinder during training even though it has seen lots of blue cubes and lots of red 
cylinders), the networks failed to generalize.    
 
IX.13. Challenges ahead 
 
INSERT Figure IX-13 AROUND HERE 
Figure IX-13 Successes and challenges in image captioning.  
Four example results from the www.captionbot.ai image captioning system. 
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 There has been significant progress in teaching computers how to see. 
We are already surrounded by machines that can successfully use automatic 
vision algorithms in real-world applications. The exhilarating progress in 
computer vision may lead us to think that we have almost solved the problem of 
vision. Indeed, prominent newspapers proposed headlines with statements 
hinting that vision has almost been solved. However, I would argue that we are 
still extremely far from passing the general Turing test for vision and that the best 
is yet to come.  
 
 In addition to some of the challenges discussed in the previous sections 
(adversarial images, generalization, visual reasoning in simple tasks), an area 
that is advancing rapidly and highlights progress and challenges is image 
captioning (also related to question-answering systems on images). Given an 
image, the goal is to provide a brief and “relevant” description. In contrast to 
categorization tasks, it is more challenging to quantitatively evaluate the results. 
Furthermore, these tasks may confound vision and language, as articulated at 
the beginning of this chapter. However, captioning algorithms provide a good 
summary to close this chapter while highlighting the exciting challenges ahead of 
us in the field. 
 
 An example of the state-of-the-art in image captioning is shown in Figure 
IX-13, which is based on results obtained using a caption bot 
(https://www.captionbot.ai/ , circa November 2018). It is important to emphasize 
the date because I suspect that we will see a major improvement in the years to 
come. The captions provided by this algorithm are quite impressive. The system 
is good at detecting people, even quantifying whether the image contains one 
person (Figure IX-13A) or multiple people (Figure IX-13D). The system can also 
detect the gender in Figure IX-13A, and it makes a reasonable guess that people 
are happy in Figure IX-13D (I am in that picture, and I can attest that I was very 
happy; I suspect that most people visiting the Tower of Pisa are). The system 
also correctly infers that the person is sitting in Figure IX-13A, and standing in 
Figure IX-13D. Furthermore, the system also detects other aspects of the scene, 
including the presence of a table in Figure IX-13A, water in Figure IX-13B, and a 
building in Figure IX-13D. Many other objects are not described, which is perhaps 
reasonable, given that the goal is to caption and not to mention every single 
object. Another caveat of using image captioning as a testbed for vision is that 
we do not know whether particular objects are not mentioned because they were 
not detected or because the algorithm deemed those objects not to be too 
relevant.  
 
 It is a bit surprising that the system does not describe the Tower of Pisa 
in Figure IX-13D, given that such monuments have an exorbitant amount of 
training data. Perhaps even more surprisingly, there is a rather salient spoon in 
Figure IX-13A that was not described. It also seems likely that many humans 
would describe the bride in Figure IX-13B. The system is not able to deal with line 
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drawings (Figure IX-13C), but it is nice that the algorithm was able to realize its 
limitations and admit that it cannot describe line drawings. Differentiating line 
drawings from photographs is perhaps not too difficult, particularly if the image 
has a considerable number of white pixels, a few black pixels, and essentially no 
textures. It is relatively easy for humans to recognize that there are three people 
in the drawing in Figure IX-13C, though it is not clear exactly how this deduction 
happens. Current algorithms such as the image captioning one illustrated here 
probably have minimal, if any, training with drawings. In contrast, most humans 
have had exposure to the underlying symbolism behind line drawings. 
 
 One easy way to break these captioning systems is to scramble the 
image. For example, we can divide the image into four quadrants and rearrange 
the quadrants randomly. The image mostly loses its meaning, yet the caption 
remains largely unchanged. If we present the fundus photograph from Figure IX-7 
(only the fundus photograph, without the rest of the Figure), the system responds 
with “I can’t really describe the picture but I do see light, sitting, lamp.” It is 
commendable that the system realizes that it cannot quite describe the image; 
that the system realizes that the image is different from its training set. There is 
indeed a light in the image. The system probably saw many examples where the 
word “light” correlated with the word “lamp,” throwing it into the description.  
 
 It is a bit harder to deduce where the word “sitting” comes from in this 
example. The challenge in explaining where the labels come from is a 
characteristic of deep neural networks that many people have criticized. Given 
the large number of parameters in the system, it is not always easy to put into 
words why the system produces a given output. Humans can come up with 
posthoc explanations, but it is not always easy to evaluate those explanations. 
Radiologists do not tend to explain much about how they make their diagnoses, 
and they certainly are not required to come up with an explanation at the level of 
what neurons in their brains do. Any humans would struggle to provide a 
mechanistic explanation of why they think that they see a tree in Figure IX-1.  
 
 Of note, the same type of architectures used in image captioning can be 
trained to outperform doctors in interpreting the same fundus photographs. The 
same architectures can be trained to detect the tower of Pisa. Each one of these 
questions requires separate training steps. In contrast, a doctor can evaluate 
fundus photographs and also understand what is happening in Figure IX-13, 
whereas many current deep convolutional networks are ultra-specialized for 
specific tasks, and it is not easy to train the neural networks to perform multiple 
tasks.    
  
 Passing the Turing test requires being able to answer any question about 
an image, not just being trained to answer a single type of question. It is clear 
that one can ask many questions about the images in Figure IX-13. As impressive 
as those captions are, they do not come even close to solving the Turing test for 
vision. The captions completely fail to grasp fundamental aspects of the scene, 
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what is happening, who is doing what, to whom, and why. Humans can look at 
these images and understand the relationships between the different objects, 
their relative positions, why they are where they are, and even make inferences 
about what happened before or what may happen next.  
 
 Even more intriguingly, all these images are meant to be somewhat 
curious or funny. To end on a light tone, I would like to highlight an example 
problem that I consider to be extremely challenging: understanding the human 
sense of humor based on images. Of course, even though the concept of funny 
is subjective, and depends on age, gender, and cultural background, there are 
still strong correlations between different humans in what is funny or not.  
 
 Let us consider Figure IX-13C as an example. What is funny about this 
image? To grasp what is happening in the image, we need to incorporate not 
merely pixel-level information, not just labels of specific objects, but also their 
symbolism and relative interactions. The scale, together with the few traces that 
represent the attire of the person in the center, plus his relative position with 
respect to the other people, leads us to think that he is a judge. Note that it is the 
combination of many of these labels and their interactions that lead us to this 
understanding. Each one piece of information on its own would not necessarily 
be sufficient. The person sitting below the judge is probably the accused (or less 
likely, a witness). This inference is partly based on the person’s shirt with 
horizontal stripes, but mostly based on his relative position and an understanding 
of the arrangement of the judge and the accused in a court of law. We can infer 
that the third person is a policeman, which is consistent with his outfit, but also 
with the fact that he is standing, and that he is behind the accused.  
 
 After deciphering that the person in the center is a judge, we realize that 
he is holding a gavel, he is shouting, and he is hitting the table with his gavel. 
The accused is also angry, making eye contact with the judge. Curiously, the 
accused also seems to be holding a gavel. This observation strikes us as 
unusual: the accused is not supposed to hold a gavel, let alone use it. The 
deviation from the norm is the essence of why the image is funny: it portrays an 
unexpected scenario. If we take out the few pixels that represent the accused’s 
gavel, the image immediately becomes less appealing. Of course, humor is 
subjective and may vary from human to human.  
 
 Even if a person does not find Figure IX-13C to be funny, they may still 
understand all the symbolism, the actions, who the people are, and how they 
relate to each other. Regardless of whether a particular image is funny or not, 
humans can interpret what is happening in Figure IX-13C the first time they see 
this image. Humans do not need extensive training with black and white drawings 
of people in a court of law to understand this image. There is a substantial 
amount of world knowledge that we need to have to be able to understand and 
interpret Figure IX-13C. Predicting whether an image is funny or not, is further 
complicated by the fact that, even if we trained an algorithm to understand all the 
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symbolism in Figure IX-13C, that would be of no help whatsoever to understand 
why Figure IX-13A is intriguing, nor to deduce what probably happened in Figure 
IX-13B.  
 
 There are trivial, brute force, and ultimately uninteresting solutions that 
could yield above-chance performance in a funny versus not-funny discrimination 
task. Throwing lots of images like the ones in Figure IX-13 into a deep 
convolutional network trained via supervised learning could lead to some ability 
to decipher funny or not more than 50% of the time. For example, a lot of funny 
images are cartoons or drawings. A system could quickly learn to differentiate 
drawings from real photographs. If drawings are correlated with more “funny” 
labels, then the system might appear to perform quite well. However, in reality, 
the model would know absolutely nothing about humor. Removing the gavel from 
the accused in Figure IX-13C would not change the label for this type of model, 
even though this simple manipulation radically changes how funny the image is. 
This image manipulation is but another example of the problems with overfitting 
and biases elaborated upon in Section IX.11. A well-controlled visual task should 
ensure that the labels are not correlated with any other properties beyond the 
ones under study.   
 
 Determining whether an image is funny or not illustrates current 
challenges to incorporate additional knowledge into visual processing. However, 
it is worth pointing out that there is no physical limit to what computers can do. If 
we can do it, a computer can do it too. Significant progress has been made over 
the last decade in teaching computers to perform multiple tasks that were 
traditionally thought to be exclusively the domain of humans. Any desktop 
computer can play chess competitively, and the best computers can beat the 
world’s chess champions. IBM’s Watson has thrived in the trivia-like game of 
Jeopardy. Even more, while imperfect, Siri and related systems are making 
enormous strides in becoming the world’s best assistants. In the domain of vision, 
computational algorithms are already able to perform certain tasks such as 
recognizing digits in a fully automatic fashion at the level of human performance, 
separating images from the web into 1,000 different categories, detecting faces 
to take pictures, recognizing faces to log into a smartphone, or analyzing clinical 
images, galaxies, and much more. While humans still outperform the most 
sophisticated current algorithms in the majority of visual tasks, the gap between 
machines and human vision tasks is closing rapidly.  
 
 Significant progress has been made towards describing visual object 
recognition in a principled and theoretically sound fashion. However, the lacunas 
in our understanding of the functional and computational architecture of ventral 
visual cortex are not small. The preliminary steps have distilled important 
principles of neocortical computation, including deep networks that can divide 
and conquer complex tasks, and bottom-up circuits that perform rapid 
computations through gradual increases in selectivity and tolerance to object 
transformations. In stark contrast with the pathway from the retina to primary 
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visual cortex, we do not have a quantitative description of the feature preferences 
of neurons along the ventral visual pathway. Furthermore, several computational 
models do not make clear, concrete, and testable predictions towards 
systematically characterizing ventral visual cortex at the physiological level. 
Computational models can perform several complex recognition tasks. However, 
for the vast majority of recognition tasks, machine vision still falls significantly 
below human performance. The next several years are likely to bring many new 
surprises in the field. We will be able to characterize the visual cortex circuitry at 
an unprecedented resolution at the experimental level, and we will be able to 
evaluate sophisticated and computationally intensive theories in realistic times. In 
the same way that the younger generations are not surprised by machines that 
can play chess competitively, the next generation may not be surprised by 
intelligent devices that can see the world as we do.   
 
IX.14. Summary 

 
• A machine would pass the Turing test for vision if we cannot distinguish its 

answers from human answers in response to any arbitrary question about 
any image. 

 
• Computer vision has shown remarkable success in a variety of tasks, 

including object classification, object detection, segmenting objects in an 
image, and action classification. 

 
• Success in visual tasks has given rise to a plethora of real-world 

applications, including face recognition, visual interpretation of a scene for 
self-driving cars, analyses of clinical images, classification of galaxies from 
astronomy images, and many more. 

 
• Inverting convolutional networks opened the doors to algorithms that 

generate synthetic images. One of the applications of image generators is 
to systematically study the tuning properties of neurons along ventral 
visual cortex. 

 
• Despite rapid progress, computer vision applications remain fragile. 

Algorithms can be fooled relatively easily, and there are many tasks that 
are simple for humans yet very challenging for machines, such as 
determining whether a shape is inside or outside of another one.  

 
• Due to the large number of parameters, it is often unclear how well current 

computer vision algorithms can extrapolate to novel scenarios as opposed 
to merely interpolating between training samples. Generalization is an 
essential requirement for future computational algorithms in vision. 

 
• Many exciting challenges remain to teach computers to see and interpret 

the world the way humans do. As an example of a formidable challenge, 
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training computer vision systems to determine whether an image is funny 
or not seems to be well beyond the capabilities of current systems.  

 
IX.15. Further reading 
 
See more references at http://bit.ly/2t53QRd 
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