Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neuro 130/230. Harvard College/GSAS 78454

While we wait for others to join

What is this? Take a guess

Type in the chat

Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neurobiology 230. Harvard College/GSAS 78454

- Class 1 [09/02/2020]. Introduction to Vision
- Class 2 [09/14/2020]. Natural image statistics and the retina

Class 3 [09/21/2020]. The Phenomenology of Vision

- Class 4 [09/28/2020]. Learning from Lesions
- Class 5 [10/05/2020]. Primary Visual Cortex
- October 12th: University Holiday
- Class 6 [10/19/2020]. Adventures into terra incognita
- Class 7 [10/26/2020]. From the Highest Echelons of Visual Processing to Cognition
- Class 8 [11/02/2020]. First Steps into in silico vision
- Class 9 [11/09/2020]. Teaching Computers how to see
- Class 10 [11/16/2020]. Computer Vision
- Class 11 [11/23/2020]. Connecting Vision to the rest of Cognition
- Class 12 [11/30/2020]. Visual Consciousness
- FINAL EXAM, PAPER DUE 12/14/2020. No extensions.

Psychophysics: Study of psychological experiences and the stimuli that generate them

• Reaction time — Indication (or upper bound) of how long the necessary psychological (and hence neural) processing takes

• Performance — Often inversely related to reaction time (speed-accuracy trade-off).

• Threshold — Boundaries for detection or discrimination

• Eye movements — Provide insights about tasks, goals, attention

Gestalt laws of grouping Basic phenomenological constraints

Law of closure Perceiving objects as whole even if they are not complete

Law of closure Perceiving objects as whole even if they are not complete

Law of proximity Grouping nearby elements

Law of similarity Grouping similar elements

Similarity might depend on relationships of form, color, size, or brightness

Law of continuity Continuing visual, auditory, and kinetic patterns

Law of common fate Grouping elements that move together

Object recognition

What features are important to recognize an object?

Recognition of caricatures

Recognition of hand drawings

MIRCs Minimal Recognizable Configurations

Please type what you see in the chat

Ullman, PNAS 2016

Canonical views help recognition

A Thatcher illusion

Inverted

McKone et al, Frontiers in Psychology, 2013

Four key properties of visual recognition

- Selectivity
- Invariance
- Speed
- Large capacity

Tolerance to image transformations

Scale tolerance

AAAA

One-shot learning for scale tolerance

Tolerance to viewpoint and illumination changes

Tolerance to illumination changes: color constancy

Visual recognition depends on experience

Visual adaptation

Recognition of images flashed for ~100 ms (demo)

Visual recognition can be extremely fast

Kirchner, H., & Thorpe, S. J. (2006). Ultra-rapid object detection with saccadic eye movements

Is information integrated over time?

Rapid decay in recognition of asynchronously presented object parts

Singer, Journal of Vision, 2014

The visual system has a very large capacity

Object recognition from partial information

Presence of the occluder can help

Bregman 1981

Object completion task

Strong robustness to limited visibility

Tang et al, PNAS 2018

Backward masking allows investigation of computational processing times

Backward masking disrupts pattern completion

Beyond pixels – Context matters

Context example

Context example

Visual illusions: The visual system does not always get it right

The critical role of attention

Quick comment: people are approximately the same wherever you go

Quick comment: animals show fascinating visual behavior too

Summary

Visual behavior constrains computation: reaction time, performance, and eye movements

Brains make up stuff

Gestalt rules: grouping image parts --> objects

Recognition is tolerant to large transformations

Brains make inferences from partial information

Visual recognition is fast

Contextual information can help recognize objects

Further reading

- Regan, D. Human Perception of Objects (2000). Sinauer Associates. Sunderland, Massachusets.
- Frisby, JP and Stone JV. Seeing (2010). MIT Press. Cambridge, Massachusetts.

Supplementary contents at http://bit.ly/38buAhB

Original articles cited in class (see lecture notes for complete list)

- Potter, MC (1969) Recognition memory for a rapid sequence of pictures. Journal of Experimental Psychology 81:10-15.
- Kirchner, H., & Thorpe, S. J. (2006). Ultra-rapid object detection with saccadic eye movements: visual processing speed revisited. Vision Res, 46(11), 1762-1776.
- Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object details. Proc Natl Acad Sci U S A, 105(38), 14325-14329
- Mooney CM. (1957). Age in the development of closure ability in children. Canadian Journal of Psychology 11: 219-226
- McKone et al, Frontiers in Psychology, 2013
- Singer and Kreiman (2014). Short temporal asynchrony disrupts visual object recognition. Journal of Vision 12:14.
- Tang, H., et al. (2014). "Spatiotemporal dynamics underlying object completion in human ventral visual cortex." Neuron **83**: 736-748.
- Tang, H., et al. (2014). "A role for recurrent processing in object completion: neurophysiological, psychophysical and computational evidence." CBMM Memo(9).