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Visual Object Recognition
Computational Models and Neurophysiological Mechanisms
Neurobiology 230. Harvard College/GSAS 78454

Class 1 [09/02/2020]. Introduction to Vision
Class 2 [09/14/2020]. Natural image statistics and the retina
Class 3 [09/21/2020]. The Phenomenology of Vision
Class 4 [09/28/2020]. Learning from Lesions
Class 5 [10/05/2020]. Primary Visual Cortex
October 12th: University Holiday
Class 6 [10/19/2020]. Adventures into terra incognita
Class 7 [10/26/2020]. From the Highest Echelons of Visual Processing to Cognition
Class 8 [11/02/2020]. First Steps into in silico vision
Class 9 [11/09/2020]. Teaching Computers how to see
Class 10 [11/16/2020]. Computer Vision
Class 11 [11/23/2020]. Connecting Vision to the rest of Cognition
Class 12 [11/30/2020]. Visual Consciousness
FINAL EXAM, PAPER DUE 12/14/2020. No extensions.



OUTLINE

1. Why build computational models?
2. Single neuron models
3. Network models
4. Algorithms and methods for data analysis



Why bother with computational models?

-Quantitative models force us to formalize hypotheses and assumptions

“Verbal models” are not real models:
Vague and prone to subjective interpretation
Lack of quantitative predictions
Not falsifiable

-Models can integrate observations across experiments, resolutions and laboratories

-A model can lead to (non-intuitive) experimental predictions

-A model can be useful from an engineering viewpoint (e.g. face recognition)

-A model can point to missing data, critical information and decisive experiments

“Verbal models” are not real models:
Vague and prone to subjective interpretation
Lack of quantitative predictions
Not falsifiable

-Quantitative models force us to formalize hypotheses and assumptions

-Models can integrate observations across experiments, resolutions and laboratories

-A model can lead to (non-intuitive) experimental predictions

-A model can point to missing data, critical information and decisive experiments



What is a model, anyway?

F = m a

§ Which hand was the person using? 
§ What is the shape/color/material of the object?
§ What day of the week is it?
§ What type of surface is it? 
§ What is the temperature/humidity?
§ What is the force exerted by the person?
§ What is the weight of the object?
§ What is the force of gravity on this object?
§ Where is the force exerted? 
§ What is the person wearing? 
§ How much contact is there between the object and the surface?  



A model for orientation tuning in simple cells

A feed-forward model for orientation 
selectivity in V1

(by no means the only model)

Hubel and Wiesel. J. Physiology (1962)
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A nested family of single neuron models

Filter 
operations

Integrate-
and-fire 
circuit

Hodgkin-
Huxley units

Multi-
compartmental 
models

Spines, 
channels

Biological 
accuracy

Lack of analytical 
solutions

Computational 
complexity



Geometrically accurate models vs. spherical 
cows with point masses

A central question in Theoretical Neuroscience:
What is the “right” level of abstraction?



The Hodgkin-Huxley Model
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where:
im = membrane current
V = voltage

L = leak channel
K = potassium channel
Na = sodium channel

g = conductances (e.g. gNa=120 mS/cm2; gK=36 mS/cm2; gL=0.3 mS/cm2)
E = reversal potentials (e.g. ENa=115mV, EK=-12 mV, EL = 10.6 mV)
n, m, h = “gating variables”, n=n(t), m=m(t), h=h(t)

Hodgkin, A. L., and Huxley, A. F. (1952). 
A quantitative description of membrane current and its application to conduction and excitation in nerve. 

Journal of Physiology 117, 500-544.



The Hodgkin-Huxley Model
% Gabbiani & Cox, Mathematics for Neuroscientists
% clamp.m
% Simulate a voltage clamp experiment
% usage:  clamp(dt,Tfin)
% e.g. clamp(.01,15)

function clamp(dt,Tfin)
vK = -6;    % mV
GK =  36;   % mS/(cm)^2
vNa = 127;  % mV
GNa = 120;  % mS/(cm)^2
for vc = 8:10:90,

j = 2;t(1) = 0;v(1) = 0;
n(1) = an(0)/(an(0)+bn(0));  % 0.3177;
m(1) = am(0)/(am(0)+bm(0));  % 0.0529;
h(1) = ah(0)/(ah(0)+bh(0));  % 0.5961;
gK(1) = GK*n(1)^4;
gNa(1) = GNa*m(1)^3*h(1);
while j*dt < Tfin,

t(j) = j*dt;
v(j) = vc*(t(j)>2)*(t(j)<Tfin);
n(j) = ( n(j-1) + dt*an(v(j)) )/(1 + dt*(an(v(j))+bn(v(j))) 

); 
m(j) = ( m(j-1) + dt*am(v(j)) )/(1 + dt*(am(v(j))+bm(v(j))) 

);
h(j) = ( h(j-1) + dt*ah(v(j)) )/(1 + dt*(ah(v(j))+bh(v(j))) 

);
gK(j) = GK*n(j)^4;
gNa(j) = GNa*m(j)^3*h(j);
j = j + 1;

end
subplot(3,1,1); plot(t,v); hold on
subplot(3,1,2); plot(t,gK); hold on
subplot(3,1,3); plot(t,gNa); hold on

end
subplot(3,1,1);ylabel('v','fontsize',16);hold off
subplot(3,1,2);ylabel('g_K','fontsize',16);hold off
subplot(3,1,3);xlabel('t  
(ms)','fontsize',16);ylabel('g_{Na}','fontsize',16);hold off

function val = an(v)
val = .01*(10-v)./(exp(1-v/10)-1);
function val = bn(v)
val = .125*exp(-v/80);

Simulated voltage-clamp experiments of Hodgkin and 
Huxley (1952). From Gabbiani and Cox 2010.



The leaky integrate-and-fire model

• Lapicque 1907
• Below threshold, the voltage 

is governed by: 

• A spike is fired when V(t)>Vthr 
(and V(t) is reset)

• A refractory period tref is 
imposed after a spike.

• Simple and fast.
• Does not consider spike-rate 

adaptation, multiple 
compartments, sub-ms 
biophysics, neuronal 
geometry

� 

C dV( t)
dt

= − V(t)
R

+ I( t) Vrest=-65 
mV
Vth =-50 
mV
Τm = 10 
ms
Rm = 10 
MΩ

Line = I&F model
Circles = cortex
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The leaky integrate-and-fire model
• Lapicque 1907
• Below threshold, the voltage is governed by: 

• A spike is fired when V(t)>Vthr (and V(t) is reset)
• A refractory period tref is imposed after a spike
• Simple and fast
• Does not consider:

– spike-rate adaptation
– multiple compartments
– sub-ms biophysics
– neuronal geometry

� 

C dV( t)
dt

= − V(t)
R

+ I( t)

function
[V,spk]=simpleiandf(E_L,V_res,V_th,tau_m,R_m,I_e,dt
,n)

% ultra-simple implementation of integrate-and-fire 
model
% inputs:
% E_L    = leak potential           [e.g. -65 mV]
% V_res  = reset potential          [e.g. E_L]
% V_th   = threshold potential      [e.g. -50 mV]
% tau_m  = membrane time constant   [e.g. 10 ms]
% R_m    = membrane resistance      [e.g. 10 MOhm]
% I_e    = external input           [e.g. white 
noise]
% dt     = time step                [e.g. 0.1 ms]
% n      = number of time points    [e.g. 1000]
%
% returns
% V      = intracellular voltage    [n x 1]
% spk    = 0 or 1 indicating spikes [n x 1]

V(1)=V_res;      % initial voltage
spk=zeros(n,1);
for t=2:n

V(t)=V(t-1)+(dt/tau_m) * (E_L - V(t-1) + R_m * 
I_e(t));     % Key line computing the change in 
voltage at time t

if (V(t)>V_th)                                              
% Emit a spike if V is above threshold

V(t)=V_res;                                             
% And reset the voltage

spk(t)=1;
end

end



Interlude: MATLAB is easy

function [V,spk]=simpleiandf(E_L,V_res,V_th,tau_m,R_m,I_e,dt,n)

% ultra-simple implementation of integrate-and-fire model
% inputs:
% E_L    = leak potential           [e.g. -65 mV]
% V_res  = reset potential          [e.g. E_L]
% V_th   = threshold potential      [e.g. -50 mV]
% tau_m  = membrane time constant   [e.g. 10 ms]
% R_m    = membrane resistance      [e.g. 10 MOhm]
% I_e    = external input           [e.g. white noise]
% dt     = time step                [e.g. 0.1 ms]
% n      = number of time points    [e.g. 1000]
%
% outputs:
% V      = intracellular voltage    [n x 1]
% spk    = 0 or 1 indicating spikes [n x 1]

V(1)=V_res;      % initial voltage
spk=zeros(n,1);
for t=2:n

V(t)=V(t-1)+(dt/tau_m) * (E_L - V(t-1) + R_m * I_e(t));     % Change in voltage at time t
if (V(t)>V_th) % Emit a spike if V is above threshold

V(t)=V_res; % And reset the voltage
spk(t)=1;

end
end

All of these lines are comments

This is the key line integrating the 
differential equation

� 

C dV( t)
dt

= − V(t)
R

+ I( t)



Typical units in neural networks
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From neurons to circuits

•Single neurons can perform many interesting computations
(e.g. Gabbiani et al (2002). Multiplicative computation in a visual neuron sensitive to looming. Nature
420, 320-324)

•But neurons are not isolated. They are part of circuits. A typical
cortical neuron receives input from ~104 other neurons.

•It is not trivial to predict circuit-level properties from single neuron
properties. There can be interesting properties emerging at the
network level.



Circuits – some basic definitions



A big happy family 
of neural networks

https://towardsdatascience.com/the-
mostly-complete-chart-of-neural-
networks-explained-3fb6f2367464

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464


From neural circuits to neural networks



The convolution operation



Supervised versus unsupervised learning

Supervised learning

Unsupervised learning

Change the weights w to 
match a certain output v

Change the weights w
without a target output
(e.g. via input correlations)



Learning from examples – Digit classification

Download MNIST
http://yann.lecun.com/exdb/mnist/

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 38 43 105 255 253 253 253 253 253 174 6 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 43 139 224 226 252 253 252 252 252 252 252 252 158 14 0 0 0 0 0
0 0 0 0 0 0 0 0 0 178 252 252 252 252 253 252 252 252 252 252 252 252 59 0 0 0 0 0
0 0 0 0 0 0 0 0 0 109 252 252 230 132 133 132 132 189 252 252 252 252 59 0 0 0 0 0
0 0 0 0 0 0 0 0 0 4 29 29 24 0 0 0 0 14 226 252 252 172 7 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 85 243 252 252 144 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 88 189 252 252 252 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 91 212 247 252 252 252 204 9 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 32 125 193 193 193 253 252 252 252 238 102 28 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 45 222 252 252 252 252 253 252 252 252 177 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 45 223 253 253 253 253 255 253 253 253 253 74 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 31 123 52 44 44 44 44 143 252 252 74 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 252 252 74 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 86 252 252 74 0 0 0 0 0 0 0 0
0 0 0 0 0 0 5 75 9 0 0 0 0 0 0 98 242 252 252 74 0 0 0 0 0 0 0 0
0 0 0 0 0 61 183 252 29 0 0 0 0 18 92 239 252 252 243 65 0 0 0 0 0 0 0 0
0 0 0 0 0 208 252 252 147 134 134 134 134 203 253 252 252 188 83 0 0 0 0 0 0 0 0 0
0 0 0 0 0 208 252 252 252 252 252 252 252 252 253 230 153 8 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 49 157 252 252 252 252 252 217 207 146 45 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 7 103 235 252 172 103 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 115 121 162 253 253 213 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 63 107 170 251 252 252 252 252 250 214 0 0 0 0 0 0
0 0 0 0 0 0 0 0 25 192 226 226 241 252 253 202 252 252 252 252 252 225 0 0 0 0 0 0
0 0 0 0 0 0 0 68 223 252 252 252 252 252 39 19 39 65 224 252 252 183 0 0 0 0 0 0
0 0 0 0 0 0 0 186 252 252 252 245 108 53 0 0 0 150 252 252 220 20 0 0 0 0 0 0
0 0 0 0 0 0 70 242 252 252 222 59 0 0 0 0 0 178 252 252 141 0 0 0 0 0 0 0
0 0 0 0 0 0 185 252 252 194 67 0 0 0 0 17 90 240 252 194 67 0 0 0 0 0 0 0
0 0 0 0 0 0 83 205 190 24 0 0 0 0 0 121 252 252 209 24 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 77 247 252 248 106 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 253 252 252 102 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 134 255 253 253 39 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 6 183 253 252 107 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 10 102 252 253 163 16 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 13 168 252 252 110 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 41 252 252 217 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 40 155 252 214 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 165 252 252 106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 43 179 252 150 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 137 252 221 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 67 252 79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


Learning from examples – Classifiers
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Learning from examples – Classifiers and cross-validation



Learning from examples – The perceptron

Imagine that we want to 
classify the inputs u into two 
groups “+1” (=3) and “-1” (=7)

w→ w +


2
vm − v(um )( )um Perceptron learning rule

Training examples: {um,vm}

Linear separability: can attain zero error
Cross-validation: use separate training and test data

There are several more sophisticated learning algorithms



Learning from examples – Training

Dimension 1
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Output = 7 Change w

Output = 3 Do nothing

Output = 3

Output = 3

Change w

Change w

Output = 7 Change w

Output = 3 Do nothing

Output = 7 Change w Output = 7 Do nothing

Output = 3

Output = 7 Do nothing

Change w



Learning from examples – Classifiers and cross-validation



A big happy family 
of neural networks

https://towardsdatascience.com/the-
mostly-complete-chart-of-neural-
networks-explained-3fb6f2367464

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464


Learning from examples – Gradient descent

Now imagine that v is a real 
value (as opposed to binary)

u = f (s)

v(s) = w.u

We want to choose the weights 
so that the output approximates 
some function h(s)

w→ w + ε∇wE ∇wE =
∂E
∂wb

⎡

⎣
⎢

⎤

⎦
⎥

E =
1
2

h(sm ) − v(sm )( )2
m=1

NS

∑



Example: digit recognition in a feed-forward network 
trained by gradient descent

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to document 
recognition. Proc of the IEEE 86:2278-2324.

Example of hand-
written digits
(MINT database)



Example: digit recognition in a feed-forward network 
trained by gradient descent

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to document 
recognition. Proc of the IEEE 86:2278-2324.

Example of hand-
written digits
(MINT database)

Classification error rates Misclassified examples



The “blue brain” modeling project

-http://bluebrain.epfl.ch

- IBM’s Blue gene supercomputer

- “Reverse engineer” the brain in a “biologically accurate” way

- November 2007 milestone: 30 million synapses in “precise” locations to model
a neocortical column

- Compartmental simulations for neurons

- Needs another supercomputer for visualization (10,000 neurons, high quality
mesh, 1 billion triangles, 100 Gb)

QUESTION: What is the “right” level of abstraction needed to understand 
the function of cortical circuitry?

http://bluebrain.epfl.ch


A big happy family 
of neural networks

https://towardsdatascience.com/the-
mostly-complete-chart-of-neural-
networks-explained-3fb6f2367464

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464


Hopfield networks:
A case study in collective computation

Hopfield, J. J. 1982. Neural networks and physical systems with emergent collective computational abilities. PNAS
79:2554-2558.
Tank, D., and J. Hopfield. 1987. Collective computation in neuron-like circuits. Scientific American 257:104-114

State vector

State update

Energy function

No self connections

Symmetric connections

Hebbian learning



Summary

• To understand vision, it is essential to build computational models

• We use abstract models where biological properties are simplified

• The integrate-and-fire neuron captures essential input-output properties

• The convolution operation allows extracting the same visual features 
throughout the entire visual field

• Basic elementary computations: filtering, normalization, pooling, thresholding

• Neural networks show emergent computational properties

• Neural networks include feedforward, horizontal and top-down connections

• Attractor-based recurrent neural networks show dynamic properties that save 
energy, provide flexible computations, and robustness to perturbations



Further reading

•Abbott and Dayan. Theoretical Neuroscience - Computational and
Mathematical Modeling of Neural Systems [2001] (ISBN 0-262-
04199-5). MIT Press.
•Koch. Biophysics of computation [1999] (ISBN 0-19-510491-9).
Oxford University Press.
•Hertz, Krogh, and Palmer, Introduction to the theory of neural
computation. [1991] (ISBN 0-20151560-1). Santa Fe Institute Studies
in the Sciences of Complexity.
•Gabbiani and Cox. [2010]. Mathematics for Neuroscientists (London:
Academic Press).


