
Visual Object Recognition
Computational Models and Neurophysiological Mechanisms
Neuro 130/230. Harvard College/GSAS 78454

Web site: http://tinyurl.com/visionclass
à Class notes, Class slides, Readings Assignments

Location: Biolabs 2062
Time: Mondays 03:00 – 05:00

Lectures:
Faculty: Gabriel Kreiman (and invited guests)
TA: Will Xiao

Contact information:
Gabriel Kreiman Will Xiao
gabriel.kreiman@tch.harvard.edu xiaow@fas.harvard.edu
617-919-2530
Office Hours: Before class (Mondays 2pm),
after class (Mondays 5pm). By appointment

http://tinyurl.com/visionclass
mailto:gabriel.kreiman@tch.harvard.edu
mailto:xiaow@fas.harvard.edu

Visual Object Recognition
Computational Models and Neurophysiological Mechanisms
Neurobiology 230. Harvard College/GSAS 78454

Class 1 [09/02/2020]. Introduction to Vision
Class 2 [09/14/2020]. Natural image statistics and the retina
Class 3 [09/21/2020]. The Phenomenology of Vision
Class 4 [09/28/2020]. Learning from Lesions
Class 5 [10/05/2020]. Primary Visual Cortex
October 12th: University Holiday
Class 6 [10/19/2020]. Adventures into terra incognita
Class 7 [10/26/2020]. From the Highest Echelons of Visual Processing to Cognition
Class 8 [11/02/2020]. First Steps into in silico vision
Class 9 [11/09/2020]. Teaching Computers how to see
Class 10 [11/16/2020]. Computer Vision
Class 11 [11/23/2020]. Connecting Vision to the rest of Cognition
Class 12 [11/30/2020]. Visual Consciousness
FINAL EXAM, PAPER DUE 12/14/2020. No extensions.

OUTLINE

1. Why build computational models?
2. Single neuron models
3. Network models
4. Algorithms and methods for data analysis

Why bother with computational models?

-Quantitative models force us to formalize hypotheses and assumptions

“Verbal models” are not real models:
Vague and prone to subjective interpretation
Lack of quantitative predictions
Not falsifiable

-Models can integrate observations across experiments, resolutions and laboratories

-A model can lead to (non-intuitive) experimental predictions

-A model can be useful from an engineering viewpoint (e.g. face recognition)

-A model can point to missing data, critical information and decisive experiments

“Verbal models” are not real models:
Vague and prone to subjective interpretation
Lack of quantitative predictions
Not falsifiable

-Quantitative models force us to formalize hypotheses and assumptions

-Models can integrate observations across experiments, resolutions and laboratories

-A model can lead to (non-intuitive) experimental predictions

-A model can point to missing data, critical information and decisive experiments

What is a model, anyway?

F = m a

§ Which hand was the person using?
§ What is the shape/color/material of the object?
§ What day of the week is it?
§ What type of surface is it?
§ What is the temperature/humidity?
§ What is the force exerted by the person?
§ What is the weight of the object?
§ What is the force of gravity on this object?
§ Where is the force exerted?
§ What is the person wearing?
§ How much contact is there between the object and the surface?

A model for orientation tuning in simple cells

A feed-forward model for orientation
selectivity in V1

(by no means the only model)

Hubel and Wiesel. J. Physiology (1962)

OUTLINE

1. Why build computational models?
2. Single neuron models
3. Network models
4. Algorithms and methods for data analysis

A nested family of single neuron models

Filter
operations

Integrate-
and-fire
circuit

Hodgkin-
Huxley units

Multi-
compartmental
models

Spines,
channels

Biological
accuracy

Lack of analytical
solutions

Computational
complexity

Geometrically accurate models vs. spherical
cows with point masses

A central question in Theoretical Neuroscience:
What is the “right” level of abstraction?

The Hodgkin-Huxley Model

)()()()(34
NaNaKKLL EVhmgEVngEVg

dt
dVCtI -+-+-+=

where:
im = membrane current
V = voltage

L = leak channel
K = potassium channel
Na = sodium channel

g = conductances (e.g. gNa=120 mS/cm2; gK=36 mS/cm2; gL=0.3 mS/cm2)
E = reversal potentials (e.g. ENa=115mV, EK=-12 mV, EL = 10.6 mV)
n, m, h = “gating variables”, n=n(t), m=m(t), h=h(t)

Hodgkin, A. L., and Huxley, A. F. (1952).
A quantitative description of membrane current and its application to conduction and excitation in nerve.

Journal of Physiology 117, 500-544.

The Hodgkin-Huxley Model
% Gabbiani & Cox, Mathematics for Neuroscientists
% clamp.m
% Simulate a voltage clamp experiment
% usage: clamp(dt,Tfin)
% e.g. clamp(.01,15)

function clamp(dt,Tfin)
vK = -6; % mV
GK = 36; % mS/(cm)^2
vNa = 127; % mV
GNa = 120; % mS/(cm)^2
for vc = 8:10:90,

j = 2;t(1) = 0;v(1) = 0;
n(1) = an(0)/(an(0)+bn(0)); % 0.3177;
m(1) = am(0)/(am(0)+bm(0)); % 0.0529;
h(1) = ah(0)/(ah(0)+bh(0)); % 0.5961;
gK(1) = GK*n(1)^4;
gNa(1) = GNa*m(1)^3*h(1);
while j*dt < Tfin,

t(j) = j*dt;
v(j) = vc*(t(j)>2)*(t(j)<Tfin);
n(j) = (n(j-1) + dt*an(v(j)))/(1 + dt*(an(v(j))+bn(v(j)))

);
m(j) = (m(j-1) + dt*am(v(j)))/(1 + dt*(am(v(j))+bm(v(j)))

);
h(j) = (h(j-1) + dt*ah(v(j)))/(1 + dt*(ah(v(j))+bh(v(j)))

);
gK(j) = GK*n(j)^4;
gNa(j) = GNa*m(j)^3*h(j);
j = j + 1;

end
subplot(3,1,1); plot(t,v); hold on
subplot(3,1,2); plot(t,gK); hold on
subplot(3,1,3); plot(t,gNa); hold on

end
subplot(3,1,1);ylabel('v','fontsize',16);hold off
subplot(3,1,2);ylabel('g_K','fontsize',16);hold off
subplot(3,1,3);xlabel('t
(ms)','fontsize',16);ylabel('g_{Na}','fontsize',16);hold off

function val = an(v)
val = .01*(10-v)./(exp(1-v/10)-1);
function val = bn(v)
val = .125*exp(-v/80);

Simulated voltage-clamp experiments of Hodgkin and
Huxley (1952). From Gabbiani and Cox 2010.

The leaky integrate-and-fire model

• Lapicque 1907
• Below threshold, the voltage

is governed by:

• A spike is fired when V(t)>Vthr
(and V(t) is reset)

• A refractory period tref is
imposed after a spike.

• Simple and fast.
• Does not consider spike-rate

adaptation, multiple
compartments, sub-ms
biophysics, neuronal
geometry

�

C dV(t)
dt

= − V(t)
R

+ I(t) Vrest=-65
mV
Vth =-50
mV
Τm = 10
ms
Rm = 10
MΩ

Line = I&F model
Circles = cortex

fir
st

 2
 s

pi
ke

s

adapted

The leaky integrate-and-fire model
• Lapicque 1907
• Below threshold, the voltage is governed by:

• A spike is fired when V(t)>Vthr (and V(t) is reset)
• A refractory period tref is imposed after a spike
• Simple and fast
• Does not consider:

– spike-rate adaptation
– multiple compartments
– sub-ms biophysics
– neuronal geometry

�

C dV(t)
dt

= − V(t)
R

+ I(t)

function
[V,spk]=simpleiandf(E_L,V_res,V_th,tau_m,R_m,I_e,dt
,n)

% ultra-simple implementation of integrate-and-fire
model
% inputs:
% E_L = leak potential [e.g. -65 mV]
% V_res = reset potential [e.g. E_L]
% V_th = threshold potential [e.g. -50 mV]
% tau_m = membrane time constant [e.g. 10 ms]
% R_m = membrane resistance [e.g. 10 MOhm]
% I_e = external input [e.g. white
noise]
% dt = time step [e.g. 0.1 ms]
% n = number of time points [e.g. 1000]
%
% returns
% V = intracellular voltage [n x 1]
% spk = 0 or 1 indicating spikes [n x 1]

V(1)=V_res; % initial voltage
spk=zeros(n,1);
for t=2:n

V(t)=V(t-1)+(dt/tau_m) * (E_L - V(t-1) + R_m *
I_e(t)); % Key line computing the change in
voltage at time t

if (V(t)>V_th)
% Emit a spike if V is above threshold

V(t)=V_res;
% And reset the voltage

spk(t)=1;
end

end

Interlude: MATLAB is easy

function [V,spk]=simpleiandf(E_L,V_res,V_th,tau_m,R_m,I_e,dt,n)

% ultra-simple implementation of integrate-and-fire model
% inputs:
% E_L = leak potential [e.g. -65 mV]
% V_res = reset potential [e.g. E_L]
% V_th = threshold potential [e.g. -50 mV]
% tau_m = membrane time constant [e.g. 10 ms]
% R_m = membrane resistance [e.g. 10 MOhm]
% I_e = external input [e.g. white noise]
% dt = time step [e.g. 0.1 ms]
% n = number of time points [e.g. 1000]
%
% outputs:
% V = intracellular voltage [n x 1]
% spk = 0 or 1 indicating spikes [n x 1]

V(1)=V_res; % initial voltage
spk=zeros(n,1);
for t=2:n

V(t)=V(t-1)+(dt/tau_m) * (E_L - V(t-1) + R_m * I_e(t)); % Change in voltage at time t
if (V(t)>V_th) % Emit a spike if V is above threshold

V(t)=V_res; % And reset the voltage
spk(t)=1;

end
end

All of these lines are comments

This is the key line integrating the
differential equation

�

C dV(t)
dt

= − V(t)
R

+ I(t)

Typical units in neural networks

ReLU

input

ou
tp

ut

OUTLINE

1. Why build computational models?
2. Single neuron models
3. Network models
4. Algorithms and methods for data analysis

From neurons to circuits

•Single neurons can perform many interesting computations
(e.g. Gabbiani et al (2002). Multiplicative computation in a visual neuron sensitive to looming. Nature
420, 320-324)

•But neurons are not isolated. They are part of circuits. A typical
cortical neuron receives input from ~104 other neurons.

•It is not trivial to predict circuit-level properties from single neuron
properties. There can be interesting properties emerging at the
network level.

Circuits – some basic definitions

A big happy family
of neural networks

https://towardsdatascience.com/the-
mostly-complete-chart-of-neural-
networks-explained-3fb6f2367464

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

From neural circuits to neural networks

The convolution operation

Supervised versus unsupervised learning

Supervised learning

Unsupervised learning

Change the weights w to
match a certain output v

Change the weights w
without a target output
(e.g. via input correlations)

Learning from examples – Digit classification

Download MNIST
http://yann.lecun.com/exdb/mnist/

0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 38 43 105 255 253 253 253 253 253 174 6 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 43 139 224 226 252 253 252 252 252 252 252 252 158 14 0 0 0 0 0
0 0 0 0 0 0 0 0 0 178 252 252 252 252 253 252 252 252 252 252 252 252 59 0 0 0 0 0
0 0 0 0 0 0 0 0 0 109 252 252 230 132 133 132 132 189 252 252 252 252 59 0 0 0 0 0
0 0 0 0 0 0 0 0 0 4 29 29 24 0 0 0 0 14 226 252 252 172 7 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 85 243 252 252 144 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 88 189 252 252 252 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 91 212 247 252 252 252 204 9 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 32 125 193 193 193 253 252 252 252 238 102 28 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 45 222 252 252 252 252 253 252 252 252 177 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 45 223 253 253 253 253 255 253 253 253 253 74 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 31 123 52 44 44 44 44 143 252 252 74 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 252 252 74 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 86 252 252 74 0 0 0 0 0 0 0 0
0 0 0 0 0 0 5 75 9 0 0 0 0 0 0 98 242 252 252 74 0 0 0 0 0 0 0 0
0 0 0 0 0 61 183 252 29 0 0 0 0 18 92 239 252 252 243 65 0 0 0 0 0 0 0 0
0 0 0 0 0 208 252 252 147 134 134 134 134 203 253 252 252 188 83 0 0 0 0 0 0 0 0 0
0 0 0 0 0 208 252 252 252 252 252 252 252 252 253 230 153 8 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 49 157 252 252 252 252 252 217 207 146 45 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 7 103 235 252 172 103 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 115 121 162 253 253 213 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 63 107 170 251 252 252 252 252 250 214 0 0 0 0 0 0
0 0 0 0 0 0 0 0 25 192 226 226 241 252 253 202 252 252 252 252 252 225 0 0 0 0 0 0
0 0 0 0 0 0 0 68 223 252 252 252 252 252 39 19 39 65 224 252 252 183 0 0 0 0 0 0
0 0 0 0 0 0 0 186 252 252 252 245 108 53 0 0 0 150 252 252 220 20 0 0 0 0 0 0
0 0 0 0 0 0 70 242 252 252 222 59 0 0 0 0 0 178 252 252 141 0 0 0 0 0 0 0
0 0 0 0 0 0 185 252 252 194 67 0 0 0 0 17 90 240 252 194 67 0 0 0 0 0 0 0
0 0 0 0 0 0 83 205 190 24 0 0 0 0 0 121 252 252 209 24 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 77 247 252 248 106 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 253 252 252 102 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 134 255 253 253 39 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 6 183 253 252 107 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 10 102 252 253 163 16 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 13 168 252 252 110 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 41 252 252 217 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 40 155 252 214 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 165 252 252 106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 43 179 252 150 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 137 252 221 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 67 252 79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Learning from examples – Classifiers

Dimension 1

D
im

en
si

on
 2

.

Learning from examples – Classifiers and cross-validation

Learning from examples – The perceptron

Imagine that we want to
classify the inputs u into two
groups “+1” (=3) and “-1” (=7)

w→ w +


2
vm − v(um)()um Perceptron learning rule

Training examples: {um,vm}

Linear separability: can attain zero error
Cross-validation: use separate training and test data

There are several more sophisticated learning algorithms

Learning from examples – Training

Dimension 1

D
im

en
si

on
 2

.

Output = 7 Change w

Output = 3 Do nothing

Output = 3

Output = 3

Change w

Change w

Output = 7 Change w

Output = 3 Do nothing

Output = 7 Change w Output = 7 Do nothing

Output = 3

Output = 7 Do nothing

Change w

Learning from examples – Classifiers and cross-validation

A big happy family
of neural networks

https://towardsdatascience.com/the-
mostly-complete-chart-of-neural-
networks-explained-3fb6f2367464

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

Learning from examples – Gradient descent

Now imagine that v is a real
value (as opposed to binary)

u = f (s)

v(s) = w.u

We want to choose the weights
so that the output approximates
some function h(s)

w→ w + ε∇wE ∇wE =
∂E
∂wb

⎡

⎣
⎢

⎤

⎦
⎥

E =
1
2

h(sm) − v(sm)()2
m=1

NS

∑

Example: digit recognition in a feed-forward network
trained by gradient descent

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to document
recognition. Proc of the IEEE 86:2278-2324.

Example of hand-
written digits
(MINT database)

Example: digit recognition in a feed-forward network
trained by gradient descent

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to document
recognition. Proc of the IEEE 86:2278-2324.

Example of hand-
written digits
(MINT database)

Classification error rates Misclassified examples

The “blue brain” modeling project

-http://bluebrain.epfl.ch

- IBM’s Blue gene supercomputer

- “Reverse engineer” the brain in a “biologically accurate” way

- November 2007 milestone: 30 million synapses in “precise” locations to model
a neocortical column

- Compartmental simulations for neurons

- Needs another supercomputer for visualization (10,000 neurons, high quality
mesh, 1 billion triangles, 100 Gb)

QUESTION: What is the “right” level of abstraction needed to understand
the function of cortical circuitry?

http://bluebrain.epfl.ch

A big happy family
of neural networks

https://towardsdatascience.com/the-
mostly-complete-chart-of-neural-
networks-explained-3fb6f2367464

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

Hopfield networks:
A case study in collective computation

Hopfield, J. J. 1982. Neural networks and physical systems with emergent collective computational abilities. PNAS
79:2554-2558.
Tank, D., and J. Hopfield. 1987. Collective computation in neuron-like circuits. Scientific American 257:104-114

State vector

State update

Energy function

No self connections

Symmetric connections

Hebbian learning

Summary

• To understand vision, it is essential to build computational models

• We use abstract models where biological properties are simplified

• The integrate-and-fire neuron captures essential input-output properties

• The convolution operation allows extracting the same visual features
throughout the entire visual field

• Basic elementary computations: filtering, normalization, pooling, thresholding

• Neural networks show emergent computational properties

• Neural networks include feedforward, horizontal and top-down connections

• Attractor-based recurrent neural networks show dynamic properties that save
energy, provide flexible computations, and robustness to perturbations

Further reading

•Abbott and Dayan. Theoretical Neuroscience - Computational and
Mathematical Modeling of Neural Systems [2001] (ISBN 0-262-
04199-5). MIT Press.
•Koch. Biophysics of computation [1999] (ISBN 0-19-510491-9).
Oxford University Press.
•Hertz, Krogh, and Palmer, Introduction to the theory of neural
computation. [1991] (ISBN 0-20151560-1). Santa Fe Institute Studies
in the Sciences of Complexity.
•Gabbiani and Cox. [2010]. Mathematics for Neuroscientists (London:
Academic Press).

