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ABSTRACT13

A neural system has the ability to flexibly perform many tasks, but the underlying mechanism14

cannot be elucidated in traditional experimental and modeling studies designed for one task at15

a time. Here, we trained a single network model to perform 20 cognitive tasks that may involve16

working memory, decision-making, categorization and inhibitory control. We found that after17

training, recurrent units developed into clusters that are functionally specialized for various cog-18

nitive processes. We introduce a measure to quantify relationships between single-unit neural19

representations of tasks, and report five distinct types of such relationships that can be tested20

experimentally. Surprisingly, our network developed compositionality of task representations, a21

critical feature for cognitive flexibility, whereby one task can be performed by recombining in-22

structions for other tasks. Finally, we demonstrate how the network could learn multiple tasks23

sequentially. This work provides a computational platform to investigate neural representations24

of many cognitive tasks.25

INTRODUCTION26

The prefrontal cortex is important for numerous cognitive functions1–3, partly because of its27

central role in task representation4–7. Electrophysiological experiments using behaving animals28

reported prefrontal neurons that are either selective for different aspects of a given task8,9 or29

functionally mixed10,11. Much less is known about functional specialization of task representa-30

tions at the neuronal level. Imagine a single-neuron recording that could be carried out with31

animals switching between many different tasks. Is each task supported by a "private" set of32

neurons, or does each task involve every neuron in the network, or somewhere in between? If33

two tasks require a common underlying cognitive process, such as working memory or decision34

making, what would be the relationship between their neural representations? In other words,35

what would be the "neural relationship" between this pair of tasks? Would the two tasks utilize a36

shared neural substrate?37

Humans readily learn to perform many cognitive tasks in a short time. By following verbal in-38

structions such as "Release the lever only if the second item is not the same as the first," humans39

can perform a novel task without any training at all6. A cognitive task is typically composed of el-40
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ementary sensory, cognitive, and motor processes5. Performing a task without training requires41

composing elementary processes that are already learned into temporal sequences that enable42

correct performance on the new task. This property, called "compositionality," has been pro-43

posed as a fundamental principle underlying flexible cognitive control12. Indeed, human studies44

have suggested that the representation of complex cognitive tasks in the lateral prefrontal cortex45

is compositional6,13. However, these tasks involved verbal instructions; it is unknown whether46

non-verbal tasks commonly used in animal physiological experiments also display composition-47

ality and whether relatively simple neural network models are sufficient to support composi-48

tional task structures.49

These questions remain difficult to address with conventional experimental and modeling50

approaches. Experiments with laboratory animals have so far been largely limited to a single51

task at a time; on the other hand, human imaging studies lack the spatial resolution to address52

questions at the single neuron level. Therefore, the lack of neural recordings from animals per-53

forming many different tasks leaves unanswered important questions regarding how a single54

network represents and supports distinct tasks. In principle, these questions could be addressed55

in neural circuit models, but designing a single neural circuit model capable of multiple tasks is56

challenging and virtually nonexistent. To tackle these problems, we took the approach of train-57

ing recurrent neural networks (RNNs)11,14–19. In this work, we trained a single RNN to perform58

20 cognitive tasks. We found that after training, the emerging task representations are organized59

in the form of clustering of recurrent units. Our network also makes numerous testable predic-60

tions regarding the relationship between the neural representations of pairs of cognitive tasks.61

Surprisingly, we found that compositionality of task representations emerges from training in62

our network model, which can be instructed to perform new tasks without further training. Our63

work provides a framework for investigating neural representations of task structures and neural64

relationships between tasks.65
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RESULTS66

Training neural networks for many cognitive tasks67

To study how various cognitive tasks might be implemented in a single neural circuit, we trained68

a recurrent neural network model (Fig. 1a) to perform 20 tasks, most of which are commonly69

used in neurophysiological studies of nonhuman animals and crucial to our understanding of70

the neural mechanisms of cognition. The chosen set of tasks includes variants of memory-71

guided response20, simple perceptual decision making21, context-dependent decision-making11,22,72

multi-sensory integration23, parametric working memory24, inhibitory control (e.g., in anti-saccade)25,73

delayed match-to-sample26, and delayed match-to-category27 tasks (Table 1, Supplementary74

Fig. 1).75

The recurrent network model emulates a “cognitive-type" cortical circuit such as the pre-76

frontal cortex3, which receives converging inputs from multiple sensory pathways and projects77

to downstream motor areas. We designed our network architecture to be general enough for all78

the tasks mentioned above, but otherwise as simple as possible to facilitate analysis. For every79

task, the network receives noisy inputs of three types: fixation, stimulus, and rule (Fig. 1a). The80

fixation input indicates whether the network should "fixate" or respond (e.g. "saccade"). Thus81

the decrease in the fixation input provides a "go signal" to the network. The stimulus inputs con-82

sist of two modalities, each represented by a ring of input units that encodes a one-dimensional83

circular variable such as motion direction or color on a color wheel18. A single rule input unit is84

activated in each trial, instructing the network on which task it is currently supposed to perform.85

The network projects to a fixation output unit and a group of motor units encoding the response86

direction as a one dimensional variable on a ring of outputs (e.g., saccade direction, reach direc-87

tion). To mimic biological neurons, all units in our recurrent network receive private noise and88

have non-negative activities, imposed by a realistic neuronal input-output function28.89

Before training, a network is incapable of performing any task. It is trained with supervised90

learning11,15, which modifies all connection weights (input, recurrent, and output) to minimize91

the difference between the network output and a desired (target) output. All tasks were randomly92

interleaved during training (at the end we will present results from sequential training). Below93

we show results obtained from networks of 256 recurrent units, and results are robust with re-94
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Figure 1. A recurrent neural network model is trained to perform a large number of cognitive tasks. (a)

A recurrent neural network (middle) described by rate units receives inputs (left) encoding a fixation cue,

stimuli from two modalities, and a rule signal (which instructs the system which task to perform in a given

trial). The network has 256 recurrent units (top right), and it projects to a fixation output unit (which

should be active when a motor response is unwarranted) and a population of units selective for response

directions (right). All units in the recurrent network have non-negative firing rates. All connection

weights and biases are modifiable by training using a supervised learning protocol. (b) The network

successfully learned to perform 20 tasks. (c, d) Psychometric curves in two decision making (DM) tasks.

(c) Perceptual decision-making relies on temporal integration of information, as the network performance

improves when the noisy stimulus is presented for a longer time. (d) In a multi-sensory integration task,

the trained network combines information from two modalities to improve performance (compared with

performance when information is only provided by a single modality).
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Task name Abbreviation Task family Reference

Go Go Go N/A

Reaction-time go RT Go Go N/A

Delayed go Dly Go Go [20]

Anti-response Anti Anti [25]

Reaction-time anti-response RT Anti Anti [25]

Delayed anti-response Dly Anti Anti [25]

Decision making 1 DM 1 DM [21]

Decision making 2 DM 2 DM [21]

Context-dependent decision making 1 Ctx DM 1 DM [11]

Context-dependent decision making 2 Ctx DM 2 DM [11]

Multi-sensory decision making MultSen DM DM [23]

Delayed decision making 1 Dly DM 1 Dly DM [24]

Delayed decision making 2 Dly DM 2 Dly DM [24]

Context-dependent delayed decision making 1 Ctx Dly DM 1 Dly DM N/A

Context-dependent delayed decision making 2 Ctx Dly DM 2 Dly DM N/A

Multi-sensory delayed decision making MultSen Dly DM Dly DM N/A

Delayed match-to-sample DMS Matching [26]

Delayed non-match-to-sample DNMS Matching [26]

Delayed match-to-category DMC Matching [27]

Delayed non-match-to-category DNMC Matching [27]

Table 1. Names and abbreviations of all tasks trained in the networks. Most of the trained tasks are

derived from archetypal cognitive tasks used in non-human animal experiments. We grouped our tasks

into five task families. We are not aware of experimental studies that investigated the Ctx Dly DM 1,

Ctx Dly DM 2, or MultSen Dly DM tasks in non-human animals.
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spect to the exact network size. After training, a single network model achieved high behavioral95

performance across all tasks (Fig. 1b). Furthermore, by conducting a battery of psychomet-96

ric tests, we demonstrate that the network displays behavioral features consistent with animal97

studies. For instance, in perceptual decision-making tasks, the network achieves better perfor-98

mance with higher coherence and longer duration of the stimulus (Fig. 1c, Supplementary Fig.99

2a-f)21, and it combines information from different sources to form decisions (Fig. 1d)23. In100

working memory tasks, the network can maintain information throughout a delay period of up101

to five seconds (Supplementary Fig. 2g)1,20,24.102

Dissecting the circuit for the family of Anti tasks103

For trained neural networks to be useful model systems for neuroscience, it is critical that we104

attempt to understand the circuit mechanism underlying the network computation29. Here we105

demonstrate how a trained network could be dissected and analyzed in a sample family of cogni-106

tive tasks. Anti-response tasks are important tools to investigate voluntary action and inhibitory107

control25. These tasks require an anti-response, in the opposite direction from the more com-108

mon pro-response towards a stimulus’ location. Our set of tasks includes three tasks from the109

Anti task family (Table 1): the anti-response (Anti), reaction-time anti-response (RT Anti), and110

delayed anti-response (Dly Anti) tasks. We found that a subgroup of units emerged in a trained111

network, which we call Anti units (Fig. 2a). These units are primarily selective to stimuli in the112

Anti family of tasks. Inactivating or "lesioning" all Anti units at once resulted in a complete fail-113

ure in performing the family of tasks that require an anti-response, but had essentially no impact114

on the performance of the other tasks (Fig. 2b).115

Since we have access to all the information of the trained network, we next investigated the116

connection weights of Anti units to understand their roles. Anti units receive positive connec-117

tion weights from the three rule input units representing Anti tasks (Fig. 2c), which explained118

why Anti units are only active during Anti tasks. Next, we studied the connection weights of Anti119

units with the stimulus-encoding input ring and the response-encoding output ring. For each120

Anti unit, the preferred input and output directions defined by the input and output connection121

weights are 180 degrees apart (Fig. 2d). These opposite preferred directions serve as the neu-122

ral substrate for vector inversion (anti-mapping) required by Anti tasks. Finally, the Anti units123
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Figure 2. Dissecting the circuit for a family of tasks. (a) An example Anti unit, which is primarily

selective in the Anti-family of tasks. Different traces show neural activities across stimulus conditions

within a task. (b) After lesioning all Anti units together (green), the network can no longer perform any

of the Anti tasks, while performance for other tasks remain intact. Instead, lesioning the same number

of randomly selected units had a minor impact on the performance. (c) Anti units receive strong positive

connections from rule units representing the Anti tasks but negative connections from non-Anti rule

units. The box shows the lower to upper quartiles of connection weights. The whiskers show the full

range. (d) Average connections from input units to Anti units (black) and those onto output units (red)

display opposite preferred directions, thereby vector conversion (from pro- to anti-response) is realized.

Both input and output connections are sorted by each unit’s preferred input direction, defined as the

stimulus direction represented by the strongest-projecting input unit. (e) Network wiring architecture

that emerged from training, in which Anti units excite themselves and strongly inhibit other units. (f)

Circuit diagram summarizing the neural mechanism of the Anti-family tasks.
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strongly inhibit the rest of the recurrent units (Non-Anti units) through recurrent connections124

(Fig. 2e), suppressing a pro-response with inhibitory control. Thus, the circuit mechanism un-125

derlying Anti tasks in our trained network is delineated: A group of units emerge from training126

that are specialized for the anti-response process and are essential in every task that requires this127

process. The Anti rule inputs engage vector-inverting Anti units, which in turn exert inhibitory128

control over Non-Anti units (Fig. 2f).129

Functional clusters encode subsets of tasks130

The focus of our analysis was to examine the neural representation of tasks. After training, it131

is conceivable that each unit of the recurrent network is only selective in one or a few tasks,132

forming highly-specialized task representations. On the other hand, task representations may133

be completely mixed, where all units are engaged in every task. We sought to assess where our134

network lies on the continuum between these two extreme scenarios.135

To quantify single-unit task representation, we need a measure of task selectivity that is gen-136

eral enough so it applies to a broad range of tasks, and at the same time simple enough so it137

can be easily computed. We propose a measure that we call Task Variance (see Online Meth-138

ods). For each unit, the task variance for a given task is obtained by first computing the variance139

of neural activities across all possible task conditions at a given time point, then averaging that140

variance across time (excluding the fixation epoch) (Fig. 3a). Task variance is agnostic about141

the task setup and can be easily computed in models and is also applicable to the analysis of142

experimental data.143

By computing the task variance for all trained tasks, we can study how individual units are144

differentially selective in all the tasks (Fig. 3b). For better comparison across units, we normal-145

ized the task variance of each unit such that the maximum normalized variance over all tasks is146

one. By analyzing the patterns of normalized task variance for all active units, we found that units147

are self-organized into distinct clusters through learning (Fig. 3c,d) (see Online Methods). We148

identified about 10 clusters in the network. Each cluster is mainly selective in a specific subset of149

tasks. To understand the causal role of these clusters, we lesioned each of them while monitoring150

the change in performance across all 20 tasks (Fig. 3e). We found one cluster (cluster number151

3) that is specialized for the Anti-family tasks, and it consists mainly of Anti units analyzed in152
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Figure 3. The emergence of functionally specialized clusters for task representation. (a) Neural activity

of a single unit during an example task. Different traces correspond to different stimulus conditions. (b)

Task variances across all tasks for the same unit. For each unit, task variance measures the variance of

activities across all stimulus conditions. (c) Task variances across all tasks and active units, normalized

by the peak value across tasks for each unit. Units form distinct clusters identified using the K-means

clustering method based on normalized task variances. Each cluster is specialized for a subset of tasks.

A task can involve units from several clusters. Units are sorted by their cluster membership, indicated by

colored lines at the bottom. (d) Visualization of the task variance map. For each unit, task variances

across tasks form a vector that is embedded in the two-dimensional space using t-distributed Stochastic

Neighbor Embedding (t-SNE). Units are colored according to their cluster membership. (e) Change in

performance across all tasks when each cluster of units is lesioned.
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Fig. 2. Another two clusters (cluster numbers 6 and 7) are specialized for decision-making tasks153

involving modality 1 and 2 respectively. Furthermore, one cluster (cluster number 5) selective154

in the parametric working memory tasks (Dly DM task family) is also selective in the perceptual155

decision making tasks (DM task family), indicating a common neural substrate for these two156

cognitive functions in our network30. We can also study how units are clustered based on epoch157

variance, a measure that quantifies how selective units are in each task epoch (Supplementary158

Fig. 3). One cluster of units presumably supports response generation, as it is highly selective in159

the response epoch but not the stimulus epoch. Our results indicate that the network success-160

fully identified common sensory, cognitive, and motor processes underlying subsets of tasks,161

and through training developed units dedicated to the shared processes rather than the individ-162

ual tasks.163

Relationships between neural representations of pairs of tasks164

The map of normalized task variance in Fig. 3c allowed us to visualize the whole network across165

many tasks all at once. However, it is of limited use when we try to compare with experimental166

data or to analyze the (dis)similarity of the neural task representation between any pair of tasks.167

To quantify how each unit is selective in one task in comparison to another task, we introduce168

a simple measure based on task variance: the Fractional Task Variance (FTV). For unit i , the169

fractional task variance with respect to task A and task B is defined as170

FTVi (A,B) = TVi (A)−TVi (B)

TVi (A)+TVi (B)
, (1)

where TVi (A) and TVi (B) are the task variances for tasks A and B respectively. Fractional task171

variance ranges between −1 and +1. Having a FTVi (A,B) close to +1 (or -1) means that unit i is172

primarily selective in task A (or B).173

For every pair of tasks, we can compute the fractional task variance for all units that are active174

in at least one of the two tasks. Each distribution of FTVs contains rich information about the175

single-unit level neural relationship between the pair of tasks. Having 20 tasks provides us with176

190 distinct FTV distributions (Supplementary Fig. 4), from the shape of which we summarized177

five typical neural relationships (Fig. 4).178

1. Disjoint (Fig. 4a). When two tasks have a disjoint relationship like the Anti task and the179
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Figure 4. A diversity of neural relationships between pairs of tasks. For a pair of tasks, we characterize

their neural relationship by the distribution of fractional task variances over all units. We observed five

typical relationships: Disjoint (a), Inclusive (b), Mixed (c), Disjoint-Equal (d), and Disjoint-Mixed (e).

Blue: distribution for one example network. Black: averaged distribution over 20 networks.

DM1 task, the FTV distribution is characterized by two peaks at the two ends and few units in180

between. There is little overlap between units selective in the two tasks. The shape of the FTV181

distribution is rather robust across independently trained networks: The FTV distribution from182

one sample network closely matches the averaged distribution from 20 networks.183

2. Inclusive (Fig. 4b). This relationship is embodied by a strongly skewed FTV distribution,184

suggesting that one task is neurally a subset of another task. In this case, there are no units that185

are selective in the DM1 task yet not in the Dly DM 1 task.186

3. Mixed (Fig. 4c). A mixed relationship is characterized by a broad uni-modal FTV distri-187

bution centered around 0 with no clear peak at the two ends. This distribution suggests that the188

two tasks utilize overlapping neural circuits.189

4. Disjoint-Equal (Fig. 4d). For Ctx DM 1 and 2, the FTV distribution is trimodal, with two190

peaks at the two ends and an additional peak around 0. This relationship can be considered as191

a combination of the Disjoint relationship and the Equal relationship. The Equal relationship is192

represented by a single, narrow peak around 0. In this scenario, the two tasks each gets a private193

neural population, while they also share the third population.194

5. Disjoint-Mixed (Fig. 4e). This relationship is a combination of the Disjoint and the Mixed195

relationships. Many units only participate in one of the two tasks, while the rest of the units are196

mixed in both tasks.197

In summary, we introduced a simple yet informative measure to study the diverse neural198
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relationships between pairs of tasks. We found that these relationships can be categorized into199

several canonical types. Our results on FTV distributions (Supplementary Fig. 4) provide an200

array of straightforward predictions on pairwise neural relationships between cognitive tasks.201

Compositional representations of tasks202

A cognitive task can, in general, be expressed abstractly as a sequence of sensory, cognitive and203

motor processes, and cognitive processes may involve a combination of basic functions (such204

as working memory) required to perform the task. The compositionality of cognitive tasks is205

natural for human subjects because tasks are instructed with natural languages, which are com-206

positional in nature12. For example, the Go task can be instructed as "Saccade to the direction207

of the stimulus after the fixation cue goes off," while the Dly Go task can be instructed as "Re-208

member the direction of the stimulus, then saccade to that direction after the fixation cue goes209

off." Therefore, the Dly Go task can be expressed as a composition of the Go task with a partic-210

ular working memory process. Similarly, the Anti task can be combined with the same working211

memory process to form the Dly Anti task.212

Here we test whether the network developed compositional representations for tasks, even213

when it was never explicitly provided with the relationships between tasks. For the sake of214

simplicity, we studied the representation of each task as a single high-dimensional vector. To215

compute this "task vector", we averaged neural activities across all possible stimulus conditions216

within each task and focused on the steady-state response during the stimulus epoch (Fig. 5a).217

Most tasks studied here begin with a stimulus epoch, so the neural population state near the end218

of stimulus presentation is potentially representative of how the network processed the stimulus219

in a particular task to meet the computational need of subsequent behavioral epochs. Indeed,220

this idea is confirmed using principal component analysis, which revealed that task vectors in221

the state space spanned by the top two principal components are distinct for all twenty tasks222

(Supplementary Fig. 5).223

When plotting the task vectors representing the Go, Dly Go, Anti, and Dly Anti tasks, we found224

that the vector pointing from the Go vector towards the Dly Go vector is very similar to the vector225

pointing from the Anti vector to the Dly Anti vector (Fig. 5b). This finding is surprisingly robust226

and becomes even more apparent when we combined results from many networks (Fig. 5c). The227
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Figure 5. Compositional representation of tasks in state space. (a) The representation of each task

is the population activity of the recurrent network at the end of the stimulus presentation, averaged

across different stimulus conditions. (b) Representations of the Go, Dly Go, Anti, Dly Anti tasks in the

space spanned by the top two principal components (PCs) for a sample network. For better comparison

across networks, the top two PCs are rotated and reflected (rPCs) to form the two axes (see Online

Methods). (c) The same analysis as in (b) is performed for 20 networks, and the results are overlaid.

(d) Representations of the Ctx DM 1, Ctx DM 2, Ctx Dly DM 1, and Ctx Dly DM 2 tasks in the top

two PCs for a sample network. (e) The same analysis as in (d) for 20 networks.
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Go-to-Dly Go vector and the Anti-to-Dly Anti vector presumably reflect the cognitive process228

of working memory. Similar findings are made with another set of tasks. The vector pointing229

from the Ctx DM 1 task to the Ctx DM 2 task is similar to the vector pointing from the Ctx Dly230

DM 1 task to the Ctx Dly DM 2 task (Fig. 5d,e). The Ctx DM 1-to-Ctx DM 2 vector reflects the231

difference between the gating modality 1 and the gating modality 2 processes. These results232

suggest that sensory, cognitive, and motor processes can be represented as vectors in the task233

space. Therefore, the representation of a task can potentially be expressed as a linear summation234

of vectors representing the underlying sensory, cognitive, and motor processes. This finding is235

reminiscent of previous work showing that neural networks can represent words and phrases236

compositionally31.237

Performing tasks with composition of rule inputs238

We showed that the representation of tasks could be compositional in principle. However, it is239

unclear whether in our network this principle of compositionality can be extended from rep-240

resenting to performing tasks. The network is normally instructed which task to perform by241

activation of the corresponding rule input unit. What would the network do in response to a242

compositional rule signal as a combination of several activated and deactivated rule units? We243

tested whether the network can perform tasks by receiving composite rule inputs (Fig. 6a).244

Consider the same two sets of tasks as in Fig. 5. The network can perform the Dly Anti task245

well when provided with the particular combination of rule inputs: Anti + (Dly Go - Go) (Fig.246

6b). In contrast, the network fails to perform the Dly Anti task when provided with several other247

combinations of rule inputs (Fig. 6b). Similarly, the network can perform the Ctx Dly DM 1 task248

best when provided the composite rule inputs of Ctx Dly DM 2 + (Ctx DM 1 - Ctx DM 2) (Fig. 6c).249

In accordance with these results, we found that connection weights from individual rule input250

units to recurrent units also display a compositional structure (Supplementary Fig. 6). Together,251

these results further confirmed that our network learned the implicit compositional relationship252

between tasks. In such a network, learning a new task may not require any modification to the253

recurrent connections. Instead, it only requires learning the appropriate combination of rule254

inputs that control the information flow within the network2.255
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Figure 6. Performing tasks with algebraically composite rule inputs. (a) During training, a task is

always instructed by activation of the corresponding rule input unit (left). After training, the network

can potentially perform a task by activation or deactivation of a set of rule input units meant for other

tasks (right). (b) The network can perform the Dly Anti task well if given the Dly Anti rule input or

the Anti + (Dly Go - Go) rule input. The network fails to perform the Dly Anti task when provided

other combinations of rule inputs. (c) Similarly, the network can perform the Ctx Dly DM 1 task well

when provided with the Ctx Dly DM 2 + (Ctx DM 1 - Ctx DM 2) rule input. Circles represent results of

individual networks, while bars represent median performances of 20 networks.
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Continual training of many cognitive tasks256

In humans and other animals, the performance of a well-trained task can be retained, even with-257

out re-training, for months or even years. However, when using traditional network training258

techniques, artificial neural networks rapidly forget previously learned tasks after being exposed259

to new tasks. This failure of retaining memories during sequential training of tasks, termed260

"catastrophic forgetting," is inevitable when using common network architectures and training261

methods32,33. Network parameters (such as connection weights) optimal for a new task can be262

destructive for old tasks (Fig. 7a). Recent work proposed several continual learning methods to263

battle catastrophic forgetting32–34. These methods typically involve selective protection of con-264

nection weights that are deemed important for previously learned tasks.265

By employing one such technique33, we were able to substantially improve the performance266

of networks that are sequentially trained on a set of cognitive tasks (Fig. 7b). The continual learn-267

ing technique is especially effective at helping the network retain performance of tasks learned268

earlier. For example, the network can retain high performance in a working memory task after269

successfully learning ten additional tasks (Fig. 7c). We analyzed the FTV distributions for three270

example pairs of tasks in the continual learning networks (Fig. 7d-f). The shapes of these FTV271

distributions can be markedly different from the corresponding ones of the interleaved-training272

networks (Fig. 7d,e, Fig. 4b,c). It is possible that this result depends on factors in the continual273

learning, such as the order of individual tasks used during training, more careful comparisons274

are needed in future studies. Nevertheless, our findings suggest that sequential training of tasks275

could drastically shape neural network representations.276

DISCUSSION277

Higher-order cortical areas, especially the lateral prefrontal cortex, are remarkably versatile for278

their engagement in a wide gamut of cognitive functions. Here we investigated how multiple279

cognitive tasks are represented in a single recurrent neural network model. First, we demon-280

strated how the trained neural network could be dissected and understood for a family of tasks.281

Next, we identified clusters of units that are each specialized for a subset of tasks. Each cluster282

potentially represents a particular sequence of the sensori-motor events and a subset of cogni-283
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Figure 7. Sequential training of cognitive tasks. (a) Schematics of continual learning. The network

learns to perform a task by modifying parameters to minimize the loss function for this task. When a

network is trained on two tasks sequentially with traditional learning techniques (gray arrow), training for

the second task can easily result in the failure of performing the first task, because the minima (circle)

of the loss functions of tasks 1 (green) and 2 (purple) are far apart. Continual learning techniques

can protect previously-learned tasks by preventing large changes of important network parameters (red

arrow). Arrows show changes of an example parameter θ when task 2 is trained after task 1 is already

learned. (b) Final performance across all trained tasks with traditional (gray) or continual (red) learning

techniques. Only 12 tasks are trained due to difficulty of learning more tasks even with continual learning

techniques. Lines represent results of individual networks. (c) Performance of all tasks during sequential

training of one network with traditional (gray) or continual (red) learning techniques. For each task, the

black box indicates the period in which this task is trained. (d-f) Fractional variance distributions for

three pairs of tasks. Blue: distribution for one sample network. Black: averaged distribution over 20

networks.
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tive (such as working memory, categorization, decision-making, inhibitory control) processes284

that are the building blocks for flexible behavior. We observed a close match between the task285

selectivity of each cluster and its causal role, which suggests that analysis of neural activity can286

provide meaningful functional insights in trained neural networks. We proposed a measure, the287

fractional task variance, that probes the neural relationship between a pair of tasks at the single-288

neuron level. This measure allowed us to summarize five distinct and typical kinds of neural289

relationships in our network. This measure can be readily applied to firing activity of single units290

recorded from animals performing two or more tasks. Surprisingly, we found that the represen-291

tation of tasks in our network is compositional, a critical feature for cognitive flexibility. By virtue292

of the compositionality, a task can be correctly instructed by composing instructions for other293

tasks. Finally, using a recently proposed continual learning technique, we can train the network294

to learn many tasks sequentially.295

Monkeys, and in some cases rodents, can be trained to alternate between two tasks11,22,25,35,36.296

Single-unit recordings from these experiments can potentially be analyzed to compute the frac-297

tion task variance distributions. Theoretical studies argued that for maximum cognitive flex-298

ibility, prefrontal neurons should be selective to mixtures of multiple task variables37. Mixed299

selectivity neurons are indeed ubiquitous within the prefrontal cortex10. We showed that most300

units in our network are strongly selective to rules (Fig. 3). Meanwhile, these units are selective301

to other aspects of tasks (otherwise their task variances would be zero). For example, the Anti302

units (Fig. 2) are highly activated only during the Anti tasks and when the stimulus is in their303

preferred directions. Therefore, units in our network display strong nonlinear mixed selectivity,304

as found in neurons of the prefrontal cortex10. Conceptually, this work extends the notion of305

mixed selectivity from within a single task to across multiple tasks.306

Multiple cognitive tasks are more common in human imaging studies. In a series of exper-307

iments, Cole and colleagues trained humans to perform 64 cognitive tasks following composi-308

tional rule instructions6,38. They trained linear classifiers to decode rules from prefrontal neural309

activity patterns. These classifiers can significantly generalize to novel tasks6, consistent with a310

compositional neural representation of rules. Although trained with discrete rule instructions,311

our network develops a clear compositional structure in its representations, as shown using the312

population activity at a single time point (near the end of stimulus presentation). Temporal dy-313
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namics in neural circuits are ubiquitous during cognitive tasks39 and are potentially critical for314

cognitive computations18, so the study of steady-state responses here is merely a first step to-315

wards understanding the dynamical representation of tasks. Future work could study how dy-316

namical representations of tasks are related to one another in the state space. Cole et al. found317

that humans can rapidly adapt to new tasks by adjusting the functional connectivity patterns318

of parietal-frontal flexible hubs38. In the future, graph-theoretic analysis can be used to test319

whether our trained network developed flexible hubs that coordinate information flow across320

the network. There exists a structural hierarchy within the human prefrontal cortex, with more321

abstract cognitive processes being represented in the more anterior areas40,41. It is unclear if our322

trained network developed hierarchical representations of cognitive processes or tasks. If it did,323

a subset of units should represent more abstract aspects of the tasks, while other units represent324

the concrete, sensorimotor aspects. This question is hard to address for now because the 20 tasks325

we chose are not organized in a clearly hierarchical way40.326

Training artificial neural networks for multiple tasks has a long history in the field of machine327

learning42. However, it has mainly been used as a method to improve training and generaliza-328

tion. There were few studies on the representation of task structure or task set in trained net-329

works. Modern artificial neural networks are capable of highly complex tasks, such as playing330

Atari games43, which likely involve a range of cognitive skills. However, in contrast to cognitive331

tasks that are specifically designed to shed light on neural mechanisms of cognition, complex332

real-life tasks remain challenging to analyze. In principle, we can strike a balance between the333

two approaches by designing a set of tasks that are complex enough, yet still amenable to analy-334

sis. The ability to "open the box" and elucidate the inner working of the network after training is335

crucial for understanding neural mechanisms of cognition in neuroscience.336

Like other works on trained neural networks11,14–19,44, the machine learning protocol we337

used is not validated biologically. Besides, our RNN consists of a single neural population, in338

contrast to the brain system where a number of interacting brain regions are engaged in a cog-339

nitive task22,45. Although our neural network model developed functionally specialized clusters340

of units through training, it is unclear how to map them onto different brain areas. Furthermore,341

in our network, a rule input is explicitly provided throughout the trial, therefore there is no need342

for the network to hold the "task set" internally using persistent activity4,5. This, however, can343
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be remedied by providing the rule cue only at the beginning of each trial, which would encour-344

age the network to internally sustain the task set. We can even ask the network to figure out a345

task rule by trial-and-error46. In spite of these concerns, our approach offers an efficient com-346

putational platform to test hypotheses about neural representations and mechanisms that could347

guide experiments and data analysis. Furthermore, this approach can yield new conceptual in-348

sights, as shown here by the finding of compositional task representation. Future progress in349

this direction, at the interface between neuroscience and artificial intelligence, will advance our350

understanding of flexible behavior in many cognitive tasks.351

ACKNOWLEDGMENTS352

We thank current and former members of the Wang lab, especially S.Y. Li, O. Marschall, and M.353

Joglekar, and E. Ohran for fruitful discussions; J.A. Li, J.D. Murray, D. Ehrlich, and J. Jaramillo for354

critical comments on the manuscript; and S. Wang for assistance with the NYU HPC clusters.355

This work was supported by an Office of Naval Research Grant N00014-13-1-0297, a National356

Science Foundation Grant Number 16-31586, and a Google Computational Neuroscience Grant357

(X.J.W.) and a Samuel J. and Joan B. Williamson Fellowship (G.R.Y.).358

AUTHOR CONTRIBUTIONS359

G.R.Y. and X.J.W. designed the study. G.R.Y., H.F.S, W.T.N, and X.J.W. had frequent discussions.360

G.R.Y. performed the research. G.R.Y., H.F.S, W.T.N, and X.J.W. wrote the manuscript.361

COMPETING FINANCIAL INTERESTS362

The authors declare no competing financial interests.363

DATA AVAILABILITY STATEMENT364

All codes will be available at publication.365

21

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/183632doi: bioRxiv preprint first posted online Sep. 1, 2017; 

http://dx.doi.org/10.1101/183632
http://creativecommons.org/licenses/by-nc-nd/4.0/


ONLINE METHODS366

Code availability367

All codes are available on GitHub.368

Network structure369

The recurrent neural networks shown in the main text all contain Nrec = 256 units. The results370

are largely insensitive to the network size. Similar results were obtained in networks of sizes371

between 128 and 512 units (the range we tested). The network is a time-discretized recurrent372

neural network with positive activity15. Before time-discretization, the network activity r follows373

a continuous dynamical equation374

τ
dr

dt
=−r+ f (W recr+W inu+b)+

√
2τσ2

recξ. (2)

In this equation, u is the input to the network, b is the bias or background input, τ = 100ms is375

the neuronal time constant, f (·) is the neuronal nonlinearity that keeps the unit activity non-376

negative, ξ are Nrec independent Gaussian white noise processes with zero mean and unit vari-377

ance, and σrec = 0.05 is the strength of the noise. In particular, we use a standard softplus func-378

tion379

f (x) = log(1+exp(x)), (3)

which after re-parameterization is very similar to a neuronal nonlinearity, i.e., f-I curve, com-380

monly used in previous neural circuit modelings28. A set of output units z read out nonlinearly381

from the network,382

z = g (W outr), (4)

where g (x) = 1/(1+exp(−x)) is the logistic function, bounding output activities between 0 and383

1. W in,W rec,W out are the input, recurrent, and output connection matrices respectively.384

After using the first-order Euler approximation with a time discretization step ∆t , we have385

rt = (1−α)rt−1 +α · f (W recrt−1 +W inut +b)+
√

2ασ2
recN(0,1). (5)
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Here α ≡ ∆t/τ, and N(0,1) stands for the standard normal distribution. We use a discretization386

step ∆t = 20ms. We imposed no constraint on the sign or the structure of the weight matrices387

W in,W rec,W out. The network and the training are implemented in TensorFlow47.388

The network receives four types of noisy inputs,389

u = (ufix,umod1,umod2,urule)+unoise. (6)

unoise =
√

2

α
σinN(0,1). (7)

Here the input noise strength N(0,1) = 0.01. The fixation input ufix is typically at the high value of390

1 when the network should fixate. The fixation input goes to zero when the network is required to391

respond. The stimulus inputs umod1 and umod2 comprise two "rings" of units, each representing392

a one-dimensional circular variable described by the degree around a circle. Each ring contains393

32 units, whose preferred directions are uniformly spaced from 0 to 2π. For unit i with a preferred394

direction θi , its activity for a stimulus presented at direction ψ is395

ui = γ ·0.8exp

[
−1

2

(
8|ψ−ψi |

π

)2]
, (8)

where γ is the strength of the stimulus. For multiple stimuli, input activities are added together.396

The network also receives a set of rule inputs urule that encode which task the network is sup-397

posed to perform on each trial. Normally, urule is a one-hot vector. That means the rule input398

unit corresponding to the current task is activated at 1, while other rule input units remain at399

0. Therefore the number of rule input units equals to the number of tasks trained. For compo-400

sitional rule inputs (Fig. 6), the activation of rule input units can be an arbitrary pattern. For401

example, for the combined rule input Anti + (Dly Go - Go), the activities of the rule input units402

corresponding to the Go, Dly Go, and Anti tasks are -1, +1, and +1 respectively. In total there are403

Nin = 1+32×2+20 = 85 input units.404

The network projects to an output ring zout, which also contains 32 units. The output ring405

units encode the response directions using similar tuning curves to the ones used for the input406

rings. In addition, the network projects to a fixation output unit zfix, which should be at the high407

activity value of 1 before the response and at 0 once a response is generated. In total there are408

Nout = 1+32 = 33 output units.409

We lesion a network unit by setting to zero its projection weights to all recurrent and output410

units.411
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Tasks and performances412

Here we first describe the common setup for the 20 tasks trained. Deviations from the common413

setup will be described below individually. The rule input unit corresponding to the current414

task will be activated throughout the whole trial. The network receives a fixation input, which415

is activated from the beginning of the trial. When the fixation input is on, the network should416

fixate by having the fixation output unit at a high activity ẑfix = 0.85. The offset of the fixation417

input usually indicates the onset of the response or go epoch, when the network needs to report418

the response direction through activities of the output ring. During the response epoch, the419

fixation output unit has a target output of ẑfix = 0.05. For a target response direction ψ, the target420

output activity of an output unit i is421

ẑi = 0.8exp

[
−1

2
(

8|ψ−ψi |
π

)2
]
+0.05, (9)

where ψi is the preferred response direction of unit i . When no response is required, the target422

output activity is fixed at ẑi = 0.05. The network also receives one or two stimuli. Each stimulus423

contains information from modality 1, 2, or both. When there is only one stimulus, the direction424

of the stimulus is drawn from a uniform distribution between 0 and 360 degree.425

A trial is considered correct only if the network correctly maintained fixation and responded426

to the correct direction. The response direction of the network is read out using a population427

vector method. The decoded response direction is considered correct if it is within 36 degrees of428

the target direction. If the activity of the fixation output falls below 0.5, the network is considered429

to have broken fixation.430

The discrimination thresholds a in Supplementary Fig. 2 are obtained by fitting Weibull431

functions to performances p as a function of coherences c at a fixed stimulus duration,432

p = 1−0.5exp(−(c/a)b). (10)

Each task can be separated into distinct epochs. Fixation (fix) epoch is the period before433

any stimulus is shown. It is followed by the stimulus epoch 1 (stim1). If there are two stimuli434

separated in time, then the period between the two stimuli is the delay epoch, and the second435

stimulus is shown in the stimulus epoch 2 (stim2). The period when the network should re-436

spond is the go epoch. The duration of the fixation, stim1, delay1, stim2, and go epochs are437
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Tfix,Tstim1,Tdelay1,Tstim2,Tgo respectively. For convenience, we grouped the 20 tasks into five task438

families: the Go, Anti, Decision-Making (DM), Delayed Decision-Making (Dly DM), and Match-439

ing families.440

Go task family. This family of tasks includes the Go, RT Go, and Dly Go tasks. In all three tasks, a441

single stimulus is randomly shown in either modality 1 or 2, and the response should be made in442

the direction of the stimulus. These three tasks differ in their stimulus onset and offset times. In443

the Go task, the stimulus appears before the fixation cue goes off. In the RT Go task, the fixation444

input never goes off, and the network should respond as soon as the stimulus appears. In the Dly445

Go task, a stimulus appears briefly and is followed by a delay period until the fixation cue goes446

off. The Dly Go task is similar to the memory-guided saccade task20.447

For the Go task,448

Tstim1 ∼ U(500,1500). (11)

U(t1, t2) is a uniform distribution between t1 and t2. The unit for time is ms and is omitted for449

brevity. For the RT Go task,450

Tstim1 ∼ U(500,2500). (12)

For the Dly Go tasks,451

Tdelay1 ∼ U({200,400,800,1600}). (13)

Here U({a1, · · · , an}) denotes a discrete uniform distribution over the set {a1, · · · , an}.452

Anti task family. This family includes the Anti, RT Anti, and Dly Anti tasks. These three tasks453

are the same as their counterpart Go-family tasks, except that the response should be made to454

the opposite direction of the stimulus.455

DM family. This family includes five perceptual decision making tasks: the DM 1, DM 2, Ctx456

DM 1, Ctx DM 2, and MultSen DM tasks. In each trial, two stimuli are shown simultaneously and457

are presented till the end of the trial. Stimulus 1 is drawn randomly between 0 and 360 degree,458

while stimulus 2 is drawn uniformly between 90 and 270 degree away from stimulus 1. In DM 1,459
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the two stimuli only appear in modality 1, while in DM 2, the two stimuli only appear in modality460

2. In DM 1 and DM 2, the correct response should be made to the direction of the stronger461

stimulus (the stimulus with higher γ). In Ctx DM 1, Ctx DM 2, and MultSen DM tasks, each462

stimulus appears in both modality 1 and 2. In the Ctx DM 1 task, information from modality 2463

should be ignored, and the correct response should be made to the stronger stimulus in modality464

1. In the Ctx DM 2 task, information from modality 1 should be ignored. In the MultSen DM task,465

the correct response should be made to the stimulus that has a stronger combined strength in466

modalities 1 and 2.467

The DM 1 and DM 2 tasks are inspired from classical perceptual decision making tasks based468

on random-dot motion stimuli21. In random-dot motion tasks, there is only one stimulus, the469

coherence of which is varied across trials. Following the tradition of Wang, 200230, we use two470

input stimuli to model momentary motion evidence towards the two target directions. When471

the two stimuli have the same strengths (γ1 = γ2), there is no net evidence towards any target472

direction, mimicking the condition of 0 motion coherence in the random-dot motion task. A473

stronger difference in the stimulus strengths emulates a stronger motion coherence. For a co-474

herence c representing net evidence for the direction of stimulus 1, the strengths of stimulus 1475

and 2 (γ1,γ2) are set as476

γ1,modi = γ̄+ c, γ2,modi = γ̄−c, (14)

respectively, where i ∈ 1,2 is the modality. Here γ̄ is the average strength of the two stimuli. For477

each trial, we draw γ̄ from a uniform distribution around 1, γ̄ ∼ U(0.8,1.2). Indeed, in all DM-478

family tasks and Dly DM-family tasks, there is a single coherence c in each trial that determines479

the overall strength of net evidence towards the direction represented by stimulus 1. For all DM480

family tasks,481

c ∼ U({−0.08,−0.04,−0.02,−0.01,0.01,0.02,0.04,0.08}). (15)

The duration of stimulus 1, which is fixed in each trial, is drawn from the following distribu-482

tion,483

Tstim1 ∼ U({400,800,1600}). (16)

Indeed, all tasks from the DM family use the same distribution for Tstim1. And since the two484

stimuli are shown simultaneously, Tstim1 = Tstim2.485
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The Ctx DM 1 and Ctx DM 2 tasks are inspired from context-dependent decision-making486

tasks performed by macaque monkeys11. Now each stimulus is presented in both modalities at487

the same direction, with strengths γ1,mod1,γ1,mod2 for stimulus 1, and γ2,mod1,γ2,mod2 for stimu-488

lus 2. The stimulus strengths are determined by the coherence for modality 1 and 2 (cmod1,cmod2),489

so we have490

γ1,mod1 = γ̄mod1 +cmod1, γ2,mod1 = γ̄mod1 − cmod1. (17)

Similar equation holds for modality 2 as well. cmod1 and cmod2 are drawn independently from the491

same distribution. In Ctx DM 1, c = cmod1, while in Ctx DM 2, c = cmod2. γ̄mod1 and γ̄mod2 are also492

drawn from U(0.8,1.2). In the original Mante task11, there is an additional delay period between493

the stimuli and the response period, which is not included here.494

The MultSen DM task mimics a multi-sensory integration task23. The setup of stimulus is495

similar to those in the Ctx DM 1 and Ctx DM 2 tasks, except that the network should integrate496

information from both modalities and the stronger stimulus is the one with higher averaged497

strength from modality 1 and 2. The overall coherence c = (cmod1 + cmod2)/2. We determine all498

four strengths with the following procedure. First we determine the average strength of stimulus499

1 across both modalities, γ1, and the average strength of stimulus 2, γ2.500

γ1 = γ̄+ c, γ2 = γ̄−c. (18)

Here γ̄ and c both follow the same distributions as other DM-family tasks. Then we set501

γ1,mod1 = γ1(1+∆1), γ1,mod2 = γ1(1−∆1), (19)

where ∆1 ∼ U(0.1,0.4)∪U(−0.4,−0.1). Similarly for stimulus 2.502

Dly DM family. This family includes Dly DM 1, Dly DM 2, Ctx Dly DM 1, Ctx Dly DM 2. These503

tasks are similar to the corresponding tasks in the DM family, except that in the Dly DM family504

tasks, the two stimuli are separated in time. The Dly DM 1 and Dly DM 2 tasks are inspired by505

the classical parametric working memory task developed by Romo and colleagues24. The two506

stimuli are both shown briefly and are separated by a delay period. Another short delay period507

follows the offset of the second stimulus.508
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For all Dly DM family tasks,509

Tdelay1 ∼ U({200,400,800,1600}), c ∼ U({−0.32,−0.16,−0.08,0.08,0.16,0.32}). (20)

And, Tstim1 = Tstim2 = 300.510

Matching family. This family of tasks includes the DMS, DNMS, DMC, DNMC tasks. In these511

tasks, two stimuli are presented consecutively and separated by a delay period. Each stimulus512

can appear in either modality 1 or 2. The network response depends on whether or not the513

two stimuli are "matched." In the DMS and DNMS tasks, two stimuli are matched if they point514

towards the same direction, regardless of their modalities. In DMC and DNMC tasks, two stimuli515

are matched if their directions belong to the same category. The first category ranges from 0 to516

180 degrees, while the rest from 180 to 360 degrees belongs to the second category. In the DMS517

and DMC tasks, the network should respond towards the direction of the second stimulus if the518

two stimuli are matched and maintain fixation otherwise. In the DNMS and DNMC tasks, the519

network should respond only if the two stimuli are not matched, i.e., a non-match, and fixate520

when it is a match.521

During training of these tasks, half of the trials are matching, and the other half are non-522

matching. In DMS and DNMS tasks, stimulus 1 is always drawn randomly. In half of the trials,523

stimulus 2 appears at the same direction as stimulus 1. In the other half, stimulus 2 is drawn524

randomly between 10 and 350 degree away from stimulus 1. In DMC and DNMC tasks, both525

stimulus 1 and 2 are drawn randomly and independently from the uniform distribution526

U({18,54,90,126,162,198,234,270,306,342}). (21)

In all Matching family tasks,527

Tdelay1 ∼ U({200,400,800,1600}). (22)

Also, match trials and non-match trials always appear with equal probability.528

Training procedure529

The loss L to be minimized is computed by time-averaging the squared errors between the net-530

work output z(t ) and the target output ẑ(t ).531

L =Lmse ≡ 〈mi ,t (zi ,t − ẑi ,t )2〉i ,t . (23)
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Here i is the index of the output units. The squared errors at different time points and of different532

output units are potentially weighted differently according to the non-negative mask matrix mi ,t .533

For the output ring units, before the response epoch, we have mi ,t = 1. The first 100ms of the534

response epoch is a grace period with mi ,t = 0, while for the rest of the response epoch, mi ,t = 5.535

For the fixation output unit, mi ,t is two times stronger than the mask for the output ring units.536

The training is performed with Adam, a powerful variant of stochastic gradient descent48. We537

used the default set of parameters. The learning rate is 0.001, the decay rate for the 1st and 2nd538

moment estimates are 0.9 and 0.999 respectively.539

The recurrent connection matrix is initialized with a scaled identity matrix q ·149, where 1540

is the identity matrix. We chose q = 0.54 such that the gradient is roughly preserved during541

backpropagation when the network is initialized. The input and output connection weights542

are initialized as independent Gaussian random variables with mean 0, and standard deviations543

1/
p

Nin and 0.4/
p

Nrec respectively. The standard deviation value for the output weights is cho-544

sen to prevent saturation of output units after initialization.545

During training, we randomly interleaved all the tasks with equal probabilities, except for the546

Ctx DM 1 and Ctx DM 2 tasks that appear five times more frequently, because without sufficient547

training, the network gets stuck at an alternative strategy. Instead of correctly ignoring modality548

1 or 2, the network can choose to ignore the context and integrate information from both modal-549

ities equally. This strategy gives the network an accuracy close to 75%. During training, we used550

mini-batches of 64 trials, in which all trials are generated from the same task for computational551

efficiency.552

Analysis of the Anti task family553

Anti units in Fig. 2 are defined as those units that have higher summed task variance (see next554

section for definition) for the Anti family of tasks (SAnti =Anti, RT Anti, Dly Anti) than for all other555

tasks. So a unit i is an Anti unit if556

∑
A∈SAnti

TVi (A) >
∑

A∉SAnti

TVi (A). (24)
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Task variance analysis557

A central goal of our analysis was to determine whether individual units within the network are558

selective to different tasks, or whether units tended to be similarly selective to all tasks. To quan-559

tify how selective a unit is in one task, we defined a task variance metric. To compute the task560

variance TVi (A) for task A and unit i , we ran the network for many stimulus conditions that span561

the space of possible stimuli. For example, in the DM family tasks, we ran the network for stimuli562

with directions ranging from 0 to 360 degrees and with coherences ranging from almost 0 to 0.2.563

After running the network for many stimulus conditions, we computed the variance across stim-564

ulus conditions (trials) at each time point for a specific unit then averaged the variance across all565

time points to get the final task variance for this unit. The fixation epoch is excluded from this566

analysis. This process was repeated for each unit in the network. Therefore567

TVi (A) = 〈[ri ( j , t )−〈ri ( j , t )〉 j
]2〉 j ,t , (25)

where ri ( j , t ) is the activity of unit i on time t of trial j . In Fig. 2,3,4, we only analyzed active568

units, defined as those that have summed task variance across tasks higher than a threshold,569

10−3. The results do not depend strongly on the choice of the threshold. This procedure prevents570

units with extremely low task variance from being included in the analysis.571

By computing each unit’s selectivity across different stimulus conditions, we naturally in-572

clude the selectivity to motor outputs, because motor outputs depend ultimately on the stimuli.573

A unit that is only selective to motor outputs or other cognitive variables in a task will still have574

a non-zero task variance. Units that are purely selective to rules and/or time will, however, have575

zero task variance and therefore be excluded from our analysis.576

The clustering of units based on their task variance patterns in Fig. 3 uses K-means cluster-577

ing from the Python package scikit-learn. To assess how well a clustering configuration is, we578

computed its silhouette coefficient based on intra-cluster and inter-cluster distances. A higher579

silhouette coefficient means a better clustering. The optimal number of clusters k̃ is determined580

by choosing the first k such that the silhouette coefficient for k +1 clusters is worse than k clus-581

ters.582

In Fig. 3d, we visualize the clustering using t-distributed Stochastic Neighbor Embedding583

(tSNE). For each unit, the normalized task variances across all tasks form a 20 dimensional vec-584
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tor that is then embedded in a 2-dimensional space. For the tSNE method, we used the exact585

method for gradient calculation, a learning rate of 100, and a perplexity of 30.586

The fractional task variance with respect to tasks A and B is587

FTVi (A,B) = TVi (A)−TVi (B)

TVi (A)+TVi (B)
. (26)

To obtain a statistical baseline for the FTV distributions as in Supplementary Fig. 4, we trans-588

form the neural activities of the network with a random orthogonal matrix before computing the589

task variance. For each network, we generate a random orthogonal matrix M using the Python590

package Scipy. All network activities are multiplied by this matrix M to obtain a rotated version591

of the original neural representation.592

rrot
t = Mrt . (27)

Since multiplying neural activities by an orthogonal matrix is equivalent to rotating the neural593

representation in state space, this procedure will preserve results from state space analysis. We594

then compute task variances and fractional task variances using the rotated neural activities. The595

FTV distributions using the rotated activities are clearly different from the original FTV distribu-596

tions.597

State-space analysis598

To compute the representation of a task in the state space, we first computed the neural activ-599

ities across all possible stimulus conditions, then we averaged across all these conditions. For600

simplicity of the analysis, we chose to analyze only the steady state responses during the stimu-601

lus epoch. We do so by focusing on the last time point of the stimulus epoch, tstim1,end. So the602

representation of task A is603

r̃ = 〈r( j , tstim1,end)〉 j , (28)

where r( j , t ) is the vector of network activities at trial j and time t during task A.604

For each set of tasks, we performed principal component analysis to get the lower dimen-605

sional representation. We repeated this process for different networks. The representations of606

Go, Anti, Dly Go, and Dly Anti tasks are close to four vertices of a square. As a result, the top607
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two principal components have similar eigenvalues and are therefore interchangeable. To better608

compare across networks in Fig. 5b,c, we allowed a rotation and a reflection within the space609

spanned by the top two PCs. For each network, the rotated and reflected PCs (rPCs) are chosen610

such that the Go task representation lies on the positive part of the x-axis, and the Dly Go task611

lies below the x-axis. The representation of Ctx DM 1, Ctx DM 2, Ctx Dly DM 1, and Ctx Dly DM612

2 tasks do not form a square, so we only allowed reflections such that Ctx Dly DM 1 is in the first613

quadrant. The reflected PCs are still PCs.614

Continual learning615

For continual learning in Fig. 7, tasks appear sequentially. Each task is trained for 150,000 trials.616

Ctx DM 1 and Ctx DM 2 are still trained together and interleaved, and so are Ctx Dly DM 1 and617

Ctx Dly DM 2. We added a regularizer that protects old tasks by setting an additional penalty for618

deviations of important synaptic weights (or other parameters)33. When training the µ-th task,619

the regularizer is620

Lcont = ccont
∑
k
Ω

µ

k

(
θk − θ̃k

)2
. (29)

Here ccont is the overall strength of the regularizer, θk denotes the k−th parameter of the network.621

The value of the anchor parameter θ̃k is the value of θk at the end of the last task (the (µ−1)-th622

task). No regularizer is used when training the first task. And Ω
µ

k measures how important the623

parameter is. Notice that two recent proposals32,33 for continual learning both use regularizers624

of this form. The two proposals differ only in how the synaptic importances are computed. We625

chose the method of Zenke et al. 2017, because the method of Kirkpatrick et al. 2017 measures626

the synaptic importance locally in the parameter space, resulting in underestimated and inac-627

curate synaptic importance values for our settings. In Zenke et al. 2017, the importance of one628

parameter is determined using this parameter’s historic contribution to the change in the loss629

function. For the k-th parameter, the contribution to the change in loss during task µ is630

ω
µ

k =
tµ∑

t=tµ−1

gk (θ(t ))∆θk (t ), (30)

where gk (θ(t )) is the gradient of loss with respect to θk evaluated at θk (t ), i.e., ∂L
∂θk

|θk (t ), and∆θk (t )631

is the parameter change taken at step t . Therefore ω
µ

k tracks how parameter θk contributes to632
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changes in the loss during the µ-th task (from tµ−1 to tµ). The final synaptic importance is com-633

puted by first normalizing ω
µ

k with the total change in the synaptic weight ∆µ

k = θk (tµ)−θk (tµ−1),634

and summing ων
k for all tasks ν<µ.635

Ω
µ

k = ∑
ν<µ

ων
k

(∆ν
k )2 +ξ

. (31)

The additional hyperparameter ξ prevents Ω
µ

k from becoming too large. The hyperparameters636

c = 0.1 and ξ = 0.01 are determined by a coarse grid search. The final loss is the sum of the637

squared-error loss and the continual learning regularizer.638

L =Lmse +Lcont. (32)

Even with the help of the continual learning technique, we had difficulties training the net-639

work using our original task setups. So we made the decision-making tasks easier by increasing640

the coherences by 4 times. We also made the delayed decision-making tasks easier by increasing641

the coherence by 2 times. In addition, we used the rectified linear function as the neuronal non-642

linearity, namely f (x) = max(x,0). We found that networks using rectified linear units learned643

context-dependent tasks (Ctx DM 1, Ctx DM 2, Ctx Dly DM 1, and Ctx Dly DM 2) more easily.644
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Supplementary Fig. 1. Sample trials from the 20 tasks trained. (a) Convention is the same as Fig. 1a.

Output activities are obtained from a sample network after training. Green lines are the target activities

for the fixation output unit.
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a b

c d

e f

g

Supplementary Fig. 2. Psychometric tests for a range of tasks. (a) Decision making performances

improve with longer stimulus presentation time and stronger stimulus coherence in the DM 1 task in a

sample network. (b) Discrimination thresholds decrease with longer stimulus presentation time in the DM

1 task. The discrimination thresholds are estimated by fitting cumulative Weibull functions. (c-f) Same

analyses as (a,b) for the Ctx DM 1 (c,d) and MultSen DM (e,f) task. These results are obtained from

one sample network. The capability to integrate information over time varies across networks. However,

this variation has no impact on other results. (g) A sample network is able to perform well above chance

in the Dly DM 1 task for a delay period of up to five seconds.
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a b

Supplementary Fig. 3. Epoch variances across all task epochs and active units. (a) Epoch variance is

computed in a similar way to task variance, except that it is computed for individual task epochs instead

of tasks. There are clusters of units that are selective in specific epochs. (b) Visualization of the epoch

variance map in the same style as Fig. 3d.
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a

Supplementary Fig. 4. Fractional variance distributions for all pairs of tasks. (a) There is a total of

190 unique pairs of tasks from all 20 tasks trained. Each fractional variance distribution (black) shown

here is averaged across 20 networks. As a control, we also computed fractional variance distributions

(gray) from activities of surrogate units that are generated by randomly mixing activities of the original

network units (see Online Methods).
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a

Supplementary Fig. 5. Representation of all tasks in state space. (a) The representation of each task

is computed the same way as in Fig. 5. Here showing the representation of all tasks in the top two

principal components. RT Go and RT Anti tasks are not shown here because there is no well-defined

stimulus epoch in these tasks.
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a b

c d

Supplementary Fig. 6. Visualization of connection weights of rule inputs. (a) Connection weights from

rule input units representing Go, Dly Go, Anti, Dly Anti tasks visualized in the space spanned by the top

two principal components (PCs) for a sample network. Similar to 5, the top two PCs are rotated and

reflected (rPCs) to form the two axes. (b) The same analysis as in (a) is performed for 20 networks, and

the results are overlaid. (c) Connection weights from rule input units representing Ctx DM 1, Ctx DM

2, Ctx Dly DM 1, and Ctx Dly DM 2 tasks visualized in the top two PCs for a sample network. (d) The

same analysis as in (c) for 20 networks.
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