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Shape information is distributed across populations of neurons in
the ventral pathway of primate visual cortex1,2. The population
code for shape has to accommodate the virtual infinity of possi-
ble objects as well as the variability of a given object’s retinal
image. This difficult representational problem could be solved
by encoding shapes in terms of their component parts3–13. A
parts-based coding scheme, like an alphabet, would have the com-
binatorial power to represent an infinite variety of objects using
a finite number of elements. Consistent with this theory, neural
tuning for object parts is common in the ventral pathway14–21.
Here we report on parts-based population coding in macaque
V4, a ventral pathway area known to carry information about
shape19,20,22–24, color25 and texture26.

Most studies of neural population coding have focused on
representation of a single scalar value. A well-known example is
the work showing that neural populations in macaque primary
motor cortex (M1) encode arm reach direction27. In this analysis,
each cell was treated as a unit vector oriented at its reach-direction
tuning peak. Each vector was scaled by its cell’s activity during a
given reach. The scaled vector sum closely predicted the actual
reach direction in all cases. The vector sum method and other
basis function decoding schemes are exact only under certain
conditions28,29, but neural implementation is straightforward
and compatible with neural tuning functions in a wide variety
of systems. Decoding schemes based on conditional probability
distributions of neural response patterns (Bayesian inference,
maximum likelihood inference) are more accurate and general,
and can also be implemented in biologically realistic net-
works30,31. As we were interested in feasibility rather than optimal
coding accuracy in the current study, we chose the basis function
approach, which corresponds to the simplest neural decoding
mechanism. (Accurate basis function decoding would imply accu-
rate Bayesian or maximum likelihood decoding a fortiori.)
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Shape is represented in the visual system by patterns of activity across populations of neurons. We
studied the population code for shape in area V4 of macaque monkeys, which is part of the ventral
(object-related) pathway in primate visual cortex. We have previously found that many macaque V4
neurons are tuned for the curvature and object-centered position of boundary fragments (such as
‘concavity on the right’). Here we tested the hypothesis that populations of such cells represent
complete shapes as aggregates of boundary fragments. To estimate the population representation of
a given shape, we scaled each cell’s tuning peak by its response to that shape, summed across cells
and smoothed. The resulting population response surface contained 3–8 peaks that represented major
boundary features and could be used to reconstruct (approximately) the original shape. This exempli-
fies how a multi-peaked neural population response can represent a complex stimulus in terms of its
constituent elements.

Our analysis was based on two-dimensional (2D) Gaussian
functions in a curvature × angular position domain. For each V4
neuron in our sample, we determined the Gaussian that best
described the curvature and position of boundary fragments
(embedded in complete shapes) to which the neuron respond-
ed. The population response to a given shape was estimated by
weighting each Gaussian peak by the corresponding neuron’s
response to that shape and then summing across neurons. The
weighted sum contained peaks representing the major bound-
ary features of the shape. The accuracy of this representation was
confirmed by using the population peak values to reconstruct an
approximation to the original shape.

RESULTS
We estimated population-level representations of moderately
complex silhouette-type shapes in macaque monkey area V4. We
based these estimates on the responses of 109 V4 neurons that
showed sensitivity to complex shape in preliminary tests. Bound-
ary shape tuning in such cells can be conveniently (though not
necessarily uniquely) characterized in terms of boundary curva-
ture and angular position20. These dimensions capture the two
critical elements of a parts-based representation: part shape (cur-
vature) and part position (specifically object-centered position32).
The stimulus set (Fig. 1a, white icons) consisted of 49 shapes
(constructed by quasi-factorial combination of convex and con-
cave boundary fragments) presented at eight orientations. Each
stimulus was flashed for 500 ms at the center of the neuron’s
receptive field while the monkey performed a fixation task.
Response rates were calculated by summing spike occurrences
during the 500-ms stimulus presentation period and then sub-
tracting average background rate (derived from null stimulus
presentation periods). An example neuron’s average responses
are indicated by the gray levels of the circular backgrounds sur-
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rounding the stimulus icons. Darker backgrounds correspond to
higher response rates (see scale bar). This cell responded to a
variety of shapes with convex boundary curvature near the top.
Sharper (higher, more acute) convex curvature was especially
effective. This is most easily visualized by comparing responses
to different orientations of the same shape across rows in Fig. 1a.
In every case, orientations with sharper convex curvature at the
top elicited stronger responses.

This response pattern was quantified with a 2D Gaussian tun-
ing function (Fig. 1b). The horizontal axis represents angular
position of the boundary fragment relative to the object’s center
of mass, with 0° corresponding to right, 90° corresponding to
top, and so on. The vertical axis represents boundary curvature,
with negative values corresponding to concavity and positive val-
ues corresponding to convexity. Curvature is defined as change
in tangent angle per unit contour length (defined relative to stim-
ulus size). Because curvature becomes infinite for tangent dis-
continuities (angles), we used a squashing function to map
curvature to a range from –1.0 (sharp concave angles) to 1.0
(sharp convex angles). Boundary curvature in our stimulus set
ranged from –0.3 to 1.0. Color (see scale bar) is used to repre-
sent tuning function amplitude that is, predicted normalized
response strength at each point on the curvature × angular posi-
tion domain.

To derive the optimum tuning function, each stimulus was
decomposed into four to eight contour fragments of relatively
constant curvature. For each fragment, average curvature was
measured, and angular position was calculated for the fragment
center relative to the shape’s center of mass. As an example, the
crescent shape at the top left of Fig. 1a was decomposed into two
sharp convexities (near the top and left), a broad convexity (lower
right) and a concavity (upper left). During the iterative fitting
procedure, the predicted response for each stimulus was based

on whichever contour fragment fell closest to the Gaussian tun-
ing function peak—whichever fragment predicted the strongest
response. (Similar results were obtained when the predicted
response was instead summed across fragments.) The tuning
function was adjusted to minimize the sum of squared errors
between observed and predicted responses. Further details of the
fitting procedure have been described previously20.

The tuning function peak (red) for this cell was at curvature
1.0 (sharp convex) and angular position 84.6° (slightly to the
right of top center) (Fig. 1b). Responses predicted by the tuning
function were strongly correlated (r = 0.73) with the observed
responses shown in Fig. 1a. This is exemplified by the similarity
between observed and predicted responses to different orienta-
tions of the heart-shaped stimulus (Fig. 1c). Both observed and
predicted responses were highest for sharp convexities at the top
and moderate for blunter convexities at the top or convexities
near the upper right.

The importance of angular position as a tuning dimension
was verified with an auxiliary test in which the position of the
optimum boundary curvature relative to object center was para-
metrically varied (Fig. 1d). This example cell was tuned for sharp
convexity near the lower right (315°). Tuning for angular posi-
tion was maintained across different orientations of the sharp
convexity (columns). Angular position tuning was also consis-
tent across absolute position on the retina (data not shown). Sim-
ilar results were obtained for most neurons tested in this way, as
previously reported20.

For each cell in our sample of 109 V4 neurons, we derived a
curvature × position tuning function like that shown in Fig. 1b20.
The tuning functions were highly predictive of observed respons-
es, much more so than edge orientation tuning functions. In
every case, we also derived a tuning function from a randomly
selected subset of our stimuli, and found that this successfully
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Fig. 1. Single neuron shape-tuning example. (a) Responses
of an individual V4 neuron are represented by shades of gray
surrounding each stimulus icon. The response to each stim-
ulus was averaged across five presentations. The scale bar
(right) shows that mean response rates ranged from 0 (light
gray) to 34 (dark gray) spikes/s. The stimulus set comprised
most of the geometrically feasible combinations of five stan-
dard boundary fragments: sharp convex, medium convex,
broad convex, broad concave and medium concave curves.
Each combination was presented at eight orientations
(rows), or fewer if rotational symmetry made some orienta-
tions redundant. The stimuli are arranged here into three
large blocks (left, middle, right) according to how many con-
vex projections they contained (two, three or four, respec-
tively). They are also blocked in the vertical direction
according to the angular separations between convex pro-
jections. The stimuli were presented in red (the optimal
color for this cell) at the cell’s receptive field center (0.32°
left of and 1.32° below fixation). (b) Gaussian shape-tuning
function describing the response pattern in (a). The vertical
axis represents boundary curvature, and the horizontal axis
represents angular position of boundary fragments with
respect to the shape’s center of mass. The color scale (right)
indicates normalized predicted response. The tuning peak
corresponds to sharp convex curvature (1.0) near the top
of the shape (84.6°). (c) Comparison of observed responses
to responses predicted by the Gaussian tuning function, for
the heart-shaped stimulus at eight orientations. Gray-
level scale is the same as in (a). (d) Auxiliary test of object-
centered position tuning for a different neuron.S
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predicted responses to the remaining stimuli, showing that the
analysis generalizes to shapes not used in the fitting procedure20.
Many neurons were additionally sensitive to more complex
aspects of boundary conformation. For example, the cell in Fig. 1
responded best when sharp convex curvature near the top was
flanked by concave curvature on either side. This kind of response
pattern can be more accurately predicted with tuning functions
in a higher-dimensional domain20. As a first approach to popu-
lation analysis, however, we have focused on the simpler curvature
× angular position domain. In this domain, tuning function cor-
relation values ranged from 0.11 to 0.81. All cells were included in
the population analysis.

We used the curvature × position tuning functions (as in
Fig. 1b) to estimate the V4 population response to each shape in
our stimulus set. An example analysis is presented for the
‘squashed raindrop’ shape (Fig. 2a, center). The veridical curva-
ture × position function for this stimulus is represented by the
white line in the surrounding polar plot. This function has peaks
and troughs corresponding to the major features of the shape: a
medium convex peak at 0° (right), a concave trough at 45° (upper
right), a sharp convex peak at 90° (top), and so forth. Our analy-
sis was designed to determine whether similar curvature/posi-
tion information was represented in the neural responses.

We scaled each cell’s tuning peak by its response to the shape
in question. Thus, each cell ‘voted’ for its preferred boundary
fragment with a strength proportional to its response rate. The
cell in Fig. 1 responded strongly to the squashed raindrop shape,
so the height of its scaled tuning peak was near 1.0. The entire
set of scaled tuning peaks defined a surface representing coding
strength for various combinations of curvature and position. We
used a 2D Gaussian function to smooth that surface (standard
deviation of 0.125 in the curvature dimension and 0.33 radians or
19° in the angular position dimension; the exact values were not
critical to the outcome). We normalized (divided) this surface
by an identical Gaussian convolution with the non-scaled (unit)
point functions to help correct for uneven sampling across the
curvature × position domain. The final result was an estimate of
coding strength across the curvature × position domain for a
hypothetical population of V4 neurons with identical receptive
field centers responding to a single shape at a single position. In
the actual experiments, of course, stimulus position was adjust-
ed for each cell, over an eccentricity range of 0.0° to 6.6°. Given
the variability in V4 receptive field position, it would be imprac-
tical to sample responses to a single stimulus position from a
large enough number of cells. Thus, one assumption behind our
analysis is that shape-coding mechanisms are similar across the
tested eccentricity range.

The population surfaces derived in this manner contained
peaks corresponding to the major boundary features in the stim-
ulus shapes. However, there were still major amplitude differ-
ences between peaks due to sparse sampling in some regions of

the curvature × position domain. There was no statistical corre-
lation between curvature and angular position (linear-circular
correlation coefficient33 = 0.037, P = 0.134 by randomization
test), and there is no a priori reason to expect that certain curva-
ture values would be better represented at particular angular posi-
tions. Thus, the uneven distribution of tuning peaks was an
artifact of our limited sample size.

To overcome this sampling limitation and produce a more
accurate estimate of the true population response, we made the
assumption, for each cell we studied, that with a large enough
sample we would have encountered other cells with similar cur-
vature tuning properties at different angular positions. We there-
fore replicated each cell’s tuning function seven times, rotating
across the angular position domain at 45° intervals. We assigned
observed responses to each hypothetical cell by likewise rotating
the original observed response rates across stimulus orientation.
(Each stimulus was tested at 45° orientation intervals, so we could
predict exactly how the hypothetical cell would respond.) Thus,
our final population surfaces were based on an estimated sam-
ple of 872 cells, under the assumption that curvature represen-
tation is uniform across angular position. This approach
produced response surfaces closer to what would have been
obtained if a very large number of V4 neurons had been sam-
pled. The results were qualitatively similar to those obtained with-
out replication of tuning functions. The analyses presented here
are based on the larger, estimated population.

Application of this analysis to the squashed raindrop shape
yielded an estimated population surface (Fig. 2b) containing
peaks corresponding to all the major boundary features: the
sharp convexity at 90°, the medium convexities at 0° and 180°,
the broad convexity at 270° and the concavities at 45° and 135°.
The cell in Fig. 1 contributed to the convex peak at 90° by virtue
of its strong response to this shape. The veridical (stimulus-
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Fig. 2. Population response to an example shape. (a) The white line
represents this shape’s boundary curvature as a function of angular
position, shown here in polar format centered around the shape’s cen-
ter of mass to highlight the correspondence with boundary features.
(b) Estimated population response across the curvature × position
domain (colored surface) with the veridical curvature function super-
imposed (white line). A Cartesian plot is used here because a polar plot
would distort peak width in the population response. The surface was
thresholded by subtracting the minimum value from all points, so ampli-
tude varies from 0 (minimum) to 1 (maximum). (c) Reconstruction of
the geometric shape from the population surface in (b).
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derived) shape function (white line) is replot-
ted for comparison. This is a 1D circular func-
tion, with a single, exact curvature value at all
angular positions. The summed population
activity (colored surface) is a 2D function of
curvature and angular position, in which ampli-
tude corresponds to likelihood that a similar
curvature/angle combination is present. As in
other neural coding situations, graded peaks in
the population activity approximate exact stim-
ulus values in the environment. The novel
aspect of our analysis is the multi-peaked rep-
resentation of multiple stimulus components.
The accuracy of this representation can be
assessed by comparing the peaks in the popu-
lation surface (red) to the veridical curvature
values (white line) at the corresponding angular
positions. The population peaks fall close to the
extrema in the curvature function, and thus rep-
resent the salient boundary features in the
shape. The most notable discrepancy is the peak
near 270°, which has a curvature value of 0.25,
somewhat higher (sharper) than the veridical
curvature value of 0.075.

Another way to evaluate the population representation is to
‘decode’ it back into geometric space. We reconstructed the
squashed raindrop shape (Fig. 2c) from the population surface
by using B-spline34 control points (green dots) to define a
smooth (no tangent or curvature discontinuities) boundary with
curvature extrema (red dots) matching the population surface
peaks. The population peaks were calculated by sliding a win-
dow (45° angular position × 0.5 curvature) across the popula-
tion surface to identify local peaks with values above 0.4. We
used a single control point to approximate each peak with cur-
vature less than 0.5, adjusting the radial position to produce a
local curvature extremum matching the population curvature
and angular position values. (Positions close to the center pro-
duced concavities, more eccentric positions produced convexi-
ties.) Two control points were necessary to define sharper
curvatures greater than 0.5 (the two control points at the top of
Fig. 2c overlap because of the high curvature value). The radial
position of these control point pairs was fixed at the maximum
distance from the center (making the reasonable assumption
that sharper convexities would be furthest from the center).
Their angular separation was varied to produce a local convex-
ity matching the population curvature value. Radial and angular
control point positions were iteratively adjusted to minimize
differences between the reconstructed shape’s curvature extrema
and the population peaks. This reconstruction method is not
meant to have any biological relevance; it is only an expedient
for producing a shape with boundary features approximating
the peaks in the response surface, in order to visualize the accu-
racy of the population representation.

In the reconstruction of the squashed raindrop shape (Fig. 2c),
all the major elements of the original stimulus are visible. This
shows the effectiveness of the population representation in cur-
vature × angular position space, at least for this type of moder-
ately complex shape. The most obvious discrepancy in Fig. 2c is
the sharper curvature near the bottom, as expected due to the
high value of the population peak at 270°. This error may reflect
a sampling problem in our data set, as we found relatively few
cells with tuning peaks in this curvature range20. In addition,
minor offsets in the angular positions of the peaks skew the sym-
metry of the reconstructed shape.

We generated population response estimates and recon-
structions for all 49 shapes in our stimulus set (at one orienta-
tion each; Fig. 3). Each panel shows the original stimulus at the
top left, the reconstructed stimulus at the top right, and the
population estimate (colored surface) at the bottom, with the
veridical curvature × position function (white line) superim-
posed. In most cases, all the salient boundary features are rep-
resented in the population surface and reproduced in the
reconstruction, albeit with some degree of error in curvature
and angular position. Specifically, distinctions between sharp
and medium convexities are not always represented, and the
curvature of broad convexities tends to be overestimated. In
some cases, adjacent peak values were not completely geomet-
rically compatible, so that curvatures and angular positions in
the reconstructions could not perfectly match those in the pop-
ulation surface. These discrepancies may be partially due to
sampling bias and response measurement error, and they may to
some extent reflect poor stimulus perception by the animals.
In addition, however, the errors suggest that our 2D domain
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Fig. 3. Population responses to the 49 basic shapes,
each at one orientation. The original shapes are
shown as white icons against a black background at
the top left of each panel. Reconstructed shapes are
shown at the top right. Estimated population
responses (colored surfaces) and veridical curvature
functions (white lines) are shown at the bottom. Axes
and scale for the population plots are the same as in
Fig. 2b.
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does not perfectly capture the information in V4 population
responses. It seems likely that curvature and angular position
are related to inherent V4 tuning dimensions, but any number
of similar shape parameterizations might be more accurate.
More than two dimensions would obviously be required to
explain all the variance in V4 shape responses, and to describe
more complex objects, 3-D objects, objects with internal struc-
ture or objects defined by color and texture properties.

We further assessed the accuracy of the population signals
by computing (for each shape) the mean absolute difference
between the population peaks and the nearest points on the
veridical curvature × position function (Fig. 4). Mean absolute
differences were small in both the curvature dimension (verti-
cal axis; median 0.0704) and the angular position dimension
(horizontal axis; median 4.04°). The Fig. 2 example stimulus is
plotted in red.

DISCUSSION
Previous studies of population responses in the ventral path-
way have focused on general characteristics of population-level
information. Some groups have used information theory to
measure the representational capacity of neural populations
in temporal visual cortex35,36. For instance, it has been shown
that population responses in anterior inferotemporal cortex
(IT) to photographic face stimuli are significantly related to
physical similarity based on distance measurements between
face features37. This reflects ‘second-order isomorphism’38—
that similar shapes evoke similar neural responses. IT popula-
tion responses to parametrically varying novel shapes also show
second-order isomorphism39. It has also been shown that shape
discrimination training leads to greater distances between
learned stimuli in IT population response space40. In monkeys
trained to perform categorical shape discrimination, the IT
population signal carries more information about parts-level
features that distinguish the learned categories18. This implies
a parts-based representation of the type described here. Other
studies of IT shape responses also suggest a parts-based cod-
ing scheme14–17,21.

These studies elucidated general characteristics of popula-
tion responses, but here we sought to describe the actual pop-
ulation code in area V4—which neurons represent what
elements of shape information and in what way. Our results
suggest that V4 neurons encode shapes at least partially in terms
of their constituent boundary features, through graded tuning
for conformation and object-centered position32. Information
about a complete shape is available from the multiple peaks in
the population activity profile.

Our analysis extrapolates from single-peak methods such as
vector summation, devised by K.O. Johnson41 and first imple-
mented by Georgopoulos and colleagues27. The vector-sum
method is mathematically equivalent to finding the population
activity peak by fitting a cosine function30. Other methods for
extracting a single estimated value from a neural population
profile have also been explored29–31,42,43. Our approach here rep-
resents a natural extension of these methods: extracting multiple
values from a complex population pattern representing a multi-
component stimulus. This type of multiplexed population signal
is bound to be important in representing other types of com-
plex stimuli. For example, a recent study demonstrated that the
visual system depends on the shape of the MT population peak
to represent multiple overlapping motion directions44.

Our results imply a ‘structural’ coding scheme, consistent
with the notion of representation by parts or components. In

models based on this idea, shapes are described in terms of the
conformations and relative positions (and/or connectivity) of
their simpler components9–13. A recent model demonstrates
that parts-level coding could rely on retinotopic (rather than
relative or object-centered) position45. Our previous data imply
relative position coding for parts on a local level, within the V4
receptive field20. On a larger scale, however, V4 neurons con-
vey retinotopic position information.

For convenience, structural models are sometimes discussed
in terms of stereotyped parts or ‘primitives’, but our results
imply continuous part representation by neurons with graded
tuning in quantifiable shape dimensions (a ‘multidimensional
feature space’38). The advantages of parts-based representation
are its robustness to variations in the retinal image of an object
and its alphabet-like power to encode an infinite variety of
shapes. Most parts-based theories envision a hierarchical pro-
gression of parts complexity through a sequence of processing
stages. Boundary fragments constitute an appropriate level of
parts complexity for an intermediate processing stage like V4.
More complex parts are encoded in IT, the next stage in the ven-
tral pathway14–16,46,47.

The alternative to parts-based or structural representation
of shape is holistic representation, where each neuron carries
information about an entire object or scene rather than just one
part21,38. Intermediate coding schemes are also possible, where
each neuron carries information about the entire object but
more about some parts than others. If shape representation in
V4 were mainly holistic, our population analysis would have
yielded flat or noisy surfaces rather than multiple peaks corre-
sponding to separate parts. The large amounts of response vari-
ance not explained by the Gaussian part-tuning functions,
ranging from 34% (r = 0.81) to 99% (r = 0.11), could have
reflected holistic coding different responses to every combi-
nation of parts and thus to every shape. However, the fact that
strong peaks consistently emerged in the weighted population
sums argues for parts-based shape representation in V4.

articles

Fig. 4. Population coding accuracy. Each of the 49 basic shapes (shown
in Fig. 3 is represented as a point. The red point corresponds to the
squashed raindrop shape in Fig. 2. The vertical axis represents mean
absolute difference between population surface peaks and the veridical
boundary function in the curvature dimension. (Our squashed curva-
ture values have no units, but are derived from absolute curvature,
which is defined as change in tangent angle per unit contour length.) The
horizontal axis represents mean absolute difference in the angular posi-
tion dimension. These averages were taken across 3–8 peaks, depending
on the population surface (see Fig. 3). For this analysis, population sur-
face peaks were identified as local maxima within a 90° (angular posi-
tion) × 0.25 (curvature) sliding window. Median differences are
represented by thin lines.

©
20

02
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
at

u
re

.c
o

m
/n

at
u

re
n

eu
ro

sc
ie

n
ce



It should be noted that our shape reconstruction method
(Figs. 2c and 3) is just a visualization tool and not a hypothesis
about how the visual system uses population information. The
visual system has no need to decode its representations back into
geometric space. On the contrary, encoding into dimensions like
curvature and relative position presumably advances the trans-
formation towards a more invariant and robust object represen-
tation in IT cortex. Also, our simple reconstruction method is
not an optimal translation of the population surface, which con-
tains more information than just discrete peak positions44. For
example, some population peaks were very broad in the angular
position dimensions, representing long expanses of broad con-
vex curvature. In our analysis this produced multiple discrete
peaks at 90° intervals, but the visual system must use such infor-
mation in a more continuous fashion.

Our study has a number of limitations. As in any experiment
on shape, the stimulus set sampled only a small portion of the
potential space. Our stimuli were silhouettes with no internal struc-
ture, so our results address coding of 2D shape boundaries only.
Boundary curvature was sampled at only a few levels, so we may
have failed to pinpoint the true tuning peak for many cells. In par-
ticular, we did not have straight edges (0 curvature) in our stim-
uli, so our conclusions are limited to shapes composed of curved
boundary fragments. The curvature fragments in our shapes were
mostly oriented with respect to center of mass all the convex pro-
jections radiated from a single center. Shapes containing curves at
other orientations would require a higher-dimensional descrip-
tion. Thus, our conclusions are limited to a particular class of
shapes. The general method, however, could be extended to other
shape characteristics and other object categories.

METHODS
Data collection. We recorded the activity of single V4 neurons in two
female rhesus monkeys (Macaca mulatta). During each experimental ses-
sion, the monkey was seated in front of a computer monitor with the
head immobilized by means of a custom-built titanium head post. The
animal was trained to fixate a 0.1° white spot within 0.5° of visual angle
for a period of 3.75 s. Eye position was monitored using the scleral search
coil method48. While the animal performed the fixation task, epoxy-
coated tungsten electrodes (A-M Systems, Carlsburg, Washington) were
used to record neural activity from individual V4 neurons in the lower
parafoveal representation on the prelunate gyrus and adjoining sulcal
banks. We isolated a total of 409 V4 neurons. We chose 222 for further
study because preliminary tests showed that they belonged to the sub-
population of V4 cells sensitive to complex shape24. Other cells were
tuned only for bar/edge orientation or were not responsive to any of our
stimuli. Of the 222 complex shape cells, we were able to study 109 long
enough to present at least three (usually five) repetitions of each stimu-
lus. All animal procedures conformed to National Institutes of Health
and USDA guidelines and were approved by the Johns Hopkins Univer-
sity Animal Care and Use Committee. Detailed methodology has been
described previously20.

Stimuli. The stimulus set (Fig. 1a) comprised 49 complex shapes con-
structed by systematically combining convex and concave boundary
fragments. Each stimulus was presented at 2, 4 or 8 orientations depend-
ing on rotational symmetry. Stimuli were rendered in the cell’s optimal
color against a gray background and presented at the center of the cell’s
receptive field. Stimulus size was scaled with average receptive field size
at the cell’s eccentricity49, so as to cover approximately three quarters
of the receptive field diameter. (Scaling maintains visibility at greater
eccentricities.) During each behavioral trial, a sequence of five randomly
chosen stimuli were flashed for periods of 500 ms each, separated by
250-ms interstimulus intervals. For most cells, each stimulus was pre-
sented five times. Details of stimulus construction and presentation are
described elsewhere20.
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