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The ventral visual stream underlies key human visual object re-
cognition abilities. However, neural encoding in the higher areas of
the ventral stream remains poorly understood. Here, we describe
a modeling approach that yields a quantitatively accurate model of
inferior temporal (IT) cortex, the highest ventral cortical area. Using
high-throughput computational techniques, we discovered that,
within a class of biologically plausible hierarchical neural network
models, there is a strong correlation between a model’s categoriza-
tion performance and its ability to predict individual IT neural unit
response data. To pursue this idea, we then identified a high-per-
forming neural network that matches human performance on
a range of recognition tasks. Critically, even though we did not
constrain this model to match neural data, its top output layer turns
out to be highly predictive of IT spiking responses to complex nat-
uralistic images at both the single site and population levels. More-
over, the model’s intermediate layers are highly predictive of neural
responses in the V4 cortex, a midlevel visual area that provides the
dominant cortical input to IT. These results show that performance
optimization—applied in a biologically appropriate model class—
can be used to build quantitative predictive models of neural
processing.

computational neuroscience | computer vision | array electrophysiology

Retinal images of real-world objects vary drastically due to
changes in object pose, size, position, lighting, nonrigid de-

formation, occlusion, and many other sources of noise and var-
iation. Humans effortlessly recognize objects rapidly and accurately
despite this enormous variation, an impressive computational feat
(1). This ability is supported by a set of interconnected brain areas
collectively called the ventral visual stream (2, 3), with homologous
areas in nonhuman primates (4). The ventral stream is thought to
function as a series of hierarchical processing stages (5–7) that
encode image content (e.g., object identity and category) increas-
ingly explicitly in successive cortical areas (1, 8, 9). For example,
neurons in the lowest area, V1, are well described by Gabor-like
edge detectors that extract rough object outlines (10), although the
V1 population does not show robust tolerance to complex image
transformations (9). Conversely, rapidly evoked population activity
in top-level inferior temporal (IT) cortex can directly support real-
time, invariant object categorization over a wide range of tasks (11,
12). Midlevel ventral areas—such as V4, the dominant cortical
input to IT—exhibit intermediate levels of object selectivity and
variation tolerance (12–14).
Significant progress has been made in understanding lower

ventral areas such as V1, where conceptually compelling models
have been discovered (10). These models are also quantitatively
accurate and can predict response magnitudes of individual
neuronal units to novel image stimuli. Higher ventral cortical
areas, especially V4 and IT, have been much more difficult to
understand. Although first principles-based models of higher
ventral cortex have been proposed (15–20), these models fail to
match important features of the higher ventral visual neural
representation in both humans and macaques (4, 21). Moreover,
attempts to fit V4 and IT neural tuning curves on general image
stimuli have shown only limited predictive success (22, 23).

Explaining the neural encoding in these higher ventral areas thus
remains a fundamental open question in systems neuroscience.
As with V1, models of higher ventral areas should be neurally

predictive. However, because the higher ventral stream is also
believed to underlie sophisticated behavioral object recognition
capacities, models must also match IT on performance metrics,
equalling (or exceeding) the decoding capacity of IT neurons on
object recognition tasks. A model with perfect neural predictivity
in IT will necessarily exhibit high performance, because IT itself
does. Here we demonstrate that the converse is also true, within
a biologically appropriate model class. Combining high-throughput
computational and electrophysiology techniques, we explore a wide
range of biologically plausible hierarchical neural network models
and then assess them against measured IT and V4 neural response
data. We show that there is a strong correlation between a model’s
performance on a challenging high-variation object recognition
task and its ability to predict individual IT neural unit responses.
Extending this idea, we used optimization methods to iden-

tify a neural network model that matches human performance
on a range of recognition tasks. We then show that even though
this model was never explicitly constrained to match neural data,
its output layer is highly predictive of neural responses in IT
cortex—providing a first quantitatively accurate model of this
highest ventral cortex area. Moreover, the middle layers of the
model are highly predictive of V4 neural responses, suggesting
top-down performance constraints directly shape intermediate
visual representations.

Significance

Humans and monkeys easily recognize objects in scenes. This
ability is known to be supported by a network of hierarchically
interconnected brain areas. However, understanding neurons
in higher levels of this hierarchy has long remained a major
challenge in visual systems neuroscience. We use computa-
tional techniques to identify a neural network model that
matches human performance on challenging object categori-
zation tasks. Although not explicitly constrained to match
neural data, this model turns out to be highly predictive of
neural responses in both the V4 and inferior temporal cortex,
the top two layers of the ventral visual hierarchy. In addition to
yielding greatly improved models of visual cortex, these results
suggest that a process of biological performance optimization
directly shaped neural mechanisms.
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Results
Invariant Object Recognition Performance Strongly Correlates with IT
Neural Predictivity. We first measured IT neural responses on a
benchmark testing image set that exposes key performance
characteristics of visual representations (24). This image set
consists of 5,760 images of photorealistic 3D objects drawn from
eight natural categories (animals, boats, cars, chairs, faces, fruits,
planes, and tables) and contains high levels of the object posi-
tion, scale, and pose variation that make recognition difficult for
artificial vision systems, but to which humans are robustly tol-
erant (1, 25). The objects are placed on cluttered natural scenes
that are randomly selected to ensure background content is un-
correlated with object identity (Fig. S1A).
Using multiple electrode arrays, we collected responses from

168 IT neurons to each image. We then used high-throughput
computational methods to evaluate thousands of candidate
neural network models on these same images, measuring object
categorization performance as well as IT neural predictivity
for each model (Fig. 1A; each point represents a distinct model).
To measure categorization performance, we trained support
vector machine (SVM) linear classifiers on model output layer
units (11) and computed cross-validated testing accuracy for
these trained classifiers. To assess models’ neural predictivity, we
used a standard linear regression methodology (10, 26, 27): for
each target IT neural site, we identified a synthetic neuron
composed of a linear weighting of model outputs that would best
match that site on fixed sample images and then tested re-
sponse predictions against actual neural site’s output on novel
images (Materials and Methods and SI Text).
Models were drawn from a large parameter space of con-

volutional neural networks (CNNs) expressing an inclusive ver-
sion of the hierarchical processing concept (17, 18, 20, 28). CNNs
approximate the general retinotopic organization of the ventral
stream via spatial convolution, with computations in any one
region of the visual field identical to those elsewhere. Each
convolutional layer is composed of simple and neuronally plau-
sible basic operations, including linear filtering, thresholding,
pooling, and normalization (Fig. S2A). These layers are stacked
hierarchically to construct deep neural networks.
Each model is specified by a set of 57 parameters controlling

the number of layers and parameters at each layer, fan-in and
fan-out, activation thresholds, pooling exponents, and local
receptive field sizes at each layer. Network depth ranged from
one to three layers, and filter weights for each layer were chosen
randomly from bounded uniform distributions whose bounds were
model parameters (SI Text). These models are consistent with
the Hierarchical Linear-Nonlinear (HLN) hypothesis that higher
level neurons (e.g., IT) output a linear weighting of inputs from

intermediate-level (e.g., V4) neurons followed by simple addi-
tional nonlinearities (14, 16, 29).
Models were selected for evaluation by one of three proce-

dures: (i) random sampling of the uniform distribution over
parameter space (Fig. 1A; n = 2,016, green dots); (ii) opti-
mization for performance on the high-variation eight-way cate-
gorization task (n = 2,043, blue dots); and (iii) optimization
directly for IT neural predictivity (n = 1,876, orange dots; also
see SI Text and Fig. S3). In each case, we observed significant
variation in both performance and IT predictivity across the
parameter range. Thus, although the HLN hypothesis is consis-
tent with a broad spectrum of particular neural network archi-
tectures, specific parameter choices have a large effect on a given
model’s recognition performance and neural predictivity.
Performance was significantly correlated with neural pre-

dictivity in all three selection regimes. Models that performed
better on the categorization task were also more likely to pro-
duce outputs more closely aligned to IT neural responses. Al-
though the class of HLN-consistent architectures contains many
neurally inconsistent architectures with low IT predictivity, per-
formance provides a meaningful way to a priori rule out many
of those inconsistent models. No individual model parameters
correlated nearly as strongly with IT predictivity as performance
(Fig. S4), indicating that the performance/IT predictivity corre-
lation cannot be explained by simpler mechanistic considerations
(e.g., receptive field size of the top layer).
Critically, directed optimization for performance significantly

increased the correlation with IT predictivity compared with the
random selection regime (r= 0:78 vs. r= 0:55), even though
neural data were not used in the optimization. Moreover, when
optimizing for performance, the best-performing models pre-
dicted neural output as well as those models directly selected for
neural predictivity, although the reverse is not true. Together,
these results imply that, although the IT predictivity metric is
a complex function of the model parameter landscape, performance
optimization is an efficient means to identify regions in parameter
space containing IT-like models.

IT Cortex as a Neural Performance Target. Fig. 1A suggests a next
step toward improved encoding models of higher ventral cortex:
drive models further to the right along the x axis—if the corre-
lation holds, the models will also climb on the y axis. Ideally, this
would involve identifying hierarchical neural networks that per-
form at or near human object recognition performance levels
and validating them using rigorous tests against neural data
(Fig. 2A). However, the difficulty of meeting the performance
challenge itself can be seen in Fig. 2B. To obtain neural refer-
ence points on categorization performance, we trained linear
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classifiers on the IT neural population (Fig. 2B, green bars) and
the V4 neural population (n= 128, hatched green bars). To ex-
pose a key axis of recognition difficulty, we computed perfor-
mance results at three levels of object view variation, from low
(fixed orientation, size, and position) to high (180° rotations on
all axes, 2.5× dilation, and full-frame translations; Fig. S1A). As
a behavioral reference point, we also measured human perfor-
mance on these tasks using web-based crowdsourcing methods
(black bars). A crucial observation is that at all levels of variation,
the IT population tracks human performance levels, consistent with
known results about IT’s high category decoding abilities (11, 12).
The V4 population matches IT and human performance at low
levels of variation, but performance drops quickly at higher varia-
tion levels. (This V4-to-IT performance gap remains nearly as large
even for images with no object translation variation, showing that
the performance gap is not due just to IT’s larger receptive fields.)
As a computational reference, we used the same procedure to

evaluate a variety of published ventral stream models targeting
several levels of the ventral hierarchy. To control for low-level
confounds, we tested the (trivial) pixel model, as well as SIFT,
a simple baseline computer vision model (30). We also evaluated
a V1-like Gabor-based model (25), a V2-like conjunction-of-
Gabors model (31), and HMAX (17, 28), a model targeted at
explaining higher ventral cortex and that has receptive field sizes

similar to those observed in IT. The HMAX model can be trained
in a domain-specific fashion, and to give it the best chance of
success, we performed this training using the benchmark images
themselves (see SI Text for more information on the comparison
models). Like V4, the control models that we tested approach IT
and human performance levels in the low-variation condition, but
in the high-variation condition, all of them fail to match the per-
formance of IT units by a large margin. It is not surprising that V1
and V2 models are not nearly as effective as IT, but it is instructive
to note that the task is sufficiently difficult that the HMAX model
performs less well than the V4 population sample, even when
pretrained directly on the test dataset.

Constructing a High-Performing Model. Although simple three-
layer hierarchical CNNs can be effective at low-variation object
recognition tasks, recent work has shown that they may be lim-
ited in their performance capacity for higher-variation tasks (9).
For this reason, we extended our model class to contain com-
binations (e.g., mixtures) of deeper CNN networks (Fig. S2B),
which correspond intuitively to architecturally specialized sub-
regions like those observed in the ventral visual stream (13, 32).
To address the significant computational challenge of finding es-
pecially high-performing architectures within this large space of
possible networks, we used hierarchical modular optimization
(HMO). The HMO procedure embodies a conceptually simple
hypothesis for how high-performing combinations of functionally
specialized hierarchical architectures can be efficiently discov-
ered and hierarchically combined, without needing to prespecify
the subtasks ahead of time. Algorithmically, HMO is analogous
to an adaptive boosting procedure (33) interleaved with hyper-
parameter optimization (see SI Text and Fig. S2C).
As a pretraining step, we applied the HMO selection pro-

cedure on a screening task (Fig. S1B). Like the testing set, the
screening set contained images of objects placed on randomly
selected backgrounds, but used entirely different objects in to-
tally nonoverlapping semantic categories, with none of the same
backgrounds and widely divergent lighting conditions and noise
levels. Like any two samples of naturalistic images, the screening
and testing images have high-level commonalities but quite dif-
ferent semantic content. For this reason, performance increases
that transfer between them are likely to also transfer to other
naturalistic image sets. Via this pretraining, the HMO procedure
identified a four-layer CNN with 1,250 top-level outputs (Figs.
S2B and S5), which we will refer to as the HMO model.
Using the same classifier training protocol as with the neural

data and control models, we then tested the HMO model to
determine whether its performance transferred from the screening
to the testing image set. In fact, the HMO model matched the
object recognition performance of the IT neural sample (Fig. 2B,
red bars), even when faced with large amounts of variation—
a hallmark of human object recognition ability (1). These per-
formance results are robust to the number of training examples
and number of sampled model neurons, across a variety of distinct
recognition tasks (Figs. S6 and S7).

Predicting Neural Responses in Individual IT Neural Sites. Given that
the HMO model had plausible performance characteristics, we
then measured its IT predictivity, both for the top layer and each
of the three intermediate layers (Fig. 3, red lines/bars). We found
that each successive layer predicted IT units increasingly well,
demonstrating that the trend identified in Fig. 1A continues to
hold in higher performance regimes and across a wide range of
model complexities (Fig. 1B). Qualitatively examining the spe-
cific predictions for individual images, the model layers show
that category selectivity and tolerance to more drastic image
transformations emerges gradually along the hierarchy (Fig. 3A,
top four rows). At lower layers, model units predict IT responses
only at a limited range of object poses and positions. At higher
layers, variation tolerance grows while category selectivity develops,
suggesting that as more explicit “untangled” object recognition
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three increasing levels of object view variation (y axis units are 8-way cate-
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features are generated at each stage, the representations be-
come increasingly IT-like (9).
Critically, we found that the top layer of the high-performing

HMO model achieves high predictivity for individual IT neural
sites, predicting 48:5± 1:3% of the explainable IT neuronal
variance (Fig. 3 B and C). This represents a nearly 100% im-
provement over the best comparison models and is comparable
to the prediction accuracy of state-of-the-art models of lower-
level ventral areas such as V1 on complex stimuli (10). In com-
parison, although the HMAX model was better at predicting IT
responses than baseline V1 or SIFT, it was not significantly
different from the V2-like model.
To control for how much neural predictivity should be

expected from any algorithm with high categorization perfor-
mance, we assessed semantic ideal observers (34), including
a hypothetical model that has perfect access to all category
labels. The ideal observers do predict IT units above chance level
(Fig. 3C, left two bars), consistent with the observation that IT
neurons are partially categorical. However, the ideal observers
are significantly less predictive than the HMO model, showing
that high IT predictivity does not automatically follow from
category selectivity and that there is significant noncategorical
structure in IT responses attributable to intrinsic aspects of hi-
erarchical network structure (Fig. 3A, last row). These results
suggest that high categorization performance and the hierar-
chical model architecture class work in concert to produce IT-
like populations, and neither of these constraints is sufficient on
its own to do so.

Population Representation Similarity. Characterizing the IT neural
representation at the population level may be equally important
for understanding object visual representation as individual IT
neural sites. The representation dissimilarity matrix (RDM) is a

convenient tool comparing two representations on a common
stimulus set in a task-independent manner (4, 35). Each entry in
the RDM corresponds to one stimulus pair, with high/low values
indicating that the population as a whole treats the pair stimuli
as very different/similar. Taken over the whole stimulus set, the
RDM characterizes the layout of the images in the high-
dimensional neural population space. When images are ordered
by category, the RDM for the measured IT neural population
(Fig. 4A) exhibits clear block-diagonal structure—associated
with IT’s exceptionally high categorization performance—as well
as off-diagonal structure that characterizes the IT neural repre-
sentation more finely than any single performance metric (Fig.
4A and Fig. S8). We found that the neural population predicted
by the output layer of the HMOmodel had very high similarity to
the actual IT population structure, close to the split-half noise
ceiling of the IT population (Fig. 4B). This implies that much of
the residual variance unexplained at the single-site level may not
be relevant for object recognition in the IT population level code.
We also performed two stronger tests of generalization: (i)

object-level generalization, in which the regressor training set
contained images of only 32 object exemplars (four in each of
eight categories), with RDMs assessed only on the remaining 32
objects, and (ii) category-level generalization, in which the re-
gressor sample set contained images of only half the categories
but RDMs were assessed only on images of the other categories
(see Figs. S8 and S9). We found that the prediction generalizes
robustly, capturing the IT population’s layout for images of
completely novel objects and categories (Fig. 4 B and C and
Fig. S8).

Predicting Responses in V4 from Intermediate Model Layers. Cortical
area V4 is the dominant cortical input to IT, and the neural
representation in V4 is known to be significantly less categorical
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neural site for each test image (those not used to fit
the model). Two of the units show selectivity for
specific classes of objects, namely chairs (Left) and
faces (Center), whereas the third (Right) exhibits
a wider variety of image preferences. The four top
rows show neural predictions using the visual fea-
ture set (i.e., units sampled) from each of the four
layers of the HMO model, whereas the lower rows
show the those of control models. (B) Distributions
of model explained variance percentage, over the
population of all measured IT sites (n = 168). Yellow
dotted line indicates distribution median. (C)
Comparison of IT neural explained variance per-
centage for various models. Bar height shows me-
dian explained variance, taken over all predicted IT
units. Error bars are computed over image splits.
Colored bars are those shown in A and B, whereas
gray bars are additional comparisons.
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than that of IT (12). Comparing a performance-optimized model
to these data would provide a strong test both of its ability to
predict the internal structure of the ventral stream, as well as to
go beyond the direct consequences of category selectivity. We
thus measured the HMO model’s neural predictivity for the V4
neural population (Fig. 5). We found that the HMO model’s
penultimate layer is highly predictive of V4 neural responses
(51:7± 2:3% explained V4 variance), providing a significantly
better match to V4 than either the model’s top or bottom layers.
These results are strong evidence for the hypothesis that V4
corresponds to an intermediate layer in a hierarchical model
whose top layer is an effective model of IT. Of the control
models that we tested, the V2-like model predicts the most V4
variation ð34:1± 2:4%Þ. Unlike the case of IT, semantic models
explain effectively no variance in V4, consistent with V4’s lack of
category selectivity. Together these results suggest that perfor-
mance optimization not only drives top-level output model layers
to resemble IT, but also imposes biologically consistent con-
straints on the intermediate feature representations that can
support downstream performance.

Discussion
Here, we demonstrate a principled method for achieving greatly
improved predictive models of neural responses in higher
ventral cortex. Our approach operationalizes a hypothesis for
how two biological constraints together shaped visual cortex:
(i) the functional constraint of recognition performance and
(ii) the structural constraint imposed by the hierarchical net-
work architecture.

Generative Basis for Higher Visual Cortical Areas. Our modeling
approach has common ground with existing work on neural re-
sponse prediction (27), e.g., the HLN hypothesis. However, in
a departure from that line of work, we do not tune model
parameters (the nonlinearities or the model filters) separately
for each neural unit to be predicted. In fact, with the exception
of the final linear weighting, we do not tune parameters using
neural data at all. Instead, the parameters of our model were
independently selected to optimize functional performance at
the top level, and these choices create fixed bases from which any
individual IT or V4 unit can be composed. This yields a genera-
tive model that allows the sampling of an arbitrary number of

neurally consistent units. As a result, the size of the model does
not scale with the number of neural sites to be predicted—and
because the prediction results were assessed for a random
sample of IT and V4 units, they are likely to generalize with
similar levels of predictivity to any new sites that are measured.

What Features Do Good Models Share? Although the highest-per-
forming models had certain commonalities (e.g., more hierar-
chical layers), many poor models also exhibited these features,
and no one architectural parameter dominated performance
variability (Fig. S3). To gain further insight, we performed an
exploratory analysis of the parameters of the learned HMO
model, evaluating each parameter both for how sensitively it was
tuned and how diverse it was between model mixture components.
Two classes of model parameters were especially sensitive and
diverse (SI Text and Figs. S10 and S11): (i) filter statistics, in-
cluding filter mean and spread, and (ii) the exponent trading off
between max-pooling and average-pooling (16). This observation
hints at a computationally rigorous explanation for experimentally
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Fig. 5. V4 neural predictions. (A) Actual vs. predicted response magnitudes
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observed heterogeneities in higher ventral cortex areas (13,
32), but much work remains to be done to confirm such a
hypothesis.

Top-Down Approach to Understanding Cortical Circuits. A common
assumption in visual neuroscience is that understanding the
tuning curves of neurons in lower cortical areas will be a neces-
sary precursor to explaining higher visual cortex. For example,
significant work has gone into assessing the extent to which V4
neurons can be understood as a curvature-selective shape rep-
resentation (27). Our results indicate that it is useful to com-
plement this bottom-up approach with a top-down perspective
characterizing IT as the product of an evolutionary/developmental
process that selected for high performance on recognition on tasks
like those used in our optimization. V4 may in turn be char-
acterized as having been selected precisely to support the down-
stream computation in IT. This type of explanation is qualitatively
different from more traditional approaches that seek explicit
descriptions of neural responses in terms of particular geo-
metrical primitives. However, our results show functionally
relevant constraints can be used to obtain quantitatively pre-
dictive models even when such explicit bottom-up primitives
have not been identified.
Going forward, we will bridge these bottom-up and top-down

explanations by building links to lower and intermediate visual
cortex, especially in V1 and V2. We will also explore recent high-
performing computer vision systems with architectures inspired
by the ventral stream (36). Our results show that behaviorally
driven computational approaches have an important role in
understanding the details of visual processing (37) and suggest

that the overall approach may be applicable to other cortical
areas and task domains.

Materials and Methods
Array Electrophysiology. Neural data were collected in two awake behaving
rhesus macaques (Macaca mulatta, 7 and 9 kg) using parallel multielectrode
array electrophysiology systems (Cerebus System; BlackRock Microsystems).
All procedures were done in accordance with National Institutes of Health
guidelines and approved by the Massachusetts Institute of Technology (MIT)
Committee on Animal Care. 296 neural sites (168 in IT and 128 in V4) were
selected as being visually driven. Fixating animals were presented with
testing images for 100 ms, and scalar firing rates were obtained from spike
trains by averaging spike counts in the period 70–170 ms after stimulus
presentation. See SI Text for additional details.

Neural Predictivity Metric. For each IT neural site, we used linear regression to
identify a linear weighting of model output units (from the top or in-
termediate layers) that is most predictive of that site’s actual output on
a fixed set of sample images (10, 26, 27). Using this “synthetic neuron,” we
then produced per-image response predictions on novel images not used in
the regression training and compared them to the actual neural site’s output
for those images (Figs. 3A and 5A). We computed the goodness-of-fit r2

value, normalized by the neural site’s trial-by-trial variability, to obtain the
explained variance percentage for that site. The overall area predictivity of
a model is the median explained variance over all measured sites in that area
(Figs. 3 B and C and 5 B and C and see SI Text).
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