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The ability to rapidly adapt to the current sensory environment
is a fundamental property of sensory systems. Such adaptation
may depend on computations implemented at the neural circuit
level, but also on intrinsic cellular mechanisms. We combined
neural data, psychophysics, and computational models to eval-
uate whether an intrinsic neural fatigue mechanism in a feed-
forward hierarchical network is sufficient to explain the core
properties of visual adaptation. We implemented activity-based
response suppression in each unit of a convolutional deep neu-
ral network. The resulting units showed hallmark properties of
repetition suppression, leading to a stimulus-specific and layer-
dependent response attenuation for frequent input. Further-
more, the activation patterns could account for known percep-
tual aftereffects such as the tilt and face-gender aftereffect. The
model was also able to capture the results of a visual categori-
sation experiment demonstrating enhanced object recognition
when objects are embedded in a constant pattern of noisy in-
puts. The computations required for adaptation can be learned,
as demonstrated by units in a recurrent neural network which
learn to suppress themselves when trained on that same psy-
chophysics visual recognition experiment. These results show
that a learned intrinsic neural mechanism of fatigue can incor-
porate temporal context information accounting for key neuro-
physiological and perceptual properties and leading to efficient
and enhanced processing of sensory inputs.
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Introduction

Information processing in biological vision is not just a con-
stant function of current visual input, but is dynamically
changed by that input. These changes can dramatically alter
our visual experience, such as the illusory perception of up-
wards motion after watching flowing water in the so-called
waterfall illusion (Addams, 1834). Likewise, in the brain
neural responses change both during and after the presen-
tation of a stimulus, resulting in complex temporal dynam-
ics. The dependence of neural activity and perception on
recent stimulation is generally called adaptation and is con-
sidered a fundamental property of our visual and other sen-
sory systems (Whitmire and Stanley, 2016). Adaptation can
improve metabolic efficiency by avoiding costly signal pro-

cessing under conditions where the inputs are constant. In
addition, adaptation matches the system’s sensitivity to the
prevailing conditions of the sensory environment, improving
novelty detection (Clifford et al., 2007; Kohn, 2007). Rapid
calibration of the system’s operations is particularly relevant
for understanding biological vision because it relates to the
moment-to-moment changes of natural visual input (Whit-
mire and Stanley, 2016).
Our current best models of the primate ventral visual stream
are based on a family of feedforward deep artificial neural
networks (ANN) that assume a static stimulus-response re-
lation. By incorporating computational principles that are
directly inspired by the visual system (LeCun et al., 2015),
these models have been shown to describe the responses
in the ventral visual stream to brief stimulus presentations
(Cadieu et al., 2014; Yamins et al., 2014; Güçlü and van Ger-
ven, 2015; Kalfas et al., 2017, 2018) while capturing to some
extent aspects of object recognition and perceived shape sim-
ilarity in primates at the behavioral level (Yamins et al., 2014;
Kubilius et al., 2016; Kalfas et al., 2018). These successes
have shown that ANNs are a powerful tool for relating com-
putational principles both to neural representations as well
as perception and thus may provide a comprehensive frame-
work for connecting the different levels at which adaptation
phenomena have traditionally been described.
At the perceptual level, visual adaptation refers to fast but
temporary changes during exposure to a stimulus, often lead-
ing to a reduced sensitivity for its features. For example, ex-
posure to a high contrast grating reduces sensitivity for grat-
ings similar in orientation and spatial frequency (Blakemore
and Campbell, 1969). The lingering effects after removal of
an adapter stimulus are referred to as aftereffects, as exempli-
fied by the waterfall illusion resulting from adaptation to mo-
tion. Aftereffects have been originally described for a wide
range of low-level stimulus properties such as motion, color,
contrast, and orientation (Frisby and Stone, 2010). More re-
cently however, they have also been reported for high-level
level properties such as combinations of lower-level features,
shape, or complex dimensions along which we classify faces
(Webster and MacLeod, 2011; for an overview see Webster,
2015). This range of aftereffects for low to high-level proper-
ties suggest that the underlying mechanisms of visual adap-
tation operate at multiple levels of processing in the visual
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system (Webster, 2015).

In visual cortex, neural adaptation effects have been reported
in several different areas, from primary visual cortex (V1)
to inferotemporal cortex (IT; Kohn, 2007; Vogels, 2016),
and across species (Vinken et al., 2017). Mirroring the re-
duced perceptual sensitivity described in the previous para-
graph, exposure to an adapter stimulus often reduces the neu-
ral response to a test stimulus that is similar to the adapter.
The stimulus specificity of adaptation, that is the depen-
dence on the similarity between adapter and test stimulus,
is a hallmark property of adaptation (for an overview see
Kohn, 2007). When a stimulus is repeated (i.e. maximum
similarity), the resulting response reduction is called repeti-
tion suppression. The strength of repetition suppression has
been shown to increase with the number of repetitions, even
if there are intervening stimuli (Miller et al., 1991; Ulanovsky
et al., 2003; Sawamura et al., 2006; Kaliukhovich and Vogels,
2014; Vinken et al., 2017), and decrease with the interstimu-
lus interval (Sawamura et al., 2006).

Repetition suppression and aftereffects are usually consid-
ered to be manifestations of the same underlying mecha-
nisms, but it remains uncertain what those mechanisms are.
Adaptation effects could be implemented at the circuit level
through suppression by inhibitory connections between neu-
rons, but they might also emerge from intrinsic properties of
single neurons or synapses (Whitmire and Stanley, 2016).
At the cellular level, the responsiveness of cortical neurons
can be controlled by intrinsic mechanisms that increase the
membrane conductance. Indeed, contrast adaptation in cat
visual cortex leads to a strong afterhyperpolarization of the
membrane potential (Carandini and Ferster, 1997; Sanchez-
Vives et al., 2000b). This afterhyperpolarization is caused
by sodium-activated potassium currents that are triggered by
the influx of sodium ions following high frequency firing
(Sanchez-Vives et al., 2000a; Abolafia et al., 2011). Thus, in
this scenario intrinsic properties of individual neurons con-
trol its responsiveness based on the strength of its previous
activation, which is called firing-rate adaptation or fatigue.

Neural fatigue on its own cannot explain complex effects
of adaptation such as stimulus selectivity, because fatigue
should equally affect responses for all stimuli. However,
several studies have suggested that adaptation effects cas-
cade through the visual system (De Baene and Vogels, 2010;
Dhruv and Carandini, 2014; Patterson et al., 2014). Thus,
more complex effects could emerge when fatigue is con-
sidered in a hierarchical neural network, where simple sup-
pressive effects could propagate through the circuit and dy-
namically change its state (Solomon and Kohn, 2014; Whit-
mire and Stanley, 2016). Here, we investigated whether
core phenomena of visual adaptation can be explained by
activity-based response suppression cascading through a
feed-forward neural network. We started by implementing
an exponentially decaying fatigue mechanism in the units
of a pre-trained ANN (Krizhevsky et al., 2012) and asked
whether it could account for the temporal dynamics of adap-
tation in neurophysiology and perception. Next, we ran a
psychophysics experiment to test whether adaptation can im-

prove object recognition by adapting to prevailing condi-
tions. We show that an intrinsic adaptation mechanism can
be learned by recurrent neural networks, when trained on the
same object recognition task. Finally, we show that a circuit
solution learned by a recurrent neural network is less robust
than intrinsic neural fatigue.

Methods

Computational Model
We used the AlexNet architecture (Krizhevsky et al., 2012)
(Fig. 1A), with weights pre-trained on the ImageNet dataset
(Russakovsky et al., 2015) as a model for the ventral visual
stream. We implemented an exponentially decaying fatigue
mechanism (Bellec et al., 2018). For each unit in every con-
volutional and fully connected layer (except for the decoder)
we assigned a suppression state st, which was updated at
each time step t based on its previous state st−1 and the pre-
vious response rt−1 (i.e. activations after ReLU):

st = αst−1 +(1−α)rt−1 (1)

where α is a constant in [0,1] determining the time scale
of the decay (Fig. 1B). This suppression state is then sub-
tracted from the encoding of the unit’s current input xt (given
weightsW and bias b) before applying the rectifier activation
function σ, so that:

rt = σ(b+Wxt−βst) (2)

where β is a constant that scales the amount of suppression.
These model updating rules result in an exponentially decay-
ing response for constant input which recovers in case of no
input (Fig. 1B), simulating a neural fatigue mechanism intrin-
sic to each individual neuron. By implementing this mecha-
nism across discrete time steps in AlexNet, we essentially
introduced a temporal dimension to the network (Fig. 1C).
Throughout the paper, we use α = 0.96 and β = 0.7 unless
indicated otherwise.

Neurophysiology
We present neurophysiological data from two previously
published studies in order to compare them with the neu-
ral adaptation effects of the proposed computational model:
single cell (N = 97) recordings from inferior temporal (IT)
cortex of one macaque monkey G (Vinken et al., 2018) and
multi-unit recordings from primary visual cortex (N = 55)
and latero-intermediate visual area (N = 48) of three rats
(Vinken et al., 2017). For methodological details we refer
to the original papers.

Psychophysics
Participants. A total of 12 volunteers (7 female, ages 19-
50) participated in our doodle categorization experiments.
All subjects gave informed consent and the studies were ap-
proved by the Institutional Review Board at Children’s Hos-
pital, Harvard Medical School.
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Fig. 1. Neural network architecture and expansion over time to include neural fatigue. A Architecture of a regular static deep convolutional neural network, in this case
AlexNet (Krizhevsky et al., 2012). AlexNet contains five convolutional layers (conv1-5) and three fully connected layers (fc6, fc7, and the decoder fc8). The unit activations in
each layer, and therefore the output of the network, are a fixed function of the input image. B Fatigue implemented by Equations 1 and 2 results in suppression over time for
constant input (time steps 0-100) and recovery in the absence of input (time steps > 100). In this case α = 0.96 and β = 0.7. C An expansion over time of the network in
A, where the activation of each unit is a function of its inputs and its activation at the previous time step (Equations 1 and 2).

Stimuli. For the stimulus set we took hand drawn doodles of
apples, cars, faces, fish, and flowers from the Quick, Draw!
dataset (Google Creative Lab, 2019). We selected a total of
540 doodles (108 from each of the five categories) that were
judged complete and identifiable. We lowered the contrast of
each doodle image (28x28 pixels) to either 22 or 29% of the
original contrast, before adding a Gaussian noise pattern (SD
= 0.165 in normalized pixel values) of the same resolution.
The higher contrast level (29%) was chosen so that the doodle
was relatively visible as a control, was used in only one sixth
of the trials, and was not included in the analyses.

Experimental protocol. Participants had to fixate a cross at
the center of the screen in order to start a trial. Next, an
adapter image was presented (for 0.5, 2, or 4 s), followed
by a blank interval (of 50, 250, or 500 ms), a test image (for
500 ms), and finally a response prompt screen. The test im-
ages were noisy doodles described in the above paragraph.
The adapter image could either be: an empty frame (defined
by a white square filled with the background color), the same
mosaic noise pattern as the one of the subsequent test im-
age, or a randomly generated different noise pattern (Fig. 4).
Participants were asked to keep looking at the fixation cross
which remained visible throughout the entire trial until they
were prompted to classify the test image using keyboard keys
1-5. All images were presented at 9 x 9° from a viewing
distance of approximately 52 cm on a 19 inch CRT moni-
tor (Sony Multiscan G520, 1024 × 1280 resolution), while
we continuously tracked eye movements using a video-based
eye tracker (EyeLink 1000, SR Research, Canada). Trials
where the root-mean-square deviation of the eye-movements
exceeded 1 degree of visual angle during adapter presenta-
tion were excluded from further analyses. The experiment
was controlled by custom code written in MATLAB using
Psychophysics Toolbox Version 3.0 (Brainard, 1997).

Results

We introduced an adaptive mechanism into bottom-up com-
putational models of vision by incorporating units that show
neural fatigue (Methods). We show that the incorporation of
neural fatigue is able to capture fundamental dynamic proper-
ties of adaptation both at the neurophysiological level as well
as at the behavioral/perceptual level.

A neural network incorporating neural fatigue cap-
tures the attenuation in neurophysiological responses
during repetition suppression

We first show that adding an intrinsic neural fatigue mech-
anism to each unit in an ANN replicates the hallmark prop-
erties of neural adaptation. The most prominent character-
istic of neural adaptation is repetition suppression, or a re-
sponse reduction when a stimulus is repeated. For exam-
ple, in trials with presentation of two sequential stimuli, the
response to the second stimulus is typically lower and this
reduction is strongest when the second stimulus is identical
to the first. This phenomenon is illustrated by the data in
Fig. 2A, which shows a lower response in IT neurons for
a face repetition (blue) compared to a face alternation (or-
ange) (Vinken et al., 2018). We simulated the same experi-
ment in our neural network by presenting the same trials as-
suming time step intervals of 50 ms (α = 0.96, and β = 0.7
in Equations 1 and 2), which resulted in qualitatively simi-
lar results Fig. 2B. Stimulus-specific repetition suppression
was more pronounced in IT neurons, which were recorded
from the middle lateral face patch, compared to conv5 units
of AlexNet, suggesting that there was more stimulus selec-
tivity in the input population of the real neurons. The model
units demonstrate the key features of adaptation at two time
scales: (i) during presentation of any stimulus, including the
first stimulus, there is a decrease in the response with time;
(ii) the overall response to the second stimulus is smaller than
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Fig. 2. Neural fatigue in an ANN captures temporal dynamics of adaptation at the neurophysiological level. A Neural responses in macaque inferior temporal cortex
(IT) are suppressed more for a repeated stimulus (blue) than for a new stimulus (orange). The data are responses to faces recorded from N = 97 responsive neurons in
the middle lateral face patch of one monkey (Vinken et al., 2018). Black bars indicate stimulus presentation. B A simulation of the same experiment as in A leads to similar
stimulus-specific suppression in an ANN with neural fatigue. This plot shows the activity of N = 6590 responsive units in the conv5 layer of AlexNet. The x-axis units are
time steps, mapping to bins of 50 ms in panel A. For comparison we show the response time course generated by the model without adaptation (grey). Below are example
stimuli used in the actual and simulated experiment. C Accumulation of adaptation across multiple repeats leads to increased suppression for high probability stimuli (blue)
compared to low probability stimuli (orange) in an oddball paradigm. The data are responses from multi-unit sites recorded during oddball sequences in rat i. primary (V1,
N = 55) and ii. latero-intermediate (LI, N = 48) visual cortex (Vinken et al., 2017). Time courses were normalized by the response at the first trial. iii. Difference in
response for the low and high probability stimulus increases from V1 to LI (error bars are 95% bootstrap confidence intervals calculated assuming no inter-animal difference).
B A simulation of an oddball sequence from C leads to similar accumulation of suppression across stimulus presentations and stages of processing. Below are example
stimuli of a high probability grating (blue) and a low probability texture (orange) used in the actual and simulated experiments. Note that stimulus type and probability were
counterbalanced for each neural recording.

the overall response to the first stimulus; (iii) the response to
the second stimulus is attenuated more when it is a repetition.

In addition to the two temporal scales illustrated in Fig. 2A-
B, adaptation not only affects responses from one stimulus
to the next, but also operates at longer time scales. For ex-
ample, repetition suppression typically accumulates across
multiple stimulus presentations and can survive intervening
stimuli (Sawamura et al., 2006). To examine this longer time
scale over multiple trials, we considered an oddball paradigm
where two stimuli are presented with different probabili-
ties in a sequence (Fig. 2D, bottom): the standard stimu-
lus is shown with high probability (blue) and the deviant
stimulus is shown with a low probability (orange). The se-
quence consisted of 100 stimulus presentations, each one
shown for 300 ms and separated by 300 ms, with 90 stan-
dard stimuli and 10 deviant stimuli shown in random order.
We illustrate the build-up in adaptation over time using data
recorded from N = 55 neurons in the rat primary visual cor-
tex (Vinken et al., 2017): the standard stimulus is far more
likely to be repeated in the sequence, allowing adaptation to
build up and cause a more decreased response for later tri-
als. In contrast, the low probability stimulus does not show
such a response reduction. There is evidence that adapta-
tion effects increase in later stages of processing (Vinken
et al., 2017; Kaliukhovich and Op de Beeck, 2018; Nieto-
Diego and Malmierca, 2016). Indeed, in the same oddball
paradigm, the difference in the response between the deviant
stimulus and the standard stimulus was larger in the latero-
medial (LI) visual cortex (Fig. 2C; Vinken et al., 2017).

The proposed model was able to qualitatively capture the

response difference between standard and deviant stimuli
Fig. 2D. The model also showed a partial release from adap-
tation after each presentation of a deviant, similar to the ob-
servaitons in rat visual cortex (see Supplemental Information
of Vinken et al., 2017). Furthermore, there was a monotonic
increase in the adaptation effect (difference in response be-
tween deviant and standard stimulus) from one layer to the
next. These results demonstrate that neural fatigue propagat-
ing through a hierarchical system encodes stimulus probabil-
ities with increasing sensitivity. Note that the L1 responses in
rats also showed an increased response to the low probabil-
ity deviant (normalized response above 1 in Fig. 2C ii; this
effect was not captured by the model and is likely to require
additional mechanisms, see Discussion).

A neural network incorporating neural fatigue reveals
perceptual manifestations of adaptation
After demonstrating the core phenomena of neural adapta-
tion during repetition suppression, we will now show that an
ANN with neural fatigue can explain perceptual aftereffects
of adaptation. We start with an aftereffect for the low-level
stimulus property of orientation (Gibson and Radner, 1937;
Frisby and Stone, 2010). The tilt aftereffect refers to a phe-
nomenon where an observer perceives a vertically oriented
grating to be slightly tilted in the direction opposite to the
tilt direction of an adapter (see Fig. 3A). In other words, the
decision boundary for perceptual orientation discrimination
shifts towards the adapter (Frisby and Stone, 2010). On the
other hand, no shift should occur when the adapter has the
same orientation as the test stimulus.
To evaluate whether perceptual aftereffects can be described
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Fig. 3. An ANN incorporating neural fatigue demonstrates perceptual adap-
tation effects A,D Illustration of the tilt (A) and face-gender (D) aftereffect with the
stimuli used in our simulated experiments. After exposure to an adapter (left), a
test stimulus is presented (middle). The test stimulus is perceived differently as a
result of a shift in the decision boundary toward the adapter. In (A), observers per-
ceive the vertically oriented grating as tilted to the left. In (D), observers perceive
the neutral face as more female like. The images for the illustration of perceived
aftereffects (A,D) were picked based on the estimated conv5 boundary shift shown
below. B,E Decision boundaries before (blue) versus after (orange) exposure to the
adapter based on the conv5 layer of the model with neural fatigue. Markers show
class probability estimates for each test stimulus, full lines indicate the correspond-
ing psychometric functions, and vertical lines the classification boundaries. In (B),
adaptation to a 45 degree grating leads to a shift in the decision boundary to pos-
itive orientations, hence perceiving test stimuli with more negative orientations. In
(E), adaptation to a 100% male face leads to a shift in the decision boundary to-
wards male faces, hence perceiving test stimuli as more female-like. C,F Decision
boundary shifts for the test stimulus as a function of the adapter tilt/face-gender per
layer. Round markers indicate the conv5 boundary shifts plotted in (B,E). Note that
the classifier for the tilt aftereffect in fc7 is not robust to the effects of adaptation.

by an ANN with neural fatigue, we created a set of gratings
that ranged parametrically from left to right oriented (-45° to
45° in 100 steps), and measured the category boundary for
each layer of the model before and after adaptation. Specif-
ically, these boundaries were estimated using a binary clas-
sifier (logistic regression, trained on the full stimulus set be-
fore adaptation) and fitting a psychometric function (Wich-
mann and Hill, 2001) on the class probability estimates given
by that classifier. For a fair comparison, the before and after
adaptation boundaries were always calculated using the same
classifier in the same space, namely the principal component
space obtained from the unadapted outputs to the full stimu-
lus set. In Fig. 3B we show the psychometric curves fit on the
conv5 class probability estimates before and after adaptation
to a 45° right tilted grating. As predicted, the decision bound-
ary shifted towards the tilt of the adapter. Fig. 3C shows that
for all layers but fc7, adaptation to a tilted grating resulted in
a boundary shift towards the adapter. Given that the test stim-
ulus is vertical, adaptation to a vertically oriented grating had
no effect. The effect of adaptation propagated and accumu-
lated over the layers, and the shift in the test boundary was
largest for conv5 and fc6. For conv1 there was also a shift

which is too small to notice in Fig. 3C.
Aftereffects have also been described for high level stimulus
properties, such as the gender of faces (Webster et al., 2004).
Like the tilt aftereffect, adapting to a male or female face
results in a face-gender boundary shift towards the adapter,
whereas adapting to a gender-neutral face leads to no shift
when the test stimulus is neutral. In other words, exposure
to a male face will make a neutral face appear more female
(Fig. 3D). To test this in the model proposed here, we created
a set of face stimuli that morphed from average female to av-
erage male face in 100 steps (using Webmorph: DeBruine,
2019). As predicted, exposing the model to an adapter face
shifted the face-gender boundary towards the adapter gen-
der (Fig. 3E, F), whereas adaptation to a gender-neutral face
had no effect. The aftereffect did not suddenly emerge in
later layers, but slowly built up in an approximately mono-
tonic fashion with increasing layers, consistent with the idea
of adaptation cascading and accumulating across the stages
of processing. In this framework, all stages of processing can
contribute to aftereffects, based on the population of neurons
that responds to both the adapter and test images.

Neural fatigue increases sensitivity to changes

One of the proposed computational roles of neural adaptation
is to increase sensitivity to small but relevant changes in the
sensory environment by adapting to the prevailing conditions
(Clifford et al., 2007; Kohn, 2007). To test the hypothesis that
adaptation can increase the ability to identify small but rele-
vant changes in a sensory stream, we ran a psychophysics cat-
egorization task whereby participants were required to clas-
sify hand drawn doodles (Fig. 4A) hidden in a noise pattern.
We asked whether adaptation to the same noise pattern would
increase the ability to recognize the target object embedded in
the noise pattern. We compared the behavioral results against
two control conditions where we would expect to see no ef-
fect of adaptation: one where no adapter was used (i.e. an
empty frame, Fig. 4B, left) and one where a different noise
pattern was used (Fig. 4B, right) (Methods).
The task is not easy: whereas subjects can readily recog-
nize the doodles in isolation, when they are embedded in
noise and in the absence of any adapter, performance was
58% (SD = 9) where chance is 20%. Adapting to a noise
pattern increased recognition performance by 9% (Fig. 4C i,
p= 0.016, Wilcoxon signed rank test,N = 12 subjects). This
increase in performance was contingent on the noise pattern
presented during the test stimulus being the same as the noise
pattern in the adapter. Performance in the same noise con-
dition was 7% higher than in the different noise condition
(p= 0.009, Wilcoxon signed rank test, N = 12 subjects).
We next evaluated the model’s performance in this same task.
We first fine-tuned the pre-trained fully connected layers of
AlexNet to classify high contrast (i.e. 40% as opposed to
22% in the experiment) doodles on a noisy background, us-
ing 10,000 independent training images for each of the 5 cat-
egories for 5 epochs. In the experiment the model demon-
strated the same effects as the human participants, showing
increased performance for the same noise condition com-
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Fig. 4. Neural fatigue increases sensitivity to changes by adapting to previ-
ous input. A Representative examples for each of the five doodle categories from
the total set of 540 selected images (Google Creative Lab, 2019). B Schematic
illustration of the conditions used in the doodle experiment. In each trial partici-
pants or the model had to classify a hand drawn doodle hidden in noise (test), after
adapting to the same (middle), a different (right), or no (left) noise pattern. C Both i.
human participants and ii. the proposed computational model showed an increase
in performance after adapting to the same noise pattern. Gray circles and lines
denote individual participants (N = 12). The colored circles show average perfor-
mance. Chance = 20%. Note that for this figure we decreased the suppression
scaling constant to β = 0.1 to get comparable adapter effects (for all other figures
it was set to β = 0.7). D Neural fatigue enhanced the representation of the signal
(doodle) by adapting to the prevailing sensory conditions (noise pattern). i. Repre-
sentation of the dynamic evolution of the representation of the images embedded
in noise. The 3 axes correspond to the first 3 principal components of the fc8 layer
representation of all the test images. Each dot represents a separate doodle+noise
image, the color corresponds to the category (as shown by the text in part A). The
transparent lines denote the trajectory joining the initial and final representation of
each doodle+noise image. Adaptation to the same noise pattern moves the doodle
representations in fc8 principal component space to separable clusters. ii. Dissimi-
larity matrix for all pairs of images. Entry (i,j) shows the Euclidian distance between
image i and image j based on the fc8 features at time step 1 (top) or time step 40
(bottom). The distance is represented by the color of each point in the matrix (see
scale on bottom right). Images are sorted based on their categories (colored circles
refer to category labels in A). Adaptation leads to an increase in between category
distances and a decrease in within category distances as shown by the pairwise
distance matrices.

pared to the no adapter condition or different noise condi-
tion (Fig. 4C ii.). Neural fatigue enhanced the representa-
tion of the signal (doodle) by adapting to the current sensory
conditions. Fig. 4D i. shows the dynamic evolution of the
representation of each doodle+noise image in a space deter-
mined by the first 3 principal components of the fc8 feature
representation. The separation between images in the feature
space was quantified by computing the dissimilarity matrix
for all possible pairs of images (Fig. 4D ii.. Adaptation led
to increased differentiation of the between category compar-
isons (off diagonal squares) and increased similarity of im-
ages within each category (diagonal squares) from the initial
conditions (top) to the final time step (bottom).

Adaptation can be learned in a network trained to max-
imize recognition performance

The structure and parameters of the model considered thus far
were hard coded by introducing a neural fatigue mechanism.
The proof-of-principle model allowed us to demonstrate that
an intrinsic neural mechanism is sufficient to capture core
neurophysiological and perceptual adaptation effects in a
feedforward neural network. Next we asked whether it is
possible to learn adaptation in a neural network without im-
posing a fatigue mechanism. In a purely feed-forward net-
work without any temporal dynamics, it is not possible to
learn adaptation. Therefore, we considered the recurrent neu-
ral network schematically illustrated in Fig. 5A, consisting
of three convolutional layers and one fully connected layer
(before the decoder). We started by considering a simplified
version of the experiment presented in the previous section
with two time steps (without the intervening blank delay),
with the adapter shown at step one and the test image at step
two (Fig. 5B). We used the same doodle images hidden in
noise from (Fig. 4), with 100,000 doodles in each of the five
categories for training (5 epochs), and 1000 doodles in each
category for testing.
As a baseline, we first evaluated the performance of the same
network without recurrent connections (Fig. 5B i. black bar);
this network reached a performance of 74.7%. Upon includ-
ing the recurrent connections, the network achieved a perfor-
mance of 97.5% when trained on same noise trials (Fig. 5B
i. blue bar). In contrast, when the network was trained on
different noise trials, performance was similar to the one ob-
tained without recurrent connectivity (Fig. 5B i. orange bar).
To investigate how the recurrent neural network solved the
task, we compared the on-diagonal recurrent weights (i.e., the
weights connecting a unit onto itself across time steps), with
off-diagonal recurrent weights (i.e., the weights connecting
different units horizontally within a layer). In the first con-
volutional layer (conv1), on-diagonal weights tended to be
strongly negative compared to off-diagonal weights (Fig. 5B
ii.). Thus, the units in layer conv1 learned to suppress them-
selves based on the previous time step, a hallmark signature
of intrinsic adaptation. In contrast, when the recurrent neural
network was trained on different noise trials, the noise pat-
tern information at time step one was not useful and we did
not observe the negative diagonal weights.
This self-suppression solution only works when there is no
gap between the adapter and test images, because the units
have no memory capacity by themselves, unlike units with a
slowly decaying hidden state. However, when we trained a
recurrent neural network to solve the task when there is a gap
(Fig. 5C), the network could still learn to use its recurrent
loops to "remember" the adapter noise pattern. To compare
this circuit solution with that of an exponentially decaying
decaying hidden state, we built the same network without
recurrent connections, but with the hidden state dictated by
Equations 1 and 2. In addition to training the feedforward
weights on the task, we now also trained parameters α and β
per layer. The value of α determines how fast the hidden state
updates, ranging from no update (α = 1) to completely re-
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Fig. 5. A recurrent neural network can learn to use the adapter noise pattern information. A Recurrent convolutional neural network, with fully connected recurrent
weights for the fully connected layer and convolutional recurrent kernels of size 1 x 1 x 32 and stride 1 for the three convolutional layers. B i Generalization performance for
a network trained on the same noise condition, without recurrence (black bar), or a network with recurrent connections trained on same noise trials (blue) or different noise
trials (orange). Chance = 20% ii. (left) Average recurrent connection weights for layers 1 through 4 separately showing on-diagonal weights (solid lines), off-diagonal weights
(dotted lines) when the network is trained with the same noise condition (blue) or different noise condition (orange). Right: all recurrent weights for the conv1 layer in the
same noise condition (top) and different noise condition (bottom). Entry (i,j) indicates the connection weight between unit i and unit j, see color scale on right. C We trained a
recurrent network on same noise trails with a gap between adapter and test images and compare with a network of the same architecture but without recurrent weights and
with units with a decaying hidden state built in (according to Equations 1 and 2). i. Here, in contrast with previous figures, the parameters α and β were learned separately
for each layer. This figure shows the fitted parameters for each layer. ii. Categorization performance (chance = 20%, indicated by horizontal dotted lines) when different
amounts of noise (x-axis) was added during testing for the network implementing neural fatigue (magenta) or the recurrent network (green). (left) Gaussian noise. (middle)
Uniformly distributed noise. (right) Gaussian noise (SD = 0.32) with an added offset value. The vertical dotted line shows the amount of noise used during training (only in
the panel on the left which was the type of noise used for training).

newing at each time step (α= 0). The value of β determines
whether the hidden state is used for activation-based fatigue
(β > 0), enhancement (β < 0) or nothing at all (β= 0). Train-
ing these parameters led to fatigue, which was strongest in the
first two layers (higher β and lower α (Fig. 5C i.). Both the
neural fatigue mechanism and the recurrent network gener-
alized well to different trials with the same Gaussian noise
distribution as the training set (Fig. 5C ii., left). However,
the recurrent network failed to generalize to higher standard
deviations of uniformly distributed noise, or Gaussian noise
with an offset (Fig. 5C ii., middle and right). This suggests
that in contrast with an intrinsic neural fatigue mechanism,
the circuit implementation learned by the recurrent neural
network is not robust to deviations from the particular train-
ing conditions.

Discussion

The visual system continuously adapts to previous stimula-
tion. The dynamics of incorporating such temporal contex-
tual information could be a consequence of the interactions
in the whole circuit, but they could also arise from intrin-
sic biophysical mechanisms in each individual neuron. The
basic building blocks in most of the existing neural network
models of the visual system are simplified linear summation
units plus a nonlinear activation function such as the recti-
fying linear unit (ReLU). Deep convolutional networks are
based on hierarchical cascades of such units, and do not in-
corporate the temporal dynamics of neuronal responses. Pre-
vious attempts at incorporating a time dimension have relied
on adding recurrent weights to a network (Tang et al., 2018;

Kar et al., 2019).
A particularly notable aspect of how temporal context is in-
corporated in visual processing is the effect of adaptation,
which is evident in the attenuated neuronal responses to
repeated stimuli and is also evident in perceptual afteref-
fects and other visual illusions. In this study, we investi-
gated whether the paradigmatic neurophysiological and per-
ceptual signatures of adaptation effects can be explained by
an intrinsic activation-dependent neural fatigue mechanism
inspired by afterhyperpolarization of the membrane poten-
tial (Sanchez-Vives et al., 2000b). We showed that an ANN
which implements neural fatigue for each unit can explain
classical perceptual aftereffects of adaptation, such as the tilt
and face-gender aftereffects (Gibson and Radner, 1937; Web-
ster et al., 2004). In addition, the units in this network ex-
hibited stimulus-specific repetition suppression (Kohn, 2007;
Vogels, 2016), which recovers over time but also builds up
across repeats despite intervening stimuli (Ulanovsky et al.,
2003), and builds up across stages of processing (Vinken
et al., 2017; Kaliukhovich and Op de Beeck, 2018; Nieto-
Diego and Malmierca, 2016). Thus, activation-based fatigue
in deep neural network units leads to neural adaptation effects
and aftereffects.
Next, we used psychophysics to demonstrate perceptual ef-
fects of adaptation on object recognition under varying con-
ditions. As predicted by the proposed model, adapting to a
noise pattern increased object recognition performance when
the target object was hidden in a temporally constant noise
pattern. Finally, when we trained a recurrent neural network
to perform the same task, the neurons learned to suppress
themselves using recurrent weights, showing that the basic
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activation-based suppression of neural fatigue could be read-
ily learnt such that adaptation can emerge from the goal of
maximizing recognition performance. However, when there
was a gap between the adapter and test images, the recurrent
neural network relied on a circuit solution that was less robust
to different noise conditions than the fatigue based solution.

Functional benefits

In the proposed computational model, the response strength
of units for a given stimulus sequence was inversely propor-
tional to the probability of each stimulus. Such automatic
encoding of stimulus probability has been observed across
species in somatosensory (Musall et al., 2014, 2015), audi-
tory (Ulanovsky et al., 2003; Fishman and Steinschneider,
2012; Farley et al., 2010), and visual cortices (Kaliukhovich
and Vogels, 2014; Hamm and Yuste, 2016; Vinken et al.,
2017) and has been proposed to enhance novelty detection
and separate behaviorally relevant information from the pre-
vailing input (Ulanovsky et al., 2003; Musall et al., 2015;
Vinken et al., 2017). Because of this property, stimulus-
specific repetition suppression has been interpreted as a man-
ifestation of a reduced prediction error within the predic-
tive coding framework (Friston, 2005; Summerfield et al.,
2008). This framework stresses the role of top-down modu-
lations by internally generated perceptual expectations rather
than neural fatigue. However, repetition suppression can be
dissociated in time from expectation effects (Todorovic and
de Lange, 2012) and is not modulated by perceptual expec-
tations induced by repetition probability in macaque IT neu-
rons (Kaliukhovich and Vogels, 2014; Vinken et al., 2018).
Therefore, we argue that basic repetition suppression does
not rely on top-down circuitry and can be explained by feed-
forward effects of intrinsic neural mechanisms. On the other
hand, in rat higher level visual cortex we did observe a re-
sponse enhancement for rare stimuli in addition to repetition
suppression, which might require additional mechanisms at
the circuit level (Vinken et al., 2017). Note that this enhance-
ment not observed in macaque IT (Kaliukhovich and Vogels,
2014).
Besides increasing the salience of novel stimuli, neural adap-
tation may serve to increase coding efficiency by normalizing
responses for the current sensory conditions (Kohn, 2007).
Neurons have a limited dynamic range with respect to the fea-
ture they encode and because they are noisy there are only a
limited number of response levels. The idea is that adaptation
maximizes information a neurons can carry by re-centering
tuning around the prevailing conditions and thus preventing
response saturation and increasing sensitivity (Webster et al.,
2005). ANNs on the other hand usually do not suffer from
these constraints, because they rely on the non-saturating rec-
tifying linear unit (ReLU) activation function and are inher-
ently not noisy.
Finally, neurons use significant amounts of energy to gener-
ate action potentials and this constrains the amount of neural
activity that can be used for a neural representation (Laugh-
lin, 2001; Lennie, 2003). By reducing neural responsiveness
for redundant information, adaptation has the advantage of

increasing metabolic efficiency of the neural code.

Other mechanisms of adaptation
Several mechanisms have been proposed to be involved in
adaptation. At the circuit level, responses may be sup-
pressed by inhibitory connections. Indeed, postsynaptic in-
hibition has been shown to contribute to adaptation in rat au-
ditory cortex in the first 50-100 ms after a stimulus, but it
does not explain adaptation at slower time scales (Wehr and
Zador, 2005). At the level of the synapse, repetitive stimula-
tion could cause short-term depression, weakening synaptic
strength by decreasing neurotransmitter release through sev-
eral molecular mechanisms (for an overview see Fioravante
and Regehr, 2011). For example, depression at thalamocorti-
cal synapses could contribute to adaptation in sensory cortex
(Chung et al., 2002). Still, compared to cortical slices, short-
term synaptic depression appears to be less pronounced in
vivo, where it may be decreased by ongoing network activity
(Reig et al., 2006).

Time scales of adaptation
We modeled adaptation as an exponential process, after Bel-
lec et al. (2018), therefore limiting adaptation effects to one
particular time scale. In reality, adaptation operates over a
range of time scales from milliseconds to minutes (Kohn,
2007) and it has been proposed that the mechanism can be
better approximated by a scale-invariant power-law (Wark
et al., 2007; Drew and Abbott, 2006). However, power-law
adaptation can be approximated over a finite time interval us-
ing a sum of exponential functions (Drew and Abbott, 2006),
so in principle we could extend our model with additional
exponential processes.

Conclusion
By simulating a cellular mechanism in a deep neural network
we were able to connect systems to cellular neuroscience in
one comprehensive model. Our results demonstrate that re-
sponse fatigue cascading through a feedforward hierarchical
network was sufficient for explaining the hallmarks of visual
adaptation. This implies that intrinsic neural mechanisms
may contribute substantially to the dynamics of sensory pro-
cessing and perception in a temporal context.
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