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Motivation

e Most cellular processes are subject to significant expression noise, even between
genetically 1dentical cells in a homogeneous environment.

e The precise sources of variability, how the noise 1s harnessed, and the possible func-
tional roles for noise remain poorly understood.

e Noise 1s fundamentally important in gene regulation.

e One source of stochasticity in gene transcription is the small number of molecules
involved. In this sense, it 1S intrinsic.

e Additional variability 1s caused by the intracellular environment and the uncertainty
of the biochemical processes involved, leading to cell-to-cell variability. In this
sense, 1t 18 extrinsic.
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Analytical solution of separable Master Equations

The most fundamental way to represent gene transcription is with the Master Equation
(ME), but it 1s difficult to solve. Most researchers simulate the ME or consider only
linear cases.

Here we consider systems of the form:

k(t) ()
g —=n(t) —
O k(t)Pact + (1 + A1) Pass — k(6)Pa — (D) Py

Definition 1 (Separable ME) A ME of the form above is separable if the reaction rates
k(t) and \(t) do not depend on n.

Theorem 2 (Solution of the separable ME) The solution of a separable ME with ini-
tial conditions P (ty) =1 is given by
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where k(t) 1= fti) k(t)e™ L) 7 g

This theorem generalizes previous results for linear ME’s, and for the case ng = 0.

Theorem 3 (Networks of separable reactions) Consider a network N of uni-molecular
reactions, as above. If N does not contain directed cycles, and if the reaction rates
for each molecular species s; are independent of s, then we can solve the ME for the
network sequentially using Theorem 2.
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Coupled stochastic dynamics and mixture models

e We need to include the extra variability surrounding the process of transcription. Specifically, we model the stochastic
processes at the promoter level.

e Treating the reaction rates as Markovian 1s a gross oversimplification.
e In particular, Markovian models provide poor fits to data.

e Doubly stochastic processes mixture models take this complexity into account.

Definition 4 (Mixture models) A ME where the rate k(t) is governed by a stochastic process with density ww(k,t) is
referred to as a creation mixture model and if \(t) is governed by a stochastic process with density q(\, t) it is referred
to as a degradation mixture model.

The (Markovian) Berg model

The seminal gene transcription model by Berg [1] can be represented as a Markovian mixture model:

e The promoter toggles via a telegraph process between a bound (B) and an unbound (U) state with constant rates £,
and k.

e The mRNA creation rate is k(¢) = k=(t), where = is a (random) indicator variable that takes the value 1 when the
promoter 1s 1n state 3, and O otherwise:
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One can instead describe the reaction rates as stochastic variables governed by a wide class of solvable stochastic
processes known as Pearson diffusions [2]:

AK () = —a(K (1) — b)dt + 1/ 2a(coK (1)2 + e1 K (1) + co)dW (1),

We take this approach for the two models below.

The Poisson-Jacobi (PJ) model

We model the binding and unbinding rates as CIR processes (a particular case of Pearson diffusion):

de(t) = —a(Kb(t) — bb)dt + CA/ Kb(t)de(t)
AKu(t) = —a(Ky(t) — by)dt + ox/ T/ dWa(t).

The stochastic process governing the promoter occupancy, =(t) = K(t)/(K}(t) + Ky(t)), is a Jacobi process [3] and
the creation rate in the ME is k(t) = k=(t).

The stationary distribution of the mRNAs i1s a Poisson-Beta (PB) mixture distribution:
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PB(n;k,\ «a,B) = (o, a + B; —k/N),

where (), is the Pochammer symbol and ®(a, ¢; z) is the confluent hypergeometric function.
The Poisson-Inverse-Gamma (PIG) model

e Model the degradation rate A(t) as governed by a CIR process.

e The stationary distribution of the mRNAs is a Poisson-Inverse-Gamma (PIG) mixture distribution:
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where K, 1s the Bessel function of the third kind.

Stochastic Reaction Rates, Non-Exponential Wait-
ing Times and Memory Kernels

Stochastic reaction rates can be interpreted as other types of non-linearities: non-
exponential waiting times and memory-kernels. Kenkre et al [4] showed that the
description of the ME using non-exponential waiting times or memory-kernels are
equivalent. Using a memory kernel, the ME can be written as:

t
Pp(t) = /O (1t = T)P—1+ (n+ 1)AP, 1 — on(t — 7) Py — nAPy] dr.

Assuming stationarity of the mixing process, 7w (k, t), we can extend the equivalence.

Below, C is the Carson-Laplace transform.

Reaction rate K(t)
A

b(t) = E [K(t)e_ Js K“)dT]

~ [ ke~ (k)dk
=C (m(k))

Waiting time y(t)

Memory kernel ¢(t)

Data fitting and temporal characteristics
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(Left) Simulation of the PJ model with a = 0.02, b, = 10, b, = 25,c =1, k = 50, A = 1. The magenta
marks at the bottom show when the promoter was active. (Right) Fits of the Berg, PJ and PIG data from
for the POUSF1 (OCT4) gene from single-cell human embryonic stem cells [5]. The PJ model is clearly
superior in fitting the data, as shown by the Akaike Information Criterion.

Summary

e We obtain full analytical solutions for a large class of MEs, including networks of
arbitrary size that fulfill certain broad conditions.

e Applying the method to mixture models provides a general class of solutions that:

— fit experimental data exceptionally well
— are biologically interpretable
— are analytically tractable.

e We demonstrate: stochastic reaction rates <+ non-exponential waiting times <
memory kernels.



