
Neural coding and feature extraction 

of time-varying signals 

 

Thesis by 

Gabriel Kreiman 

 

In partial fulfillment of the requirements 

for the degree of 

(Master of Science) 

 

 

 

 

California Institute of Technology 

Pasadena, California 

2002 



 ii 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To Tobias Shlomo Kreiman 



 iii 

Abstract 

 

What are the neuronal codes that the brain uses to represent information? This 

constitutes one of the most fascinating and challenging questions in Neuroscience. Here 

we report the results of our investigations about the mechanisms of stimulus encoding 

and feature extraction using the weakly electric fish Eigenmannia as a model. In many 

circumstances, sensory systems are subject to natural stimuli that are constantly 

changing. Therefore we decided to study the representation of time varying signals. 

Eigenmannia constitutes an ideal system to combine neurophysiological and 

computational techniques to study neural coding. We have characterized the variability of 

neuronal responses with a new approach by using parameterized distances between spike 

trains defined by Victor and Purpura. This measure of variability is widely applicable to 

neuronal responses, irrespective of the type of stimuli used (deterministic versus random) 

or the reliability of the recorded spike trains. We also quantitatively defined and 

evaluated the robustness of the neural code to spike time jittering, spike failures and 

spontaneous spikes. Our data show that the intrinsic variability of single spike trains lies 

outside of the range where it might degrade the information conveyed, yet still allows for 

improvement in coding by averaging across multiple afferent fibers. We also built a 

phenomenological model of P-receptor afferents incorporating both their linear transfer 

properties and the variability of their spike trains. We then studied the extraction of 

features from the time varying signal by bursts of spikes of multiple pyramidal cells, the 

next stage of information processing. To address the question of whether correlated 

responses of nearby neurons within topographic sensory maps are merely a sign of 
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redundancy or carry additional information we recorded simultaneously from pairs of 

electrosensory pyramidal cells with overlapping receptive fields in the hindbrain of 

weakly electric fish. We found that nearby pyramidal cells exhibit strong stimulus-

induced correlations. The detailed stimulus encoding by pairs of pyramidal cells was 

inferior to that from single primary afferents. However, the detection of coincident bursts 

of activity could significantly enhance the extraction of upstrokes and downstrokes in the 

stimulus amplitude. Our investigations reveal mechanisms by which the nervous system 

can accurately and robustly transduce a time-varying signal into a digital spike train and 

then extract behaviorally relevant features. 
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1 The investigation of neuronal codes 

 

 

1.1  What is a neuronal code?  

 

Signals from the environment are transduced by the senses into electrochemical 

changes that can be interpreted by the brain. Neurons process the incoming information 

and can direct the muscles to produce some output movement accordingly. The activity 

of neurons in the brain must therefore represent somehow the input. The nature of this 

representation is still unclear in most sensory systems and modalities and constitutes at 

the time of writing this Thesis an extensively debated and fascinating problem that will 

prove fundamental in trying to understand how the brain processes information. 

An analogy may be useful. A photograph may be digitally stored in a computer. A 

series of zeros and ones (in a binary computer) thus represents the given picture at a 

given spatial and color resolution. This encoding is not unique (there are, for example, 

different possible formats such as JPEG, GIF, TIFF and so on.) In the case of digital 

pictures, we know perfectly well how to encode and decode the information so that given 

a picture, we can convert it to, for example, a JPEG file and given a JPEG file, we can 

display the picture in the computer. We can also predict how the series of zeros and ones 

would change upon altering the image and how the picture would be distorted if we 

corrupted the representation in the computer. This is not so trivial in the brain. The work 
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in the current Thesis is aimed towards understanding the representation of time-varying 

signals by single neurons using the electric fish as an ideal model system to combine 

neurophysiological exploration and computational analysis.    

 

1.2  Organization of the Thesis1 

 

This Thesis is subdivided into five separate but related Chapters. The current 

Chapter describes some of the background and methodological procedures that are used 

throughout the work. First, I will describe the experimental model that we have used in 

our electrophysiological explorations: the Eigenmannia weakly electric fish. I will give a 

brief overview of the history of some investigations about electric fish. I will describe 

what is known about their Neuroanatomy, as well as their Neurophysiology as related to 

our discussions in the current work. I will give an introduction to some of the theoretical 

and empirical ideas and models that have been proposed for the mechanisms of 

information encoding in the central nervous system. I will explain some of the 

experimental and theoretical tools that are used in the subsequent Chapters including 

Wiener-Kolmogorov stimulus reconstruction and feature extraction. 

                                                 
1 Part of the work described in the current Thesis has already been published in the form of a manuscript or 
is currently in press (Kreiman et al., 2000b, Krahe et al., 2002). Chapter 2 describes our results published in 
the Journal of Neurophysiology (Kreiman et al., 2000b) while Chapter 3 describes our results published in 
the Journal of Neuroscience. While part of the text is a repetition of the content of those manuscripts, there 
are several additional details, discussions, figures and comments that did not form part of the publications. 
The content of the other Chapters has not been published yet. Therefore, I hope the reader will find the 
current text interesting and worth reading even if he has already read the manuscripts. The converse is also 
true: other research projects that I worked on during my five years at Caltech are not covered in the current 
Thesis (see for example Kreiman et al., 2000a, Kreiman et al., 2000c, Kreiman et al., 2001). In particular, 
it is worth noting that the contents of this Thesis show no overlap with those reported in my other Thesis on 
the responses of individual neurons in the human brain (Kreiman et al., 2001). 
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In Chapter 2, I will describe our explorations of the robustness and variability of 

the neural code by the primary amplitude-coding sensory afferents. We have applied a 

novel spike metric developed by Victor and Purpura (Victor and Purpura, 1997) to 

characterize the variability in neuronal recordings and used this measure to show that P-

receptor afferents can show reliable spiking responses with small time jitter on the order 

of a few ms. This level of jitter depended on the temporal characteristics of the stimulus. 

Furthermore, we quantitatively defined the robustness of the code to spike time jittering, 

spike deletions and additions. We combined the data about the variability and robustness 

to show that the degree of trial-to-trial variability occurs within a range that does not 

significantly degrade the quality of information conveyed by P-units. Finally, we built a 

simple model that incorporated the filtering properties of P-units and could account for 

the encoding, variability and robustness of the experimentally recorded spike trains.  

In Chapter 3, I will describe our study of the characterization of the stimulus 

reconstruction and feature extraction by pairs of pyramidal cells recorded using two 

electrodes.   We explored whether highly correlated responses of nearby neurons within 

topographic sensory maps are merely a sign of redundant information transmission or 

whether they carry relevant information. For this purpose, we recorded simultaneously 

from pairs of electrosensory pyramidal cells in a somatotopic map in the electrosensory 

lateral line lobe of the weakly electric fish, Eigenmannia, while randomly modulating the 

amplitude of a mimic of the animal's electric field. Previous work had shown that single 

pyramidal cells encode the stimulus time course only poorly. Instead, they extract 

upstrokes and downstrokes in stimulus amplitude by firing short bursts of spikes that 

reliably indicate the presence of behaviorally relevant stimulus features. Extending these 
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approaches to pairs of pyramidal cells with overlapping receptive fields, we found that: 

(1) pyramidal cell-pairs exhibit strong correlations on a time scale of several tens of 

milliseconds, mainly due to time-locking of spikes to the stimulus and not to common 

synaptic input. (2) This was corroborated by Neurobiotin-labeling of primary afferent 

fibers, yielding an estimated divergence of one afferent fiber onto only 3-8 pyramidal 

cells. (3) In a feature-extraction task, pyramidal cell-pairs perform significantly better 

than single pyramidal cells. Thus, our results demonstrate that while the occurrence of 

stimulus features can be reliably indicated by spike bursts of single pyramidal cells, this 

reliability significantly increases by considering stimulus-induced coincident activity 

across multiple neurons, i.e. by evaluating "distributed bursts" of spikes. 

In Chapter 4, I will briefly discuss two other experiments that we carried out. The 

first one involves our preliminary attempts to explore what I consider to be a very 

interesting question. Attention has been shown to play a fundamental role in the 

processing of sensory information, particularly in the visual system (see for example 

(Fries et al., 2001, Resnik et al., 1997, Desimone and Duncan, 1995, Julesz, 1991, 

Steinmetz et al., 2000, McAdams and Maunsell, 1999).) The Eigenmannia electric fish 

constitute an ideal model for the study of how sensory information can be gated due to 

attention and saliency. Furthermore, feedback from higher order brain structures has been 

hypothesized to play a fundamental role in biasing the competition between different 

stimuli and can be readily manipulated pharmacologically in the electric fish. I will 

describe our first attempts to define attention and saliency within the electric modality 

and our so far unsuccessful exploration of the neurophysiological changes that could 

accompany the appearance of salient stimuli. The second experiment that I will describe 
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in this Chapter involves a detailed comparison of the responses of the two types of 

pyramidal cells, the E and I cells, under global and local stimulation conditions. The 

original report of Fabrizio Gabbiani and Walter Metzner showed that I cells perform 

better at feature extraction than E cells (Metzner et al., 1998, see also our results in 

Chapter 3). Our data show that this difference seems to be smaller for local stimulation. 

Finally, in Chapter 5 I briefly summarize our observations and I discuss our 

conclusions in the general context of other current investigations of the types of neuronal 

codes used by the brain. 

 

1.3  Brief history of inquires into neural coding 

 

As in many other scientific fields, one of the main limitations is the kind of 

experimental observations that can be acquired. The extracellular electrical spiking 

activity of neurons constitutes one of the most readily accessible variables from an 

experimental point of view. Thus, this has been and continues to be the most important 

experimental variable used in the search for a correlation between neuronal activity and 

behavior or perception.  

The development of a method to detect and amplify small electrical signals was 

provided in the beginning of the twentieth century with the invention of the vacuum tube. 

Using these new instruments, Lucas at Cambridge University built new devices that 

allowed recording signals of amplitude in the order of microvolts. Adrian and Hartline 

laid the foundations of neuroelectrophysiology in the 1920s. One of the important 

observations that Adrian made was that in response to a static stimulus the rate of spiking 
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increases as the stimulus becomes larger. This was done by increasing the load on a 

stretch receptor. This has lead to the interpretation that the number of spikes in a fixed 

time window after stimulus onset can represent the intensity or some other quality of the 

stimulus. This hypothesis, typically called nowadays the "rate coding hypothesis", has 

pervaded the history of neurophysiologic exploration ever since. Hartline independently 

made similar observations studying the responses of single neurons in the compound eyes 

of the horseshoe crab. Several decades later, Perkel and Bullock presented an overview of 

different possible strategies for the encoding of information by neurons in different 

systems (Perkel and Bullock, 1968).  

The last decade of the last millennium saw a resurgence of interest in different 

possibilities that individual neurons or groups of neurons may use to represent 

information from the environment or to direct movements. While a large fraction of 

neurophysiologists still utilize the spike count in relatively long windows to study the 

neuronal activity, several papers have been reported that convey the picture that, at least 

under certain specific conditions, neurons can show remarkable precision, that 

coincidence detection can play a fundamental role and that synchronous activity could be 

involved in encoding mechanisms. Furthermore, the study of time varying signals 

showed that individual neurons could convey a large number of bits per second, in some 

cases even close to the physical limits to information transmission.  

At the time of writing this Thesis, several aspects of the encoding mechanism are 

still under continuous and fascinating debate. The question of whether the relevant 

variable is the spike count in long time windows of several hundred ms or the precise 

timing of spikes at the ms level has been converted into a more precise and quantitative 
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formulation that centers around what are the relevant widths of the time windows. The 

rate coding versus time coding debate are two extremes in a continuum and the exact 

answer could depend on the type of stimuli (static versus time-varying) but also on the 

precise parameters of stimulation. In addition to this question (but clearly related to it), a 

pressing debate is centered on the issue of how ensembles of neurons encode information 

and the role of synchrony and correlated activity. Technological advances have made it 

possible to record the simultaneous activity of several neurons through tetrodes and 

multiple electrode arrays over the last two decades, yielding new data to investigate this 

problem. This will be discussed in Chapter 3.  

 

1.4  Eigenmannia as a model  

 

The Eigenmannia electric fish has proven to be a fascinating model to investigate 

questions related to how neurons encode information. This is at least partly due to the 

possibility of combining computational and electrophysiological approaches but also 

because of the wealth of available information about the anatomy as well as behavior of 

the fish. We know enough about the fish to be able to make progress without starting 

from scratch and at the same time there is a sufficient number of open questions to make 

research worthwhile.    

There is a very long history of investigations concerning electric fish ranging 

from their putative healing powers as ascribed by the Egyptians to the first 
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demonstrations of electrical conduction in biological tissue2. Two groups of tropical 

freshwater fish, one South American and one African, send and receive weak electric 

signals that are used in social communication and for electrolocation. Electric 

communication is a highly evolved system with many functions that include sex and 

species recognition, courtship behavior, mate assessment, territoriality and other forms of 

spatial behavior, appeasement alarm and aggression. Six philogenetically diverse groups 

of fishes evolved electric organs but only the South American Gymnotiformes and the 

African Mormyriformes developed the use of these organs for communication. Electric 

organ discharges (EOD) in these groups are characterized by a stereotyped waveform 

fixed by the anatomy and physiology of the electric organ in the fish's tail. EODs do not 

appear to be modulated under voluntary control. In addition to these discharges, the fish 

can emit sequences of pulse discharges (SPIs) that make up the widely varying repertoire 

of social signals. The fish that we have used as a model throughout this Thesis belong to 

the Eigenmannia family. These weakly electric knife-fish can generate quasi-sinusoidal 

continuous discharges by periodically discharging their electric organ at rates between 

200 and 600 Hz (see Chapter 2).  

                                                 
2 The Egyptians and Greeks already knew about the shocking powers of some of the Nile fish and the 
electric ray. Galen turned to the use of electricity generated by fish for therapeutic purposes. He mostly 
recurred to the strong output of the electric rays for headaches, pain and even for epileptic seizures. This 
use of electricity generated by fish continued for several centuries afterwards and, given the difficulty of 
obtaining electric rays, stimulated the construction of "friction machines" to be able to generate electricity. 
Electrotherapy became extremely popular in the eighteenth century in Europe and North America. These 
observations lead to the idea that electricity may constitute the essential "fluid of the nerves". It was John 
Walsh who first demonstrated during the 1770s that electric fish can discharge electricity that could be 
transmitted through wires. He also studied the fine structure of the ray's electrical organs. The notion that 
the discharges originated in this specific organs showed that there was some form of insulation so that 
electricity could not disseminate into surrounding tissues, which was one of the key arguments against the 
notion of electrical fluids within nerves. The brilliant experiments of John Walsh paved the way to the 
notion of electrical activity in living animals as a major way of conveying signals. Skeptics, however, still 
argued that this was an extravagance of specialized fish that did not generalize to other animals like frogs 
or even humans. It was Luigi Galvani's revolutionary work that settled this argument at the end of the 
eighteenth century with his famous muscle nerve preparation in frogs (Galvani, 1953 (1791), Finger, 2000).   
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Arrays of receptors on the body surface monitor distortions of the amplitude and 

phase of the electric field for electrolocation and communication purposes (for review see 

(Heiligenberg, 1991)). The pattern of these distortions represents the electric image of 

objects. The presence of an object in the water near the fish affects the amplitude and 

phase of the signal. Although all ancestral forms of fish appear to have been 

electroreceptive, this sensory modality was lost with the evolution of the teleost fishes. 

This loss is as much a puzzle as its apparent reappearance in some groups of teleosts. The 

original types of electroreceptors were ampullary organs and are most sensitive to low 

frequency signals. These organs detect weak electric fields of geophysical, chemical or 

biological origin and enable fish to orient and navigate in reference to large-scale fields in 

oceans and river waters. In addition to these, Eigenmannia possess tuberous rectors that 

are most sensitive in the range of the dominant spectral frequency of the animal's EODs. 

These serve in electrolocation and communication. Electric fish have assumed a 

dominant role in the nightly waters of the tropics by exploiting electrical cues. However, 

EODs are limited to short distances.  

Eigenmannia has two types of tuberous electroreceptors, P-type and T-type. The 

somata of their primary afferents are located in the anterior lateral line nerve ganglion. P-

receptor afferents fire intermittently and increase their rate of firing with a rise in 

stimulus amplitude. In contrast, T units fire one spike on each cycle of the stimulus and 

the action potentials are phase locked with little jitter to the zero-crossings of the signal. 

A schematic diagram illustrating the anatomy of the initial part of the electrosensory 

system is shown in Figure 1-1. The information on amplitude and phase is relayed from 

the electroreceptors embedded in the skin to the electrosensory lateral line lobe (ELL) in 
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the hindbrain, forming three somatotopic maps. A subset of primary sensory fibers, the P-

receptor afferents, encodes changes in the electric-field amplitude by firing in a 

probabilistic manner (Scheich et al., 1973). P-receptor afferents synapse on E-type 

pyramidal cells, which respond with excitation to increases in stimulus amplitude, and, 

via interneurons, inhibit I-type pyramidal cells, which consequently fire spikes in 

response to decreases in stimulus amplitude (Bastian, 1981, Maler et al., 1981). E- and I-

units are therefore analogous to ON and OFF cells in other sensory systems. 

It is interesting to note that there is a strong parallel between the processing of 

changes in the electric field, particularly for a specific behavior called the jamming 

avoidance response (Heiligenberg and Partridge, 1981, Heiligenberg and Bastian, 1984, 

Metzner and Juranek, 1997b), in the weakly electric fish and the neural algorithms for 

sound localization in the owl's brain (Konishi, 1971, Konishi, 1991, Konishi, 1993, 

Konishi, 1995).  

 

1.5  Introduction to some of the methods 

 
All the experimental work described in the current Thesis was carried out by 

Rüdiger Krahe and Walter Metzner of the University of California at Riverside. Here I 

will describe some of the general methodological procedures that are relevant for the 

experiments and analyses detailed in the next Chapters. Specific details about the 

methodology for each experiment are given within the context of Chapters 2, 3 and 4. 
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1.5.1  Stimulus 

The electric field was established by a pair of carbon rod electrodes, one placed in 

front or in the mouth of the animal and the other one behind the tail of the fish. Prior to 

the experiment, the EOD frequency (fEOD) of the fish was determined. A sinusoidal 

carrier signal with a frequency close to the fish's own EOD was generated by a function 

generator (Exact 519, Hillsboro, OR) coupled to the electrodes. Electric field amplitude 

modulations (AM) were synthesized and stored digitally (at either 2 kHz or 5 kHz) for 

playback using commercial software (Signal Engineering Design, Belmong, MA and 

LabView, National Instruments, Austin, TX). This allowed for repeated presentations of 

the same stimulus (see Chapter 2). The AM and the carrier were gated by the same 

trigger signal and were therefore phase locked to each other. The mean stimulus 

amplitude, measured at the side fin perpendicular to the body axis, ranged from 1 to 5 

mV/cm. To avoid under-driving the afferents, it was adjusted individually for each P-

receptor to stimulate it at 10 to 15 dB above threshold. The voltage generating the electric 

stimulus, V(t), had a mean amplitude A0, and a carrier frequency fcarrier and was 

modulated according to: 

)2cos()](1[)( 0 tftsAtV carrierπ+=       1.1 

A sample of the electric field presented to the fish including the carrier signal and the 

amplitude modulation is illustrated in Figure 1-2a. The signal s(t) (Figure 1-2a and b) 

constitutes the modulation of the electric field and the main matter of this Thesis will be 

to try to understand how s(t) is represented by the activity of neurons in the fish nervous 

system. For most of the experiments to be described here, s(t) was a random, zero-mean 

signal with a flat power spectrum (white noise) up to a given cut-off frequency (fc) and 



Gabriel Kreiman  Thesis - Chapter 1 12 

with a standard deviation σ (Figure 1-2c)3. A gaussian signal was generated in 

MATLAB4. The signal was then low-pass filtered using a 4-pole Butterworth filter. The 

stimulation caused a doubling of the carrier signal for s(t) = 1 V and a reduction to zero at 

s(t) = -1 V. The values of fc and σ were varied from one repetition to another. The values 

of fc used in the experiments were 5, 10, 20, 40 and 60 Hz. The contrast of the stimulus, 

given by σ, was varied between 10 and 30% of the mean electric field amplitude (σ=100, 

150, 200, 250, 275 and 300 mV). Consequently, amplitudes varied over a range of -20 to 

-10 dB of the mean stimulus amplitude.  

 

1.5.2  Electrophysiological recordings 

Adult specimens of Eigenmannia, typically 15-20 cm long, were either bred and 

raised in the laboratory or acquired from tropical fish wholesaler dealers (Bailey's, San 

Diego, CA) under the commercial name of glass knife fish. Fish are maintained at 25 °C 

in aquarium water. The water is adjusted for conductivity to a value of 10-20 kΩ/cm, pH 

of 7 and 26-28 °C. After measuring the natural frequency of the fish electric organ 

discharge, the animal is injected intramuscularly with Flaxedil (<5 µg/gm body weight; 

gallamine thriethiodide, Sigma, St. Louis, MO) to paralyze the fish and also to block the 

myogenic EOD. The fish is gently held on its side by a foam-lined clamp and ventilation 

was provided by a stream of aerated water led into the animal's mouth through a glass 

                                                 
3 In some experiments a sinusoidal amplitude modulation was used to characterize the frequency responses 
function of P-receptor afferents (see Chapter 2). Also, in some experiments a band-pass random amplitude 
modulation signal was used. 
4 The random number generator of MATLAB's 5.0 version allows to generate more than 1012 random 
independent values (see MATLAB reference manual and (Press et al., 1996)). The exact number of points 
in the signals that we used depends on the length of the signal and the digitization frequency but in no case 
was it larger than 106 (in most cases it was approximately 105). For each signal that was generated, a 
separate seed was used depending on the system time.  
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tube. Only the dorsal surface of its head protrudes above the water surface. A small 

plexiglass rod was glued to the parietal bone under local anesthesia (2% lidocaine; 

Western Medical Supplies, Arcadia, CA) to further stabilize the fish. The experimental 

tank was situated on a vibration isolation table (Newport, Fountain Valley, CA). A 

residual EOD-related signal (amplitude of 50 µV to 1 mV) locked to the spinal command 

neurons could still be detected with a pair of wire electrodes placed next to the tail in 

spite of the Flaxedil treatment. The curarization procedure, however, reduced the EOD 

amplitude below the threshold level of the electroreceptors. .  

To record the activity of single afferent units from electroreceptor organs located 

on the animal's trunk, the posterior branch of the anterior lateral line nerve was exposed 

just rostral to the operculum. This allowed for the extracellular recording of the activity 

of single P-type afferents. Recordings were made with the use of 1M KCl-filled glass 

electrodes (with 1kHz impedances around 40-60 MΩ) and an amplifier (WPI M707A, 

Sarasota, FL). The indifferent electrode was a silver wire placed around the recording 

electrode like a small ring. The afferent recordings were stored on tape (sampling rate 20 

kHz, Vetter Instruments 300A, Redersburg, PA) and later A-D converted (sampling rate 

10 kHz, Datawave, Denver, CO). Electroreceptor afferents were identified as P-type and 

included in the study reported in Chapter 2 if: 

1) the probability of firing per period of the EOC was <1 in the physiological 

range of the electric field amplitude  

2) the spontaneous activity was irregular (as opposed to bursting, characteristic of 

T-type units).  
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3) the units phase-locked with large jitter (as opposed to small jitter for the T-type 

units) 

Animal handling and all surgical procedures were in accordance with NIH 

guidelines and were approved by the local Institutional Animal Care and Use Committee 

1.5.3  Stimulus reconstruction 

Here I briefly review one of the main analytical tools that we have used 

throughout this Thesis, namely, the linear reconstruction of amplitude modulations from 

a spike train. This is a particular case derived from the general study of signal processing 

theory where an attempt is made to estimate a particular signal from observations or 

experimental measurements that can be subject to noise (Poor, 1994, Oppenheim et al., 

1997) and also draws extensively from the principles of information theory developed by 

Shanon (Shannon and Weaver, 1949, Rieke et al., 1997). The quantitative exploration of 

the amount of information conveyed by a spike train about a time-varying stimulus was 

introduced into Neuroscience by Bill Bialek (Bialek et al., 1991) and has been applied in 

several different systems including the fly visual motion system, the electric fish, the 

retina and the cricket cercal system (Wessel et al., 1996, Theunissen et al., 1996, 

Gabbiani and Koch, 1996, Warland et al., 1997, Stanley et al., 1999, Dan et al., 1998). 

Excellent overviews of these analytical techniques have been written by Rieke et al 

(Rieke et al., 1997) and Fabrizio Gabbiani (Gabbiani and Koch, 1998). 

Let s(t) represent the zero-mean stimulus (in our case this will correspond to the 

random amplitude modulation of the electric field and has been described in more detail 

in Section 1.5.1). Let us represent the spike train by:  
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)()( ∑ −=
i

itttx δ         1.2 

Let us also define the spike train after subtracting the mean firing rate x0: 

∑ −−=
i

i xtttx 0)()(~ δ        1.3 

An linear estimation of the stimulus, )(ˆ ts , can be obtained by convolving the 

spike train with a filter h(t): 

∫ −==
T

dttxtthtxthts
0

')'(~)'()(~*)()(ˆ       1.4 

where the symbol '*' represents the convolution operation (Oppenheim et al., 1997) and T 

corresponds to the duration of the experiment. We define the error in this estimation by 

integrating the square difference between the guess of the stimulus and the actual signal 

over time: 

∫ −=
T

dttsts
T 0

22 )](ˆ)([1ε         1.5 

Let us also define the autocorrelogram of the spike train: 

∫ +=
T

xx dttxtx
T

R
0

)(~)(~1)( ττ        1.6 

and the cross-correlogram between the spike train and the stimulus 

∫ +=
T

sx dttxts
T

R
0

)(~)(1)( ττ        1.7 
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After Fourier transformation, these are known in the frequency domain as the 

power spectrum of the spike train, )(ωxxS , and the cross-spectrum between stimulus and 

spike train, )(ωsxS  (with ω=2πf) 5. 

The error in the estimation will generally depend on the choice of the filter h(t). 

The Wiener-Kolmogorov filter minimizes the square error and can be easily obtained 

from the orthogonality condition (Poor, 1994, Gabbiani and Koch, 1996, Gabbiani, 

1996). The shape of this filter is illustrated in one case of reconstruction in Figure 1-3a. 

The resulting expressions for the filter in the time and frequency domains are:   

∫
−

−−
=

c

c

f

f

ift

xx

sx dfe
fS
fSth π2

)(
)(

)(        1.8 

)(
)(

)(
fS
fS

fH
xx

sx −
=         1.9 

Let us also define the noise as a function of time given by the difference between 

the stimulus and its estimate:  

)()(ˆ)( tststn −=         1.10 

Then the square error can be expressed as: ∫>==< ωω
π

ε dStn nn )(
2
1|)(| 22  where "|x|" 

denotes the absolute value of variable x, the "<x>" 

 indicates time average and Snn is the power spectrum of the noise. From the definition of 

the noise it is evident that: )(
)(
|)(|

)()(
2

ω
ω

ωωω stim
xx

sx
stimnn S

S
S

SS ≤−= where Sstim(ω) is the 

                                                 
5 ∫= πττ 2/)()( if

xxxx eRfS and ∫= πττ 2/)()( if
sxsx eRfS   
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power spectrum of the stimulus. Therefore, if we define the signal-to-noise ratio (SNR)6 

as: 

)(
)(

)(
ω
ω

ω
nn

stim

S
S

SNR =         1.11 

The SNR as a function of frequency is shown in Figure 1-3b and shows for the 

current example that there is an enhanced signal reconstructed above the noise (SNR>1) 

up to the stimulus bandwidth. We may rewrite the expression for the mean square error 

as: 

ω
ω
ω

π
ε

ω

ω

d
SNR
Sc

c

stim∫
−

=
)(
)(

2
12        1.12 

This allows us to evaluate the quality of the reconstruction in specific frequency 

bands (see for example Chapter 4). If the spike train is completely uncorrelated with the 

signal, then SNR(ω)=1 for all frequencies within the stimulus band. In this case, the mean 

square error is the integral of the power spectrum of the stimulus which is the variance of 

the stimulus, σ2.  

1)( =ωSNR   cωω ≤∀ ||   ⇒   22 )( σωωε ∫ == dSstim    1.13 

Since the magnitude of ε2 can vary from one system to another and also from one 

experiment to another, it is convenient to express the accuracy of the estimation in a 

dimensionless variable, the coding fraction, which we will define as: 

σ
εγ −=1          1.14 

                                                 
6 Note that SNR(ω)≥1 
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where σ is the standard deviation of the stimulus. It follows from equations 1.12-13 that 

the error is bounded by σ and therefore 0 ≤ γ ≤ 1. An example of a RAM stimulus and its 

estimation is shown in Figure 1-3c-e. Although, the estimated stimulus clearly does not 

perfectly match the original signal, the similarity between the two signals is quite striking 

particularly if we consider that this is obtained from linear reconstruction using a single 

spike train.  

It is also common to evaluate the quality of the reconstructions using an 

information-theoretic measure that sets a bound on the number of bits/sec that the 

neurons can convey about the stimulus. Let the mutual information between the stimulus 

estimate and the stimulus be represented by );ˆ( ssI 7. Given the definition of the noise in 

1.10, the mutual information can be obtained as 

)ˆ|()()ˆ;( snSsSssI −=         1.15 

where S(x) is the entropy of x8. It is easy to show that S(x|y) ≤ S(x) (knowledge decreases 

uncertainty). Therefore,  

)()()ˆ;( nSsSssI −≥         1.16 

                                                 
7 The mutual information between a stimulus and the estimate is a lower bound on the information that the 
spike train carries about the stimulus. This is because the estimation algorithm may not accurately 
reconstruct all the changes in the stimulus. In other words, it is possible that other estimation algorithms 
(e.g. non-linear algorithms, etc.) can yield much more information about the stimulus from the same spike 
train. For a more detailed discussion of this point, see (Rieke et al., 1997).  
8 The entropy rate is given by: ∑−=

x
xpxpxS )(log)()(  . The mutual information comes from: 

∑ ∑ ∑ ∑ =+−===
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∑ ∑ −=+−= (see (Cover and Thomas, 

1991)). 
Also, since )()(ˆ)( tntsts += , it follows that ))(ˆ|)(())(ˆ|)(( tstnptstsp =  
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It can be shown that the entropy rate of a stationary process is always smaller than the 

entropy rate of the corresponding stationary gaussian process (having the same 

covariance as n) (Cover and Thomas, 1991): )()( nSnS G ≥ . Therefore,  

LBG InSsSssI ≡−≥ )()()ˆ;(        1.17 

A lower bound on the mutual information conveyed by )(ˆ ts about the stimulus, ILB, is 

given by: 

 ωω
π

dSNRI
c

c

w

w
LB ∫

−

= )](log[
)2log(4

1       1.18 

(in bits per second.) It is clear from Equation 1.13 that no information is conveyed within 

the frequency bands in which SNR(ω)=1. It is of interest to compare this lower bound 

with the absolute lower bound or epsilon entropy that can be estimated for a bandwidth 

limited white noise stimulus by: 






−

=
σ
ε

ε log
)2log(

cfI         1.19 

and can be shown to be smaller or equal to ILB (Gabbiani, 1996). While there is in general 

a monotonic relation between the coding fraction and the information rate, this is not 

necessarily a linear one. A direct comparison of the two measures of stimulus 

reconstruction can be found in (Gabbiani and Koch, 1996, Gabbiani, 1996, Wessel et al., 

1996). Throughout this Thesis, I will use the coding fraction to assess the quality of the 

reconstructed stimulus. This is a dimensionless measure that can be readily interpreted 

and compared in different systems. 
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1.5.4  Feature extraction 

While the neurons in the periphery may be involved in transducing the 

information from the environment as accurately as possible to the next processing stage, 

at some point in the nervous system, the signal has to be processed in order to extract 

behaviorally relevant features. In the case of electric fish, it is known that an increase or 

decrease in the electric field amplitude may be relevant for at least one type of behavior, 

namely, the jamming avoidance response (Hille, 1992, Heiligenberg and Bastian, 1984, 

Heiligenberg, 1991, Konishi, 1991). Here I describe a signal detection formulation for the 

extraction of stimulus features (following the exposition by Gabbiani (Gabbiani and 

Koch, 1998, Gabbiani et al., 1996)). 

The stimulus and the spike train are binned using a window of size ∆t (we used 

the following values for ∆t: 0.5, 3, 6, 9 and 12 ms). This allows us to define for any time 

t, the vector containing the stimulus in the 100 preceding bins, st=[s(t-100∆t),…,s(t)]. Let 

us define an indicator variable λt that signals whether there was a spike in bin t (t=n∆t 

where n = 101, … , T/∆t and T is the experiment length)9: 

λt=1 if and only if there is a spike in the interval [t-∆t;t]   1.20 

For each value of t, we can identify whether there was a spike or not and then 

look at the preceding stimulus. This allows us to estimate the probability distributions for 

st before a spike or before no spike, P(s|λ=1) and P(s|λ=0). We will be referring to the 

mean of each of these two distributions (see Figure 1-4a): 

 m0=<P(s|λ=0)>  m1=<P(s|λ=1)>    1.21 

                                                 

9 Loosely speaking and with a poor nomenclature, λt = 1 if and only if ∫
∆−

≥
t

tt

dttx 1)( . 
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For any linear classifier f and a given threshold θ, we will detect a spike whenever ht,θ(s) 

is positive where: 

ht,θ(s)=fT.s-θ          1.22 

One of the simplest classifiers (yet a very powerful one, see (Metzner et al., 

1998)) is the Euclidian classifier that can be simply estimated from the means of the 

probability distributions as defined in equation 1.21 above (see Figure 1-4b): 

f=m1-m0         1.23

 Note that this classifier does not take into account the covariance matrices of the 

probability distributions (this is contrast to the Fisher discriminant; see (Bishop, 1995, 

Gabbiani et al., 1996, Metzner et al., 1998)10. The performance of the classifier can be 

quantified using techniques commonly used in signal detection theory. We can construct 

two new probability distributions based on the projections of each stimulus before a spike 

or no spike onto the classifier, P(fT.s|λ=1) and P(fT.s|λ=0). These probability 

distributions are illustrated in Figure 1-4c.  

An ideal observer can make two types of mistake according to this detection 

scheme: missing the occurrence of the target (the stimulus feature to be extracted) or false 

alarms. The proportion of each type of mistake depends on the threshold used in the 
                                                 
10 Previous work done by Fabrizio Gabbiani compared the performance of the Euclidian and the Fisher 
classifier (Metzner et al., 1998). Given that the differences in the values of pe were very small (the Fisher 
classifier performed only marginally better than the Euclidian classifier), throughout this Thesis we will 
only describe the pe values obtained using the Euclidian classifier as defined in equation 1.19. It is of 
interest to briefly describe the conceptual differences between the two. The Fisher classifier can be 
obtained by searching the value of f that maximizes the signal to noise ratio defined by: 

ff
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where Σ0 and Σ1 represent the covariance of the probability distributions whose means were defined in 
equation 1.17: 

i
T

iii >−−=<Σ • )()( msms . Thus, in contrast to the Euclidian classifier, the Fisher classifier 
also takes into account the variation in the probability distribution in addition to the means. The numeric 
details on how to solve this equation are given in (Metzner et al., 1998). If the two covariance matrices are 
proportional to the identity matrix, then the two types of classifiers coincide. 
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linear classifier h defined in equation 1.22. For each value of the threshold, we can 

compute the probability of correct detections (PD) by integrating to the right of the above 

probability distribution for λ=1. 

PD=P( fT.s>θ|λ=1)        1.24 

The probability of missing the target (false negatives) is given by 1-PD. Similarly, 

we can compute the probability of false alarm (PFA) by integrating to the left of the 

probability distribution for λ=0. 

PFA=P( fT.s>θ|λ=0)        1.25 

Plotting PD versus PFA  yields the so-called receiver operating characteristic 

(ROC) curve (Green and Swets, 1966). This is illustrated in Figure 1-4d. The overall 

probability of error can be estimated as an average of the two probabilities of error 

indicated above (see Figure 1-4e): 

Perrror=0.5 PFA+0.5 (1-PD)       1.26 

And the minimum probability of error by an ideal observer can be obtained as the 

minimum of the above equation over all possible values of the threshold (similarly, over 

the whole range of PFA values). 

)(min 10 errorPe Pp
FA ≤≤=        1.27 

The value of pe will therefore be used as an indicator of the performance of the neuron (or 

pairs of neurons, see extensions in Chapter 3), in extracting specific features of the 

stimulus. It is important to note that pe ranges from 0 (meaning perfect classification) to 

0.5 (indicating chance performance). 
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1.5.5  Bursting 

In spite of the laborious effort that involves recording the spiking activity of 

individual neurons, it is important to keep in mind that the message conveyed by many 

action potentials does not reach the post-synaptic neuron. This is due to several factors 

that include failure in action potential propagation, stochastic nature of neurotransmitter 

release given an action potential and variability in post-synaptic response. One important 

determinant of the efficacy of action potentials in being conveyed seems to be the 

occurrence of several spikes within a short time interval. Many neurons seem to show 

this bursting type of behavior (see (Steriade, 2001, Sherman, 2001, Guido et al., 1995, 

Larkum et al., 1999, Bair et al., 1994, Lisman, 1997, Metzner et al., 1998, Bastian and 

Nguyenkim, 2001, Martinez-Conde et al., 2000, Reinagel et al., 1999) and Figure 1-5). 

We separately considered the performance of isolated spikes and spike bursts in the 

feature extraction task outlined in the previous Section. The maximum interspike interval 

that defined spikes belonging to a burst was taken from the first inflexion of the 

interspike interval distribution (see Figure 1-5)11. As reported previously (Gabbiani et al., 

1996, Metzner et al., 1998), we observed that there was a strong enhancement in feature 

extraction (both for I and E type pyramidal cells) when comparing spikes within bursts to 

all spikes or isolated spikes. The results are described in Chapter 3. 

 
 

                                                 
11 We also compared this method of discriminating bursts with the direct comparison with a Poisson 
process as described by (Abeles, 1982, Bastian and Nguyenkim, 2001). The autocorrelogram of a Poisson 
process is flat and it is easy to compute confidence intervals to assess the statistical significance of 
departures from this null hypothesis. Both procedures gave similar results. 
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1.6  What would it mean to understand the neuronal code? 

 

I define here two simple conditions that should be met if we wish to imply that we 

understand the neuronal representation for a particular model by analogy with the 

encoding of images in computers that we have just briefly described. Given the neuronal 

response r we should be able to accurately estimate which stimulus s the system was 

subject to. Conversely, given the stimulus, we should be able to predict the neuronal 

response. This also implies that we would be able to predict what kind of changes in r 

could be expected by specific alterations in s. We can go one step further; if the neuronal 

response r indeed represents in a non-redundant way the information about s, altering r 

should lead to changes in the system's internal representation of s and then potentially in 

its behavior.  

While it may seem easy to write these short lines in a piece of paper, empirically 

assessing this correlation between the neuronal response and the stimulus can be quite 

challenging. It should be noted that the neuronal response r in the previous paragraph 

does not necessarily mean a single unit response. Registering the activity of large 

numbers of individual neurons in a network is not an easy task, though. In other cases, 

the stimulus set that is presented to a neuron could only represent a very small subset of 

the possible set of stimuli the animal can experience. Thus, models may only be based on 

a limited amount of information about the neuronal response. At least partly for this 

reason, many models have been built that can account for available data but have a very 

reduced power of extrapolation. Finally, proving in a convincing that altering the 
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neuronal response leads to a change in the animal's interpretation of the stimulus can also 

be quite complicated from an experimental point of view.  

Here we explore the first two stages of processing of information about a time-

continuous varying signal. We will argue that we have a relatively good understanding by 

now of the first stage of transducing the stimulus from the environment into the spike 

train of the sensory afferents. The stimulus can be quite accurately estimated given the 

spike train and we have built a model that can predict the encoding, variability and 

robustness of the neuronal responses. We also venture some conjectures about how small 

groups of neurons can precisely transmit the information from the environment to the 

next processing stage. At the next stage of processing, the detailed encoding of 

information at the level of the primary sensory neurons gives rise to the possibility of 

extracting behaviorally relevant features about the stimulus. More work will be required 

to understand the biophysical mechanisms by which this feature extraction process can 

take place. Eigenmannia offers a fascinating model for the detailed study of these 

questions. 
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1.7  Figure legends 

 

Figure 1-1: Schematic of the initial stages of the amplitude sensory pathway in Eigenmannia 

Schematic diagram of the neuronal structures and cellular types involved in the encoding 

of amplitude and phase modulations of electrical signals. The primary afferents in the 

anterior lateral line nerve ganglion (ALLG) relay information from amplitude (P-type) 

and phase (T-type) receptors located on the body surface to the electrolateral line lobe 

(ELL) in the hindbrain. P- and T- type receptors can be easily distinguished 

electrophysiologically (see text). There are two varieties of amplitude sensing pyramidal 

cells in the ELL, E-type basilar cells and I-type non-basilar cells.  These can be easily 

distinguished from the spherical cells as well as from each other based on their spiking 

activity. The connection to I cells occurs via an interneuron. The ELL projects to the 

Torus Semicircularis (TS) situated in the midbrain. Collaterals of the amplitude-sensing 

pathway also project to the nucleus praeeminentialis (nP). Neurons in nP send feedback 

projections both directly and indirectly to the E and I type pyramidal cells in the ELL.  

 

Figure 1-2: Stimulus 

(a) Sample of the electric field (V(t), grey) presented to the fish as well as the amplitude 

modulation (envelope of the electric field, s(t), black). In this case, fc = 5 Hz and  σ = 250 

mV. (b) Sample of the random amplitude modulation (RAM) stimulus, s(t), for a 

stimulus with a higher fc. A short stretch of 250 ms is shown but the stimulus duration 

was always at least 15 seconds (see Chapters 2 and 3 for details). (c) The stimulus had a 
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flat power spectrum up to a cut-off frequency fc (in this case fc = 40 Hz). The signal was 

generated by using a 4-pole Butterworth filter (Oppenheim et al., 1997). The standard 

deviation of the zero-mean stimulus depicted in this case was 200 mV. 

 
Figure 1-3: Wiener-Kolmogorov filtering 

Example of the linear stimulus reconstruction algorithm using Wiener-Kolmogorov 

filtering. (a) Wiener-Kolmogorov filter. (b) Signal-to-noise ratio (SNR, see text for 

details). The stimulus had a cut-off frequency of 5 Hz. (c) Two-second sample of the 

stimulus. (d) The estimated stimulus (dashed line) is superimposed on the original 

stimulus (continuous line) in the same 2-second period illustrated in (c). (e) Ten-second 

stretch illustrating the stimulus (continuous line) and its estimate (dashed line). The 

coding fraction in this example was 0.56. 

 

Figure 1-4: Feature extraction 

Example of the linear feature extraction algorithm using the Euclidian classifier (Metzner 

et al., 1998). (a) Short stimulus and spike train sample illustrating some stimulus 

segments of 100 ms duration before a spike (gray shaded boxes) and some stimulus 

segments before no spike (white dashed boxes). Note that not all the stimulus segments 

before a spike or not spike are shown. The gray boxes are averaged to give m1, the mean 

stimulus before a spike while the white boxes are averaged to give m0, the mean stimulus 

before no spike (see text for details). (b) Euclidian stimulus feature classifier, f, obtained 

by subtracting m0 from m1. (c) Probability density for the projection of the stimulus 

segments preceding a spike (continuous line) or no spike (dashed line) onto the Euclidian 
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classifier. The probability of correct classification (PD) and the probability of false alarm 

(PFA) are computed by integrating the tails of these two distributions. (d) ROC plot 

obtained by plotting PD against PFA. The dashed line indicates chance performance (PD = 

PFA). (e) Overall probability of error (average of probability of false alarm and 

probability of missing the target) as a function of the probability of false alarm. The 

minimum of this curve, pe, is the value used throughout the text to evaluate the 

performance of a neuron in linear feature extraction. In this example, pe = 0.24. 

 
Figure 1-5: Bursting neurons 

Example of interspike interval (ISI) distribution of a bursting neuron. The figure 

illustrates the ISI distribution for each of 6 different repetitions of an identical RAM 

stimulus (black traces) and the mean ISI distribution (red trace). A bimodal distribution 

with a sharp peak at short ISIs and a broad and shallow peak at longer ISIs is apparent. 

The maximum interval for spikes to be classified as belonging to a burst (ISIburst) was 

taken from the first inflexion point of the curve  (arrow). Bin size = 2 ms. Only ISI values 

 ≤ 100 ms are shown for clarity. In this example, ISIburst = 15 ms. 
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2   Robustness, Variability and Modeling of P-receptor 

afferents spike trains 

 

 

2.1  Overview 

 

 We investigated the variability of P-receptor afferent spike trains in the weakly 

electric fish, Eigenmannia, to repeated presentations of random electric field amplitude 

modulations (RAMs) and quantified its impact on the encoding of time-varying stimuli. 

A new measure of spike timing jitter was developed using the notion of spike train 

distances recently introduced by Victor and Purpura (Victor and Purpura, 1996, Victor 

and Purpura, 1997). This measure of variability is widely applicable to neuronal 

responses, irrespective of the type of stimuli used (deterministic vs. random) or the 

reliability of the recorded spike trains. In our data, the mean spike count and its variance 

measured in short time windows were poorly correlated with the reliability of P-receptor 

afferent spike trains, implying that such measures provide unreliable indices of trial-to-

trial variability. P-receptor afferent spike trains were considerably less variable than those 

of Poisson model neurons. The average timing jitter of spikes lay within 1-2 cycles of the 

electric organ discharge (EOD). At low, but not at high firing rates, the timing jitter was 

dependent on the cut-off frequency of the stimulus and, to a lesser extent, on its contrast. 

When spikes were artificially manipulated to increase jitter, information conveyed by P-

receptor afferents was degraded only for average jitters considerably larger than those 
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observed experimentally. This suggests that the intrinsic variability of single spike trains 

lies outside of the range where it might degrade the information conveyed, yet still allows 

for improvement in coding by averaging across multiple afferent fibers. Our results were 

summarized in a phenomenological model of P-receptor afferents, incorporating both 

their linear transfer properties and the variability of their spike trains. This model 

complements an earlier one proposed by Nelson et al. (Nelson et al., 1997) for P-receptor 

afferents of Apteronotus. Because of their relatively high precision with respect to the 

EOD cycle frequency, P-receptor afferent spike trains possess the temporal resolution 

necessary to support coincidence detection operations at the next stage in the amplitude-

coding pathway. The results described in the current Chapter were already reported 

previously (Kreiman et al., 2000b). 

 

2.2  Introduction 

 

Variability has long attracted neurophysiologists as a tool to investigate the 

biophysical mechanisms of sensory processing, the integrative properties of nerve cells 

and the encoding schemes used in various parts of the nervous system (Baylor et al., 

1979, Hecht et al., 1942, Shadlen et al., 1996, Softky and Koch, 1993). Until recently, 

most work has focused on characterizing the response variability of nerve cells to static 

stimuli, in part because simple measures such as the variance of the number of spikes 

recorded in long time windows provide universal and effective ways to quantify 

variability under such conditions (Parker and Newsome, 1998). 
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Most biologically relevant stimuli, however, are not static. Therefore, more 

recently investigators have started to characterize the trial-to-trial variability of responses 

to time-varying, dynamic stimuli in vivo and in vitro (Bair and Koch, 1996, Berry et al., 

1997, Mainen and Sejnowski, 1995, Mechler et al., 1998, Stevens and Zador, 1998, van 

Steveninck et al., 1997, Warzecha et al., 1998, Reich et al., 1997). When temporal 

variations are sufficiently strong to induce locking of spikes to stimulus transients, 

measures such as the standard deviation in the spike occurrence times following those 

transients or the probability of spike occurrence within a given time window from trial to 

trial may be used to provide a characterization of variability (Bair and Koch, 1996, 

Mainen and Sejnowski, 1995). However, these measures are not likely to carry over to 

more general stimulation conditions, when locking to stimulus transients is absent or less 

pronounced. An alternative approach consists of extrapolating from the study of static 

stimuli and to use the variance in the number of spikes observed in short time windows as 

a measure of variability (referred to as the spike count variance; (Berry et al., 1997, van 

Steveninck et al., 1997, Warzecha and Egelhaaf, 1999). Two goals of the present work 

are to clarify the limits of the spike count variance as a measure of short term variability, 

and to introduce a new measure of spike time jitter based on recent work by Victor and 

Purpura (Victor and Purpura, 1996, Victor and Purpura, 1997) that should be applicable 

to a wide range of stimuli, independent of the integrative properties of the investigated 

neurons. 

Eigenmannia is a weakly electric gymnotiform fish of wave type that discharges 

its electric organ at regular intervals 200-600 times per second. Two types of tuberous 

sensory afferent nerve fibers convey information about the resulting electrical 
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environment to the brain (Scheich et al., 1973). T-type afferent fibers provide the first 

stage of a pathway specialized to process phase information, called the timing pathway 

(Heiligenberg and Partridge, 1981). They fire one spike per electric organ discharge 

(EOD) cycle, each tightly phase-locked to the zero crossings of the EOD and thus signal 

phase modulations of the electric field. P-type afferents, on the other hand, fire at most 

one spike per EOD cycle with loose phase locking to the EOD and a probability that 

increases in direct proportion to the mean amplitude of the field. They thus convey 

information about amplitude changes of the electric field to higher order neurons in the 

brain.   

While it is well known that the timing jitter of P-receptor afferent spikes is greater 

than that of T-type afferents (Scheich et al., 1973), variability in the amplitude pathway 

has received little quantitative attention. In contrast, variability in the timing pathway has 

been characterized in considerable detail, revealing the high precision of neurons in 

encoding phase shifts of the EOD. T-type fibers are able to fire spikes with a precision of 

approximately 30 µs (Carr et al., 1986). This precision increases at higher stages of 

electrosensory processing because of the pooling and averaging of T-type activity across 

the body surface (Rose and Heiligenberg, 1985). Here, we focus on the variability of P-

type afferents and show that their firing is approximately 100 times less precise. 

Nevertheless, our results demonstrate that the jitter in P-receptor afferent spike trains lies 

within the appropriate range to efficiently convey amplitude information to the 

electrosensory lateral line lobe, the hindbrain nucleus that forms the first central stage of 

the amplitude coding pathway. 
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The results described in the current Chapter have been summarized previously in 

abstract form in (Kreiman et al., 1998) and in journal form in (Kreiman et al., 2000b).  

 

2.3  Methods 

 

2.3.1  Preparation and electrophysiology 

The methods for preparation of the fish and electrophysiological recordings were 

described in Chapter 1. Signals from P-receptor afferents were recorded extracellularly 

from the anterior lateral nerve ganglion. Most of the data were digitized using the 

Datawave data acquisition system as described in Chapter 1; a few recordings were 

acquired and digitized using LabView (National Instruments, Austin, TX). Data 

corresponding to one point in Figure 13 (for the cut-off frequency fc = 88 Hz, see Section 

2.3.2 below for a complete description) was obtained in a previous study (Wessel et al., 

1996). 

 

2.3.2  Stimulation  

P-receptor afferents were stimulated as described in Chapter 1. The main 

difference with earlier work on P-receptor afferent recordings was that electric field 

amplitude modulations were synthesized and stored digitally for playback using 

commercial software (Signal Engineering Design, Belmont, MA; sampling rate: 2 kHz). 

This allowed for repeated presentations of identical stimuli to explore the trial-to-trial 

variability in the neuronal responses. The amplitude modulations and the carrier signal 

were gated by the same trigger signal and were therefore phase-locked to each other. This 
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is important to ensure that the variable responses are due to random changes at the 

neuronal level and not in the stimulus itself. The stimuli were delivered to the whole fish 

in a global manner via two carbon rod electrodes, one positioned either in front of the 

animal or in its mouth, the other behind its tail. No differences in the neuronal responses 

were observed between these two configurations. The mean stimulus amplitude, 

measured at the side fin perpendicular to the body axis, ranged from 1 to 5 mV/cm. To 

avoid under-driving the afferents, the amplitude was adjusted individually for each P-

receptor afferent to stimulate it at 10-15 dB above threshold.  

One set of stimuli consisted of random amplitude modulations (RAMs) with a flat 

power spectrum (white noise) up to a fixed cut-off frequency ( cf  = 5, 10, 20, 40 and 60 

Hz; see Figure 1-2). These amplitude modulations were obtained using a modulation 

signal s(t) that caused a doubling of the carrier signal amplitude for s(t) = 1 V and a 

reduction to zero for s(t) = -1 V (see equation 1 of (Wessel et al., 1996)). The standard 

deviation, σ, of the stimulus s(t) (which can be thought of as the stimulus contrast) was 

varied between 10 and 30% of the mean electric field amplitude (σ = 100, 150, 200, 250, 

275, 300 mV; σ = 1 V corresponded to a 100% variation of the stimulus amplitude). 

Consequently, amplitudes varied over a range of –20 dB to –10 dB of the mean stimulus 

amplitude. A single 15 sec long stimulus was synthesized for each parameter pair ( cf , 

σ) and was presented 10 times, drawn in pseudo-random order from a subset of all 

possible ( cf , σ) combinations. We usually started by presenting all fc values at a fixed 

contrast (σ = 250 mV) or all contrasts at two cut-off frequencies ( cf = 5, 60 Hz). Further 

( cf , σ) combinations were tested as time permitted.  
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The second set of stimuli consisted of sinusoidal amplitude modulations (SAMs) 

at a fixed contrast (σ = 250 mV) and at various temporal frequencies sf . The values used 

were sf  = 0.1, 0.5, 1, 5, 7, 10, 20, 50, 100 and 125 Hz. Each stimulus was 15 seconds 

long and was presented 6 times in pseudo-random order. These stimuli were presented 

interleaved with the RAMs protocol described above.  

 

2.3.3  Characterization of spike train variability 

 Two methods were used to quantify inter-trial spike train variability in response to 

repeated presentations of the same RAM stimulus. We first computed the spike count 

variance as a function of the mean spike count in fixed time windows of length T (see 

Results and Figure 5). The same RAM stimulus was presented R = 10 times and the 

number of spikes, in , occurring in a fixed time window, T, was determined for each trial 

i = 1, … R. The average number of spikes occurring in that window, n  (mean spike 

count), and its variance, 2
nσ  (spike count variance), were estimated from: 

∑
=

=
R

i
in

R
n

1

1          2.1 

∑
=

−
−

=
R

i
in nn

R 1

22 )(
1

1σ        2.2 

Three window sizes were used (T = 10, 50 and 100 ms) and each time window 

was successively shifted by 5 ms to cover the entire stimulus presentation interval. For 

highly variable spike trains, such as those corresponding to independent Poisson-

distributed spike occurrence times, the spike count variance equals the mean independent 
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of the window T. Conversely, if the R = 10 spike trains are exactly identical, 02 =nσ  in 

each window T. If, however, the spike trains are not exactly identical, the minimum non-

zero variance may be computed by considering the discrete nature of spiking. With f 

lying in the interval [0;1), we assume that a fraction (1-f) of spike counts in a fixed 

interval of length T equals the integer Tn  (where Tn  is usually small) and the remaining 

fraction, f, contains one additional spike, so that the spike counts equal 1+Tn . It then 

follows that the mean spike count, n  (a positive real number), is given by  

)1()1( ++−= TT nfnfn fnT +=       2.3                                      

and the minimal variance is 

222 )1())(1( nnfnnf TTn −++−−=σ )1( ff −=    2.4 

This last equation states that 2
nσ  is a quadratic function of the fraction, f , of spike 

counts equaling 1+Tn  in the interval T. As a function of f, the minimal variance spans a 

parabola between successive integer values of the mean spike count, taking its maximal 

value (=1/4) at f = ½ and its minimal value (= 0) for integer spike counts ( f = 0; see 

Results and Figure 5). Similarly, if all spike counts in T for all R repetitions are equal to 

Tn  or 1+Tn  except for one spike count equal to 1−Tn  (or 2+Tn ), then the variance 

still follows a parabola, but translated by a factor R2  along the vertical 

axis: Rff 2)1( +− . Successive parabolas translated vertically are generated by an 

analogous procedure (see Results and Figure 5).  

 A second measure of inter-trial variability which proved more sensitive to 

changes in stimulus parameters (see Results) was obtained by computing an average 
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distance between spike trains obtained in response to the same RAM. The distance 

measure employed was introduced by Victor and Purpura (Victor and Purpura, 1996, 

Victor and Purpura, 1997) based on an earlier one used to quantify the similarity of DNA 

sequences (Sellers, 1974).  Operationally, the distance between two spike trains is 

defined by the following procedure: the first spike train is transformed into the second 

one by a series of elementary steps. Each step is assigned a “cost” and the distance is 

obtained by adding up the cost of all elementary steps and finding the transformation 

sequence yielding the minimal cost. This procedure is illustrated in Figure 1: the two 

spike trains to be compared are labeled 1 and 8, while spike trains 2-7 represent the 

sequence of elementary steps in the transformation yielding the minimal cost. Only three 

elementary steps are allowed: adding a spike (as in step 6 to 7), deleting a spike (as in 

step 1 to 2) or moving a spike to a new position (as in step 2 to 3). The first two 

elementary steps are assigned an arbitrary cost of 1 whereas moving a spike by t∆ ms is 

assigned a cost of tq ∆⋅ for q positive. Victor and Purpura (Victor and Purpura, 1996, 

Victor and Purpura, 1997) describe an algorithm for determining the minimum cost 

transformation sequence and derive the mathematical properties of the ensuing distance 

measure, dij(q), between two spike trains xi and xj. The parameter q (measured in units of 

1/time) characterizes the time interval for which the occurrence of a spike in xi is 

considered to be significantly different from the occurrence of a spike in xj: if the interval 

separating the spikes is larger than 2/q it is less “expensive” to transform xi into xj by first 

deleting the spike in xi and then adding it in xj (at a cost of 2) than by translating it to its 

new position (at a cost of tq ∆⋅ ; Figure 1B). It is therefore straightforward to compute 

dij(q) when q is large: let ni and nj be the number of spikes in xi and xj, respectively and 



Gabriel Kreiman  Thesis - Chapter 2   

 

43 

the integer cij denote the number of coincident spikes in xi and xj (coincident within some 

discretization interval). For large values of q it is always less expensive to delete and add 

spikes than to move them so that the distance between xi and xj is obtained by first 

deleting )( iji cn − spikes in xi and then adding )( ijj cn −  spikes in xj. Thus, 

ijjiij cnnqd 2)( −+=∞→        2.5 

On the other hand, if the cost of moving a spike vanishes, q = 0, each spike in xi may be 

moved at zero cost to match the position of an arbitrary spike in xj and a cost of 1 is only 

endured for each additional spike to be added or deleted in xj. Therefore,  

jiij nnd −=)0(         2.6 

measures the difference in the number of spikes between the two spike trains. As 0≥q  

increases, dij(q) increases monotonically and reaches its maximum value (given by 

equation 1) when 2/q is smaller than the minimal time interval between two non-

coincident spikes in xi and xj. Note that if the two spike trains are perfectly coincident 

dij(q) = 0, independent of q. The distance dij(q) was normalized by the total number of 

spikes in the two spike trains,  

)/()()( jiij
n
ij nnqdqd +=  with 1)(0 ≤≤ qd n

ij     2.7 

so that  )0(n
ijd  measures the difference in spike count normalized by the total spike count 

and )( ∞→qd n
ij  is the fraction of non-coincident spikes relative to the total number of 

spikes.  

The effective temporal jitter, jittert , of the spike occurrence times was defined as 

2/1/1 qt jitter =  where 2/1q  is the value of q such that 2/1)( 2/1 =qd n
ij . This definition is 
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motivated by the following arguments showing that jittert  equals the average time 

interval, intert , by which spikes are moved to transform one spike train into the other one 

if no spikes have to be added or deleted (see equation 6 below). Thus, the effective 

temporal jitter jittert  is a generalization of intert  to situations where spikes might also need 

to be added or deleted, as we now explain. For a fixed value of q, let βα nn , and γn denote 

the number of spikes moved, deleted and added when computing the distance between xi 

and xj. If we pool together all non-coincident spikes in xi and xj, ijji cnn 2−+ , then each 

one of these spikes is either moved, deleted or created when transforming xi into xj so that 

the following equation holds: 

ijji cnnnnn 22 −+=++ γβα       2.8 

Using  equations (2.7) and (2.8) to express )(qd n
ij  directly in terms of βα nn , and γn  we 

obtain, 
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where it∆ is the time interval by which the i-th spike (out of αn ) is moved. Therefore, 

when 2/1qq = , rearranging this last equation shows that the average time interval by 

which a spike is moved is given by 
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Let us assume from now on that the number of coincident spikes is negligible, cij = 0 (see 

Results). If all spikes are moved to transform one spike train into the other one 

( 0== γβ nn ), equation 2.10 implies that  

2/11

11
q

t
n

n

i
i =∆∑

=

α

α

                    (if 0== γβ nn )    2.11 

and 2/11 q is the average time interval, intert , by which spikes are moved. If  0≠βn  

and/or 0≠γn  then the distance by which the remaining αn spikes are moved is on 

average smaller to compensate for the extra cost imposed by spike additions and 

deletions (see equations 2.4 and 2.5; the expression within the parentheses in equation 2.5 

will be < 1). Note, however that the total number of displaced spikes cannot be less than 

half the average total number of spikes, 

22
1 ji nn

n
+

⋅≥α         2.12 

since the right hand side of equation 2.5 has to be positive. Thus, jittert  provides an 

appropriate measure of spike time jitter, which automatically takes into account possible 

spike additions or deletions.  

From the responses of a P-receptor afferent to 10 repetitions of a RAM stimulus, 

we computed an estimate of the average normalized distance between two spike trains as 

a function of q,  
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where 90=pairsn  ( pairsn  is obtained by considering all possible pairs of trains among 10). 

Normalized distances were typically computed for q = 0, 0.05, 0.1, 0.25, 0.5 and 20 ms-1 
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(the last value corresponds to the temporal resolution, 1.02 =q  ms, at which spike 

occurrence times were digitized). According to equations1 and 2, Dn(20) measures the 

average fraction of non-coincident spikes, while Dn(0) measures the average difference in 

spike counts (normalized by the total spike count). The average effective temporal jitter, 

2/11 qt jitter = , 2/1)( 2/1 =qDn  measures the average jitter of the spike occurrence times 

under repeated presentation of the same stimulus. The value of 2/1q  was estimated to 

± 0.02 accuracy (i.e., 2/1q  satisfied the requirement: 52.0)(48.0 2/1 << qDn ) by the 

bisection method (Press et al., 1996), Chap. 9). The percentage of spikes moved, 

)2( γβαα nnnn ++ , and the percentage of spikes added or deleted, 

)2()( γβαγβ nnnnn +++ , were computed over 3 s of data and 6 stimulus repetitions 

(instead of the 15 s and 10 repetitions used to compute the distances) because this task 

was computationally very intensive. We verified in a few cases that the results were not 

altered significantly by this procedure. For this latter task, a total of 15 units and 140 

stimulus conditions were analyzed. We checked that the distances )( 2/1qDn  computed 

over these reduced data sets lay between 0.45 and 0.55. This was the case for 125 

stimulus conditions; the other 15 conditions were not considered further.  

2.3.4  Stimulus estimation 

 The accuracy of single P-receptor afferent spike trains in encoding RAMs was 

assessed by linearly estimating the stimulus from the recorded spike trains. This 

technique essentially replaces each spike in a spike train by a continuous waveform, )(th , 
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thus yielding an estimate, )(tsest , of the stimulus, s(t)  (Figure 2A). The waveform )(th  is 

chosen to optimize the match between )(tsest  and s(t) and, at low firing rates, it closely 

resembles the mean stimulus waveform preceding a spike (Gabbiani and Koch, 1998, 

Wessel et al., 1996). The theoretical aspects of this signal processing technique and its 

application to P-receptor afferent spike trains have been discussed in details elsewhere 

(Wessel et al., 1996, Gabbiani and Koch, 1998); see also (Gabbiani and Metzner, 1999) 

for an introduction. For each spike train )(txi  (i = 1,…,10) obtained upon presentation of 

a RAM  s(t) we subtracted the mean firing rate and estimated the filter, )(thi ,  that 

minimizes the mean square error between the stimulus and the estimated stimulus 

obtained by convolving )(thi   with )(txi  (see Figure 2A). This filter is called a Wiener-

Kolmogorov (WK) filter in the signal processing literature (e.g. (Poor, 1994)) and plays a 

role analogous to the impulse response used to estimate the instantaneous firing rate of a 

neuron (see Figure 1 of (Gabbiani and Metzner, 1999)). Each estimate of the WK filter 

depends on the recorded spike train )(txi  from which it is computed and is therefore 

indexed accordingly as )(thi . The WK filter was computed using MATLAB M-files 

(The MathWorks, Natick, MA) available at the following web address: 

http://www.klab.caltech.edu/~gabbiani/signproc.html. We then estimated the mean 

square estimation error, 2ε , by cross-validation (Fukunaga, 1990): each filter )(thi  was 

convolved with a spike train )(tx j different from the one used to compute )(thi  to avoid 

over fitting. This yielded an estimate 2ˆijε , 

22 )))(()((ˆ txhts jiij ∗−=ε ,            2.14 
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where i = 1,…,10,  j = 1,…,10, ji ≠  and the brackets, ⋅ , denote time averaging and the 

∗  denotes the time convolution operation (Gabbiani and Koch, 1998). An improved 

estimate was obtained by averaging over all possible pairs: 

∑∑
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where npairs = 90. The fraction of the stimulus encoded, or coding fraction, was evaluated 

as described in Chapter 1 (
σ
εγ −=1  ) where σ is the standard deviation of the stimulus. 

In the worst possible case, when the spike train is completely uncorrelated with the 

stimulus, the linear estimation algorithm predicts the stimulus mean value and the root 

mean square error equals the stimulus standard deviation.  The root mean square error is 

therefore always smaller than the stimulus standard deviation (ε≤σ) so that the coding 

fraction, γ , lies between 0 and 1. The coding fraction represents the fraction of the 

stimulus, expressed in units of σ, that can be reconstructed by linear filtering of the spike 

train. 

 

2.3.5  Robustness of RAM encoding to spike time jitter, and random 

spike additions or deletions 

 To investigate the effect of spike time jitter, spike failures and the occurrence of 

spikes unrelated to the stimulus on the encoding of RAMs by P-receptor afferents, we 

created synthetic spike trains from the experimental ones by randomly adding, deleting or 

jittering spikes (Bialek et al., 1991, Rieke et al., 1997). The stimulus was then estimated 

from these synthetic spike trains and the coding fraction was monitored as a function of 
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the parameters determining the amount of jitter and the number of spikes added or 

deleted. Each one of these three types of modifications was introduced separately. In all 

cases, a minimum separation of 2 ms was imposed between two spikes of the modified 

spike trains to take into account the refractory period of the afferent fibers. 

Let padd indicate the percentage of spikes added to the experimental spike train 

and pdel the percentage of spikes randomly deleted. For spike time jittering, the spikes 

were moved from their actual occurrence times by a random distance taken from a zero-

mean gaussian distribution with various standard deviations σjitter (Figure 2B). We used 

σjitter
 = 0, 1, 3, 5, 7, 10, 15 and 30 ms; padd = 0, 1, 5, 10, 20 and 30 %; pdel = 0, 1, 5, 10, 20 

and 30 %.  

Let )( addpγ , )( delpγ  and )( jitterσγ  denote the coding fractions for a given value 

of padd, pdel and σjitter, respectively. The robustness of RAM encoding by P-receptor 

afferent spike trains was evaluated by plotting the normalized coding fraction 

)0()()( γγγ xxn = where x = addp , delp  or jitterσ  as a function of x (Figure 13, inset). In 

most cases, the normalized coding fraction was linearly related to the distortion 

parameter x (see Results). We therefore performed linear fits of nγ as a function of x = 

addp , delp  or jitterσ , 

addaddaddn pp ⋅+= αγ 1)(  ,       2.16 

deldeldeln pp ⋅+= αγ 1)(  , 

jitterjittern jitter
σασγ ⋅+=1)( , 

where addα , delα  and jitterα  are the slopes of the regression lines. The robustness was 

defined as the amount of distortion required to cause a 50 % drop in coding fraction: 
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150 ,              

jitter
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The values of 50
addp , 50

delp  and 50
jitterσ  were obtained by linear interpolation between 

adjacent values of the normalized coding fraction plotted as a function of the perturbation 

or by extrapolation at low stimulus cut-off frequencies (see the point cf  = 5 Hz in Figure 

13). 

 

2.3.6  Modeling of P-receptor afferent spike trains 

Modeling of P-receptor afferent spike trains was performed in three steps. In the 

first step, the variability of P-receptor afferent spike trains during RAM stimulation was 

compared to that of standard non-leaky integrate-and-fire models with a random voltage 

threshold (Figure 3A; (Reich et al., 1997, Gabbiani and Koch, 1998). The properties of 

the model random threshold determine the variability of the resulting spike trains. The 

random threshold was taken from a gamma distribution with parameters n and Vth: 
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Larger values of n correspond to more reliable spike trains (see Results and Figure 7; see 

also (Gabbiani and Koch, 1998), Figure 9.3) and the mean voltage threshold Vth 

determines the mean firing rate of the model. An absolute refractory period of 2 ms was 

inserted after each spike occurrence. The order of the gamma distribution was varied 
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between 1 (corresponding to an exponential distribution leading to Poisson distributed 

spike times), 3, 5, 10 and 100 (effectively implementing the limit ∞→n , which 

corresponds to a perfect integrator). The mean voltage threshold value, Vth, was fixed so 

as to match the mean firing rate of the model to the one of each P-receptor afferent. 10 

repetitions of the same RAM used to stimulate P-receptor afferents were fed to each 

model and the distances between spike trains were computed as explained above. 

In the second step, the linear transfer properties of P-receptor afferents were 

characterized using a model based on an earlier one proposed by (Nelson et al., 1997) for 

P-receptor afferents of Apteronotus leptorhynchus (see Figure 3B). An alternative 

biophysical model proposed by (Kashimori et al., 1996) was not considered here, as our 

goal was to obtain the simplest possible description of P-receptor afferent spike trains 

taking into account their linear transfer function and the variability of their spike trains. 

The stimulus was passed through a first order high pass filter with transfer function H(s), 
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simulating the linear transfer properties of P-receptor afferents. In this equation, Ga and 

Gc are gain and offset terms, respectively, τa is the time constant of the filter and 

ifis πω 2== is the complex circular frequency of the input signal. The parameters Ga, 

Gc and τa were obtained by fitting the gain )2()( ifHfG π= and the phase 

))2(Re)2(Im(tan)( 1 ifHifHf ππφ −= of the model to experimentally measured gains 

and phases obtained from responses to sinusoidal amplitude modulations (SAMs). For 

each SAM stimulus, the mean instantaneous firing rate was computed over the full 

stimulus cycle and fitted to the function  
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ctfGtmfr fsf ++= )2sin()( φπ       2.21 

(see Results and Figure 14). The fit parameters 
sfG  and 

sfφ are the experimental gain and 

phase at the frequencies sf  used in the SAMs protocols, respectively (see Stimulation 

above). The constant c represents an offset between stimulus and response.  

 In the third and last step, the variability characterized in the first step and the 

linear filtering properties obtained in the second step were combined to obtain a complete 

model reproducing both the variability of P-receptor afferents and their linear filtering 

properties. The high-pass filtered signal was delayed by 2.5 ms (corresponding to the 

synaptic delay between tuberous receptors and afferent fibers) and a mean spontaneous 

activity was added (Nelson et al., 1997; see Figure 3B). The resulting signal, z(t), was 

then passed through a clipping non-linearity, effectively half-wave rectifying it and 

imposing a maximal firing rate of 1 spike per EOD cycle, 
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The output, r(t) (see Figure 3B), was fed as input to a perfect integrator with gamma 

distributed threshold, as described above, to determine when a spike was fired. The order 

n of the gamma distribution for the threshold was selected to match the spike train 

variability in response to SAMs, as assessed by computing interspike interval 

distributions and distances between spike trains (see above and (Gabbiani and Koch, 

1998)). The responses to RAM stimuli, when available, were then compared to the model 

predictions (see Results). In some cases the mean firing rate of the model was adjusted to 

take into account changes in the experimental firing rate during a recording session.   
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 In the  subsequent sections, we use the notation std to stand for standard 

deviation and sem for standard error of the mean.  

 

2.4  Results  

 

This study is based on recordings and analysis from 69 P-receptor afferent fibers 

obtained in 34 different animals.  

 

2.4.1  Responses of P-receptors to repeated presentations of 

identical RAMs 

 To investigate the variability of P-receptor afferent spike trains and its relation to 

the encoding of electric field amplitude modulations, we recorded their responses to 

repeated presentations of identical random amplitude modulations (RAMs) of a 

sinusoidal electric field. The mean firing rates of afferent fibers were widely distributed, 

ranging from 25 spike/s to 374 spike/s (mean ±  std: 117 ±  69 spike/s). The coefficient 

of variation of the interspike interval (ISI) distribution (CV = mean/std) ranged from 0.16 

to 1.7  (mean ±  std: 0.59 ±  0.36). These values were similar to those observed in 

spontaneously active units (range: 0.12-1.12; (Wessel et al., 1996), Figure 2B2), although 

several units analyzed here had higher CVs under RAM stimulation than those observed 

spontaneously.  

 Figure 4 illustrates the range of responses to repeated RAMs recorded under a 

variety of stimulus conditions and mean firing rates. In a few cases, the responses of P-

receptor afferents were highly reproducible from trial to trial (see in particular Figure 4C 
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and, to a lesser extent, Figure 4D) as has sometimes been observed in other preparations 

(Mainen and Sejnowski, 1995, Bair and Koch, 1996, Berry et al., 1997). A clear locking 

of the responses to the stimulus was usually observed at high contrasts ( 200>σ  mV) 

and cut-off frequencies ( 40>cf  Hz; see Figure 4C, D). Furthermore, the mean firing 

rate of the afferent fibers had to be low ( 125< spike/s; compare Figure 4C and G). 

Decreasing the cut-off frequency or the stimulus contrast tended to decrease the 

reproducibility of the spike occurrence times (Figure 4A, B). At high firing rates (> 125 

spike/s), P-receptor afferent responses did not show clear trends of changes in 

reproducibility with stimulus parameters (Figure 4E-H). These preliminary observations 

suggested that the variability across trials of P-receptor afferent spike trains depended on 

stimulus parameters as well as on the mean firing rate of the units.   

 

2.4.2  Quantification of response variability 

 The spike count variance over short time windows has often been considered as 

an indicator of spike train variability across repeated trials of the same stimulus (Berry et 

al., 1997, van Steveninck et al., 1997). As a first step in quantifying P-receptor afferent 

spike train variability, we therefore plotted the spike count variance vs. mean spike count 

across trials in windows of various sizes (10, 50 and 100 ms) as illustrated in Figure 5. At 

low firing rates (Figure 5, top row) the observed mean spike count in a given window 

was typically low (<10 spikes per window) and the variance across trials as a function of 

the mean had a scalloped appearance, reproducing almost perfectly a series of parabolas 

stacked onto each other along the vertical axis. Similar observations have been made in 

other preparations (in ganglion cells of the salamander retina, (Berry and Meister, 1998); 
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in a wide-field visual tangential neuron of the fly lobula plate, (van Steveninck et al., 

1997)). The lowest series of parabolas corresponded to the minimal possible variance that 

is achieved when the spike count is either equal to n or n+1 (where n is an integer) in a 

given window (see Methods). Higher parabolas corresponded successively to all spike 

counts equal to n or 1+n , except for one equal to 1−n  (or n+2), etc… per window. This 

result indicated that the number of spikes per window was reliable (either n , 1+n  or 

1−n ) and well below that expected for a Poisson process (mean equals variance; dashed 

line in Figure 5). However, since the scalloping was observed independently of the 

stimulus cut-off frequency, it did not correlate with the reliability of spike occurrence 

times, as observed in spike rasters (see Figure 4A-D). At higher firing rates, the mean 

spike count reached up to 25 spikes or more per window (Figure 5, bottom row) and the 

variance increased considerably, ranging from the theoretical minimum up to the mean 

equals variance line. On average, the variance was still below that of a Poisson process.  

Thus, according to the experimental results plotted in Figure 5, scalloping did not 

appear to be directly related to the precision of spike timing across trials. To confirm this 

point, we artificially modified the spike trains obtained in response to repeated 

presentations of identical RAMs to alter the precision in spike timing without changing 

the statistical properties of the spike trains. We took the 10 rasters of units exhibiting 

scalloping of the spike count variance vs. mean spike count relation and firing with 

varying degrees of reliability in response to RAMs (such as the rasters for the unit 

illustrated in Figs. 4A, C and 5A-D) and successively shifted the spikes with a fixed 

delay shiftt . In other words, if )(1 tx , …, )(10 tx  represent the original spike trains, new 

spike trains were defined as )()(~
11 txtx = , )()(~

22 shiftttxtx += , …, 



Gabriel Kreiman  Thesis - Chapter 2   

 

56 

)9()(~
1010 shiftttxtx ⋅+= . The parameter shiftt  took three values: 1, 5 and 10 ms. We then 

computed the variance vs. mean relations exactly as in Figure 5. In all cases (5 units, 14 

conditions) and irrespective of whether the timing of spikes was reliable or not, the 

scalloping remained present, independently of the value of shiftt . In some cases the 

number of vertical rows of parabolas increased with shiftt . These points are illustrated in 

Figure 6A and B. Similar results were obtained in integrate-and-fire neuron models as 

illustrated in Figure 6C and D. Thus, in the worst case, 10=shiftt  ms, the timing of spikes 

drifted by 90 ms between the first spike train )(~
1 tx  and the last spike train )(~

10 tx  without 

affecting the scalloping in windows of 10, 50 and 100 ms. Since it was possible to largely 

eliminate any precision in the spike occurrence times from trial to trial without altering 

the scalloping of the spike count variance, this analysis confirmed that scalloping in these 

time windows was not related to the reliability of spike occurrence times.   

 Because the spike count variance as a function of mean spike count did not offer a 

reliable indication of spike train variability under our experimental conditions, we turned 

to a second measure based on the calculation of distances between spike trains obtained 

under repeated RAM stimulation. This measure, )(qDn , depends on a parameter q (in 

units of 1/time) which determines the temporal precision at which the distance between 

two spike trains is computed (higher values of q correspond to higher temporal 

precisions, see Methods). For two identical spike trains 0)( =qDn  independent of q. The 

maximum, 1)( =qDn , is obtained for large values of q only if no spikes in the two spike 

trains occurred exactly at the same time. The value at which 21)( =qDn , called 21q , 

may be used to summarize spike train variability: if we set 2/11 qt jitter =  then jittert  
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measures the average time by which spikes have to be moved to transform one spike train 

into the second one, or equivalently, the average jitter in spike timing. By definition, this 

jitter also takes into account differences in spike numbers between the two spike trains 

(i.e., the need to create or delete spikes to transform one spike train into the other; see 

Methods and Figure 1).  

 We computed the average distance between all pairs of spike trains obtained in 

response to the same RAM stimulus for our sample of 69 P-receptor afferents. The spike 

train distances )(qDn  were compared to those obtained from a family of gamma neuron 

models indexed by a parameter n controlling spike train variability (see Methods). A 

value of n = 1 (gamma-1 neuron) corresponds to Poisson distributed spike occurrence 

times in response to the stimulus while for large n (n > 100) the gamma model is identical 

to an integrate-and-fire neuron. Figure 7A illustrates in one example how the variability 

observed in P-receptor afferents compared to the model variability. The top 10 rasters 

labeled ‘P-unit’ correspond to the response of a P-receptor afferent while the next 10 

rasters were obtained by simulating a Poisson (gamma-1) model. The P-receptor afferent 

spike trains are considerably more regular than those of a Poisson neuron and match quite 

well those of the gamma-10 model illustrated at the bottom of Figure 7A. Accordingly, 

the average distance between two spike trains of this P-receptor afferent followed closely 

that of the gamma-10 neuron (see Figure 7B, triangles and squares) and was always 

smaller than the corresponding distance in a Poisson model (Figure 7B, circles). The 

value )0(nD  in Figure 7B yields the average difference in spike number between two 

spike trains normalized by the total spike count. The small distance value, 02.0)0( =nD , 

indicates that the number of spikes was very reproducible from one trial to the next with 
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an average variability of 2%. On the other hand, )20(nD  is the fraction of non-coincident 

spikes in two spike trains at 0.1 ms resolution. The value 98.0)20( =nD  in this 

experiment indicates that less than 2% of spikes occurred at the same time ( ± 0.05 ms) 

and thus the spike trains were clearly not reproducible at a 0.1 ms resolution. The average 

temporal jitter in spike occurrence times, jittert , was in this case equal to 2.9 ms (with 

86% of spikes moved and 14% of spikes added or deleted), corresponding to 1.3 EOD 

cycles ( 438EOD =f  Hz). Furthermore, the largest deviation between )(qDn  in the 

gamma-10 model (or the P-receptor afferent) and the Poisson model was observed for q  

values lying in the interval 0.05 ms-1 – 0.25 ms-1 (Figure 7C). A value of q  = 0.25 ms-1 

was used to illustrate our results in subsequent figures.  

  Similar results were obtained in all 69 P-receptor afferents analyzed. The relative 

difference in spike count, )0(nD , ranged from 0.01 to 0.1 (mean ±  std: 0.03 ±  0.04), 

while the fraction of non-coincident spikes, )20(nD , ranged from 0.87 to 1.0 (mean ±  

std: 0.97 ± 0.04). The distribution of average temporal jitters is plotted in Figure 8A for 

69 P-receptor afferents. The range of values was between 0.6 and 23.2 ms (mean ±  std: 

3.5 ±  3.9) with 77 ±  7% of spikes moved (mean ±  std; range: 62 – 87%) and 23 ±  7% 

of spikes added or deleted (mean ±  std; range: 13 – 38%). Figure 8B re-plots the average 

temporal jitter in units of the EOD cycle ( EOD1 f ) as measured for each fish prior to the 

experiment. The temporal jitter ranged from a fraction of the EOD cycle (0.29) up to 

several cycles (8.7; mean ±  std: 1.4 ±  1.5). The temporal jitter was dependent on the 

firing rate of the afferent fibers. High firing rate afferents (arbitrarily defined as those 

with mean firing rate above 125>  spike/s) had a mean jitter, jittert , of 1.7 ±  0.3 ms 
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(mean ±  std; range: 0.6 – 2.45 ms) corresponding to 0.8 ±  0.3 EOD cycles (mean ±  std; 

range: 0.3-1.2). The mean jitter of low firing rate afferents ( 125<  spike/s) was typically 

higher, 6.3 ±  6.0 ms (mean ±  std; range: 1.7 – 23.2 ms) corresponding to 2.4 ±  2.3 

EOD cycles (mean ±  std; range: 0.7 - 8.7).  

 

2.4.3  Dependence of temporal jitter on stimulus cut-off frequency 

Next, we investigated the dependence of spike timing jitter on stimulus 

parameters and P-receptor afferent firing rates. Figure 9A illustrates the change in 

temporal jitter as a function of cut-off frequency for a low firing rate unit (mfr = 65 

spike/s). When the  stimulus cut-off frequency was increased from 5 to 40 Hz, the timing 

jitter decreased 1.4-fold from 4.8 ms to 3.5 ms. This increase in spike timing precision 

was quantified by the slope of linear regression lines fitted to the data (see Figure 9A, 

dashed line). As illustrated in Figure 9B, an increase in temporal precision was observed 

mainly for units firing at low rates. The left panel shows the distribution of slopes for 

units with a mean firing rate below 125 spike/s and the right panel the distribution of 

slopes for units with mean firing rates above 125 spike/s.  The slopes calculated for low 

firing rate units were negative on average (mean ±  std: -0.052 ±  0.066 ms/Hz) and 

significantly different from 0 ( 05.0<p , 2-tailed t-test) while they were not significantly 

different from zero at high firing rates (mean ±  std: 0.01 ±  0.02 ms/Hz; 4.0>p ). 

Correspondingly, correlation coefficients between cf  and jittert  were negative at low 

rates (mean ±  std: -0.59 ±  0.35) but not at high firing rates (mean ±  std: 0.29 ±  0.62). 



Gabriel Kreiman  Thesis - Chapter 2   

 

60 

 Similar results were obtained for the distance measure )(qDn over a broad range 

of the spike distance parameter q , as illustrated in Figure 10. At fixed, intermediate 

values of q , the average distance decreased as a function of stimulus cut-off frequency 

for low-firing rate units (Figure 10A-C). At low temporal resolution (i.e., when q  = 0 ms-

1 and )(qDn  measures differences in spike counts) the slopes and correlation coefficients 

of )(qDn  vs. cf  regression lines were not significantly different from 0 ( p  > 0.2 at q  = 

0 ms-1, 2-tailed t-test). That is, no trend in spike count variability vs. stimulus bandwidth 

could be observed. The same result was true at very high temporal resolution ( p > 0.2 at 

q  = 20 ms-1). At intermediate temporal resolutions, units firing at high rates did not show 

slopes or regression coefficients significantly different from zero ( q  in the range 0.05 – 

0.75 ms-1; p  > 0.05) while low firing rate units yielded a significant decrease in 

variability with stimulus bandwidth ( p  < 0.01 over the same range of values). The 

strongest tendencies were observed for values of q  between 0.25 and 0.5 ms-1 (Figure 

10B, C). 

 

2.4.4  Variability and stimulus contrast 

 The dependence of spike time jitter on stimulus contrast was very similar to the 

one found for stimulus cut-off frequency. Figure 11A illustrates an example of a low 

firing rate P-receptor afferent for which spike timing jitter decreased 2-fold as the 

stimulus contrast was changed from 10% to 30%. The effect of stimulus contrast on spike 

timing jitter is summarized in Figure 11B which reports the slopes of linear regression 



Gabriel Kreiman  Thesis - Chapter 2   

 

61 

lines for jittert  vs. σ  in P-units firing at low and high rates (left and right panels, 

respectively). Increasing stimulus contrast was generally less effective than increasing 

cut-off frequency at reducing spike time jitter as may be seen from the larger fraction of 

units with slopes close to zero, even at low firing rates.  

 Figure 12 reports the same results directly in terms of spike train distances at all 

values of q used. At low firing rates and for intermediate values of the temporal 

resolution parameter, the average distance between two spike trains decreased as a 

function of stimulus contrast (Figure 12A). Accordingly, the slopes of linear regression 

lines and their correlation coefficients were significantly different from zero for low 

firing rate units ( p  < 0.01, 2-tailed t-test) but not for high firing rate units ( p  > 0.05) at 

those values of q  (Figure 12B, C). At very low or very high temporal resolution ( q  = 0 

or 20 ms-1) changes with stimulus contrast were not statistically significant ( p  > 0.05).  

 In summary, the study of spike train distances demonstrated that the timing 

precision of P-receptor afferents increased with stimulus cut-off frequency and, to a 

lesser extent, with stimulus contrast. Low firing rate units appear to be less variable than 

high firing rate units.  

 

2.4.5  Robustness of stimulus encoding 

 To assess the impact of alterations in spike timing on the accuracy of RAMs 

encoding, we modified experimental spike trains by randomly adding, deleting or moving 

spikes. The stimuli were then estimated from the modified spike trains (see Figure 2B 

and Methods) and the change in coding fraction was monitored. The inset of Figure 13 
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reports in one example the fraction of the stimulus encoded as a function of spike time 

jitter, normalized by its baseline value, the coding fraction of the original spike train. In 

most cases the addition and the deletion of spikes or the addition of spike time jitter 

resulted in a linear decrease of the normalized coding fraction as the perturbation 

parameter was increased. Correlation coefficients ranged from 0.80 to 0.97 for 96% of 

the data. In those cases, the robustness of encoding was characterized by the perturbation 

value required to cause a 50% drop in coding fraction (see Figure 13, inset for the 

definition of 50
jitterσ ). P-receptor afferent spike trains were in general quite robust to such 

perturbations. As illustrated in Figure 13, at low cut-off frequencies, spike time jittering 

as high as 125 ms was required to cause a 50% drop in γ . The robustness to spike time 

jitter decreased as the stimulus cut-off frequency increased, reaching a value of 6 ms for 

fast changing stimuli ( cf  = 88 Hz). The robustness to spike additions or deletions did not 

show a dependency on stimulus bandwidth for cf  > 5 Hz (see Table 1). For those stimuli, 

a drop of 50% in the coding fraction was obtained after 36% random spike deletions and 

41% additions. Robustness was not significantly dependent on stimulus contrast (data not 

shown).  

 

2.4.6  Modeling of P-receptor afferent variability and linear transfer 

properties 

 The results reported above were summarized by building a model of P-receptor 

afferent spike trains able to account for the encoding of RAMs and the spike train 

variability observed experimentally across trials (see Figure 3 and Methods). We used an 
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approach similar to the one adopted by Nelson et al. (1997) in modeling P-receptor 

afferents of Apteronotus leptorhynchus. The transfer functions of P-receptor afferents 

have been described as high-pass in the species of weakly electric fish investigated so far 

(Bastian, 1981, Nelson et al., 1997). We confirmed this and characterized quantitatively 

the transfer function in Eigenmannia by recording responses to sinusoidal amplitude 

modulations (SAMs). Gains and phases were extracted from linear fits to sinusoids 

(Figure 14A and equation 8 in Methods) at various frequencies sf . The experimental 

gains and phases were then fitted by maximum likelihood to a first order high-pass filter 

(Figure 14B and equation 7). The resulting fits had 2χ -values divided by the number of 

degrees of freedoms ( DOF2χ ; Press et al. 1992, chap. 15) for the fits between 0.7 and 

8.0 (for 15 afferent fibers), except for two outliers ( DOF2χ  = 22.8 and 24.2, 

respectively). The mean values of the filter parameters were: aG  = 120 ±  82 spikes/s 

(range: 16-300 spikes/s), cG  = 40 ±  26 spikes/s (range: 7-99 spikes/s) and aτ  = 4 ±  5 

ms (range:0.2-17.5 ms). In contrast to the results of Nelson et al. (1997) in Apteronotus, 

fitting the data with a second order filter improved only slightly the DOF2χ -values of 

the fits (range: 0.4 – 6.2). Since the additional parameters were not well constrained, this 

approach was not pursued further. The static non-linearity illustrated in Figure 3B was 

needed in the model to prevent z(t) from becoming negative, leading to firing rates lower 

than those observed experimentally. The variability of P-receptor afferent spike trains 

was estimated from repeated presentations of SAM stimuli and was in the same range as 

the one observed for RAMs.  
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 The ability of the model to predict responses to RAMs was tested in 10 P-receptor 

afferents by computing coding fractions and spike train distances as a function of 

stimulus contrast and cut-off frequency. Figure 15 illustrates two examples for a P-

receptor afferent firing at low rate (left panels, A-D) and a second P-receptor afferent at 

high firing rate (right panels, E-H). The model successfully reproduced both the 

dependence of coding fraction and spike train distances observed experimentally on cf  

and σ . 

 

2.5  Discussion 

We characterized the variability of P-receptor afferent responses to RAMs under a 

variety of stimulus conditions using a new measure of distance between spike trains. Our 

results provide insight into the relationship between the variance in the number of spikes 

and the mean spike count as a measure of variability across repeated trials. They also 

shed light on the impact of variability on the processing of electric field amplitude 

modulations by the electrosensory system in weakly electric fish.  

 

2.5.1  Quantification of spike train variability 

 Spike train variability has often been quantified by computing the spike count 

variance as a function of the mean spike count in fixed windows of length T (for a 

review, see (Teich et al., 1996)). The benchmark stochastic process to which these values 

are compared is the Poisson process for which the generation of independent spikes 

yields a variance equal to the mean. The spike count variance provides an appropriate 

measure of neural noise in tasks where the mean spike count (averaged over T) is used to 
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assess a neuron’s ability to discriminate between two alternatives (for reviews, see 

(Gabbiani and Koch, 1998); (Parker and Newsome, 1998)). For long time intervals 

( 1≥T  s) variances larger than mean spike counts are often observed, indicative of 

positive long-term correlations in the spike trains (Teich et al., 1996). Such time windows 

are, however, inadequate to assess the ability of neurons to convey information about 

time-varying stimuli by rapid changes in instantaneous firing rate.  

 Recently, the spike count variance has also been used as a measure of variability 

at short time scales ( 300≤T  ms; (Berry et al., 1997); (van Steveninck et al., 1997); 

(Warzecha et al., 1998)). In our data, minimal non-zero values for the spike count 

variance were observed in windows smaller than 100 ms, as has been reported in these 

studies. However, they were not correlated with the reliability of spike occurrence times 

assessed from raster plots (such as stimulus-dependent phase-locking to the sinusoidal 

carrier signal) or with objective measures of the information encoded in the time-varying 

firing rate like the coding fraction (Figure 4-6). Therefore, reliable spike timing is not a 

necessary prerequisite for minimum non-zero variance curves: they may be observed 

independently of whether spike timing is reproducible at the millisecond level from trial 

to trial or not. Such curves should therefore be interpreted with caution (see also 

(Warzecha and Egelhaaf, 1999), footnote 21; (Barberini et al., In Press)). One effect 

leading to variances smaller than the mean over short time windows is the presence of a 

refractory period that introduces negative correlations between spike occurrence times. 

The addition of a refractory period to a Poisson stochastic process has recently been 

shown to be sufficient to account for the variability observed in retinal ganglion cells 

under dynamic stimulation (Berry and Meister, 1998). Similar observations were made in 
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other preparations (for a review, see (Johnson, 1996)). Figure 7B shows that a simple 

Poisson process with a 2 ms refractory period driven by the stimulus did not reproduce 

the spike train variability of P-receptor afferents. A comparison of variance vs. mean 

spike count with theoretical results (Vannucci and Teich, 1981) suggests that the 

regularizing effect of the refractory period is not sufficient to account entirely for the low 

variability observed in our data. In addition to the refractory period, the generation of 

spikes in P-receptor afferents appears to be governed by biophysical mechanisms that 

exhibit intermediate levels of variability lying between those of Poisson and perfect 

integrate-and-fire models and corresponding to the factors n=3-10 of our gamma-models .   

 Because of their mathematical definition and properties, the distances )(qDn  and 

the average timing jitter jittert  are well suited to characterize the reproducibility of spike 

occurrence times from one trial to the next. These measures are equally effective with 

deterministic or random stimuli and are applicable in cases, such as here, where simpler 

measures like the timing precision or reliability cannot be used (see Figure 4; (Bair and 

Koch, 1996); (Berry et al., 1997)). By definition, the average jitter jittert  is a measure that 

automatically incorporates possible differences in spike number between two spike trains. 

For example, since on average 23% of the spikes had to be added or deleted to transform 

one spike train to a second one in our data set (see Results, Quantification of response 

variability, last paragraph), the average time interval by which the remaining spikes were 

moved was actually smaller by 15% than that reported in Figure 8. This may be seen 

from equations 3 and 4: if αn  and/or βn  are different from zero, the parenthesis on the 

right hand side of equation 4 will be smaller than one (= 0.85 in the present case), 

implying that jittert = 2/11 q  is larger than the average time interval given by the left hand 
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side of equation 4. The additional 15% increase in jittert  converts the added or deleted 

spikes into an effective time jitter equivalent.  

 Our use of spike time distances is different from the one originally introduced by 

Victor and Purpura (1996, 1997). These authors employed spike train distances to assess 

the information conveyed by stimulus-dependent clustering of spike trains from neurons 

of the monkey visual cortex. In the present study, spike distances were used only to 

assess the variability across identical trials; the performance at conveying stimulus-

dependent information was monitored with a second, independent measure, the coding 

fraction. 

 

2.5.2  Variability under various stimulus conditions 

 The results illustrated in Figs. 9-12 show that the timing precision of P-receptor 

afferent spikes increases with the cut-off frequency of the stimulus and, to a lesser extent, 

with the contrast of the RAMs. These results are consistent with observations made in 

other preparations reporting that fast transients are likely to increase the precision of 

spike occurrence times (Mechler et al., 1998, Berry et al., 1997, Warzecha et al., 1998). 

Similarly, our findings that spike trains can be more reproducible at low than at high 

firing rates (see Figure 4) is consistent with earlier observations (Berry et al., 1997, van 

Steveninck et al., 1997, Warzecha and Egelhaaf, 1999). In contrast, no significant 

differences in reliability were observed for RAM or SAM stimuli. Under the assumption 

that the RAMs employed here are closer to natural stimuli than SAMs (van Steveninck et 

al., 1997), our results do not support the idea that spike timing is more reliable under 

natural stimulation (Warzecha and Egelhaaf, 1999). Behavioral experiments show that 
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Eigenmannia is able to perform remarkably precise jamming avoidance behaviors under 

artificial stimulation (for a review, see (Kawasaki, 1997)). Accordingly, the reliability of 

spike timing recorded in the time-coding pathway is very precise under such conditions. 

In contrast to the amplitude-coding pathway, high reliability in the time-coding pathway 

is necessary for the jamming avoidance response. 

 

2.5.3  Variability and robustness of encoding 

 Our results show that the average jitter in the timing of P-receptor afferent spikes 

jittert , is in most cases below 4 ms. On the other hand, the robustness of encoding to spike 

time jitter yields values of 50
jitterσ  well above 4 ms for most of the behaviorally relevant 

range of stimulus cut-off frequencies (see Table 1). Even at high stimulus cut-off 

frequencies (e.g., 60=cf Hz), a jitter of 4 ms leads to a relative decrease in coding 

fraction of at most 18% (see Table 1: 1150 =jitterσ  ms implies that 0.82ms) 4( =nγ ). A 

similar observation is valid for spike additions and deletions. Therefore, the jitter 

observed in P-receptor afferents is in a temporal range that does not significantly affect 

the information transmitted by single spike trains for most units and stimulus conditions. 

On the other hand, a small amount of spike time jitter is beneficial to improve the 

stimulus estimate obtained from several independent spike trains by averaging.  We 

verified this by computing estimates of the stimulus from r = 2-10 spike trains (recorded 

successively from one neuron) simultaneously (Kreiman et al., 1998, Kreiman et al., 

2000b). The coding fraction increased when additional spike trains were included and 

started to saturate for r = 6-7 spike trains. This was evaluated by extending the Wiener-



Gabriel Kreiman  Thesis - Chapter 2   

 

69 

Kolmogorov filtering procedure to allow for a separate filter for each spike train (see 

equations in Chapter 3) and also by computing a spike density function (SDF) from the 

successively recorded spike trains. An example of the improvement in coding fraction 

upon adding successive spike trains to estimate the SDF is shown in Figure 2-16. Figure 

2-16a illustrates a short segment of the reconstructed stimulus from a single repetition. 

The reconstruction is quite accurate and yields a coding fraction of approximately 0.6. 

Upon computing the SDF from the 10 available repetitions of the identical stimulus, the 

estimated stimulus becomes almost undistinguishable from the actual one (Figure 2-16b) 

and yields a coding fraction reaching almost 0.9. It is interesting to observe that the 

coding fraction seems to saturate after approximately 6 spike trains. Thus, our results 

suggest that the spike timing jitter of P-receptor afferents lies in a range for which the 

information transmitted by single units (when assessed by linear estimation) is not 

degraded (for the range of behaviorally relevant stimulus cut-off frequencies considered 

here) but which still allows for improvement by averaging over a small number of 

afferents. Additional experiments recording simultaneously from several P-receptor 

afferents under repeated presentations of the same RAMs are needed to confirm this 

result. 

 

2.5.4  Variability and the processing of amplitude modulations in the 

ELL 

At the next stage of the amplitude-coding pathway, the information carried by P-

receptor afferent spike trains is processed by pyramidal cells of the electrosensory lateral 

line lobe (ELL). These neurons represent the output elements of the amplitude pathway 
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and project to various higher order brain structures specialized in the processing of 

electrosensory information. There are two types of pyramidal cells, E- and I-type, which 

receive direct excitatory input and indirect input via inhibitory interneurons, respectively. 

At least two transformations have been identified in the representation of amplitude 

modulations between the afferent input and the pyramidal cell output to the ELL: 1) the 

detection threshold of pyramidal cells for amplitude modulations appears considerably 

lower than the one of P-receptor afferents (Bastian, 1981) and 2) E- and I-type pyramidal 

cells appear less sensitive to the detailed time-course of amplitude modulations than P-

receptor afferents and seem to extract the occurrence of upstrokes and downstrokes in 

amplitude modulations, respectively (Metzner et al., 1998). Both these transformations 

are likely to play a role in the generation of electrolocation and electrocommunication 

behaviors. In particular, understanding the origin and mechanisms of increased sensitivity 

of pyramidal cells might contribute to explain jamming avoidance responses to extremely 

weak amplitude modulations and the detection of small preys using the electric sense 

(Kawasaki, 1997, Nelson and Maciver, 1999).  

Some sort of averaging operation across several afferent fibers converging onto a 

pyramidal cell is likely to contribute to this increased sensitivity (Bastian, 1981), as 

discussed in the previous section. One biophysical mechanism specifically proposed to 

enhance the sensitivity of E-type pyramidal cells to upstrokes in the amplitude 

modulation wave-form is coincidence detection (Berman and Maler, 1999): in slices of 

the ELL of Apteronotus, the stimulation of afferents in the deep fiber layer produces 

compound post-synaptic potentials consisting of an initial, fast-rising excitatory post-

synaptic potential followed by an inhibitory post-synaptic potential which limits the time-
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window of integration to less than 10 ms and could therefore act as a high-pass filter for 

coincident spikes occurring within 1-2 EOD cycles of each other (Berman and Maler, 

1998; see Softky, 1995 for a similar theoretical result). Our experimental results show 

that under repeated RAM stimulation more than 77% of P-receptor afferent spikes will on 

average occur within 1-2 EOD cycles of each other in response to the same amplitude 

modulation (Figure 8B). Thus, within the range of stimulus parameters investigated in 

this study, spike trains of P-receptor afferents appear indeed able to provide the 

information necessary for such coincidence detection operations.  

  

2.5.5  Encoding of biological signals and analog to digital conversion 

Here we have discussed how a biological system has evolved to encode a time-varying 

signal in the spike trains of neurons in the sensory periphery. The variations in the 

electric field amplitude can be seen as an analog signal to be encoded by the digital spike 

trains (given by the presence or absence of a spike at a given time). The problem of 

encoding an analog signal in a digital format is a widely important one in signal 

processing. According to the sampling theorem, a limited number of samples (given by 

the Nyquist frequency) is sufficient to accurately encode a band-limited signal without 

any information loss provided that we can store the actual value of the analog signal 

(Oppenheim et al., 1997). When the data is digitized, there is a potential for loss of 

information. One possible solution to this is to use many bits to encode each sampled 

value (in the limit when the number of bits goes to infinity, the sampling theorem 

applies.) But a binary processor can only encode the signal using a 0/1 value in each 

sample. The key to this is oversampling, that is, sampling at a much higher frequency 
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than the Nyquist limit. Oversampled Σ∆ analog-to-digital converters can accurately 

encode the incoming signal and are widely used in technological applications (Aziz et al., 

1996, Wong and Gray, 1990, Gray, 1995). Fabrizio Gabbiani noted the close relationship 

between oversampled Σ∆ converters and many current models of neuronal processing 

(Gabbiani and Metzner, 1999). A schematic diagram indicating the signal processing 

steps in an oversampled Σ∆ analog to digital converter is shown in Figure 2-17. A clock 

pulse regulates the time of generation of pulses, effectively sampling the input at a 

frequency several times higher than the Nyquist value. Pulses are generated whenever the 

integrated analog signal crosses a specified threshold. So far this is identical to the 

process in an integrate-and-fire neuronal model (Koch, 1999). When a pulse is generated 

the voltage is subtracted from the signal in the next integration step. This is slightly 

different from the neuronal model where, after a spike, the voltage is typically reset to the 

membrane voltage (normally set at zero). Another important difference is that a time 

period is typically reserved in the neuronal model after a spike where no pulses can be 

generated to account for the absolute refractory period. The model that we have presented 

in this Chapter is based on the integrate-and-fire model with some modifications to fit the 

transfer properties of P-receptor afferents and its variability (see Figure 2-3 and Section 

2.3.6). Engineers therefore seem to have independently designed a method to encode 

analog signals in a digital format that strongly resembles the processing performed in the 

encoding of environmental time-varying signals in the sensory nervous system. 
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2.6  Tables 

 

fc (Hz) 5 10 20 40 60 88 

N 58 38 29 21 38 9 

50
addp  (%) 72 (7) 33 (3) 37 (5) 37 (5) 37 (4) 36 (8) 

50
delp  (%) 91 (10) 42 (3) 39 (5) 42 (5) 40 (5) 40 (9) 

50
jitterσ  (ms) 123 (9) 23 (2) 16 (1) 12 (1) 11 (1) 6 (0.5) 

 

Table 2-1: Robustness to spike time jittering, and random spike additions or deletions.  

Robustness is reported as the amount of noise required for the coding fraction to drop by 

50% of its original value ( 50
addp , 50

delp  and 50
jitterσ ). These values were obtained from a 

linear interpolation or extrapolation of the normalized coding fraction as a function of the 

noise level (see Methods and inset of Figure 13). The mean values of 50
addp , 50

delp  and 

50
jitterσ  are reported together with standard errors (in parenthesis). Values across different 

stimulus contrasts were averaged in this table. N corresponds to the number of 

experiments pooled.  
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2.7  Figure legends 

 

Figure 2-1: Computation of spike train distances 

The distance between two spike trains was obtained as the minimum cost to convert one 

spike train into the second one using 3 elementary steps. A: The minimum cost path 

transforming spike train 1 into spike train 8 is illustrated (for a fixed value of q). Each 

intermediate spike train 2-7 corresponds to one elementary step: moving (from 2 to 3), 

adding (from 6 to 7) or deleting (from 1 to 2) a single spike. The cost of each elementary 

step is indicated on the right. Note that the cost of moving a spike is proportional to the 

distance that it is moved along the time axis. B: There are two alternatives to go from 

spike train 2 to spike train 3 in A. (i) Delete the last spike and add a new one or, (ii), 

move the last spike to its new desired position. The latter alternative is less expensive for 

the particular value of q illustrated here since 21 <∆⋅ tq  (the dashed time interval of 

length 2/q corresponds to the maximum displacement for which it is less expensive to 

move a spike).  

 

Figure 2-2: Quantification of stimulus encoding and of its robustness to spike time jittering.  

A: An estimate, sest(t), of the stimulus s(t) was obtained from the spike train by 

convolving it with a Wiener-Kolmogorov filter (see main text for details). The accuracy 

of stimulus encoding by the spike train was assessed by computing the mean square error 

(ε2) between the stimulus and the estimate. The brackets, ⋅ , denote averaging over time. 
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B: Temporal jitter was introduced by adding to each spike time a random variable taken 

from a zero-mean gaussian distribution with standard deviation σjitter. The modified spike 

trains are shown for increasing values of σjitter (from top to bottom) on the left. From each 

distorted spike train, a new WK-filter and a new estimate, sest(t), of the stimulus were 

computed (right). Robustness was quantified by computing the rate at which the fraction 

of the stimulus encoded decreased with σjitter (see inset to Figure 2-13). A similar 

procedure was used when spikes were randomly added or deleted from the spike trains. 

 

Figure 2-3: Comparison of P-receptor afferent spike trains to integrate-and-fire models.  

A: The variability of experimental spike trains was compared to the variability of perfect 

integrate-and-fire (I&F) neurons with a random threshold. In this model, the sum of the 

stimulus and a constant bias term (corresponding to the spontaneous activity) is 

integrated and a spike is emitted each time that the threshold (Vthresh) is reached. After 

each spike, a refractory period of 2 ms is imposed and a new threshold value is chosen 

from a gamma probability distribution. B: To model the linear transfer properties of P-

receptor afferent spike trains, the amplitude modulation was first linearly filtered, with a 

high-pass filter fitted from the responses of P-receptor afferent to SAMs (see Figure 2-

14) and then delayed. The output z(t) was clipped and injected into a perfect integrate-

and-fire neuron with random threshold and refractory period equal to 2 ms.  

 

Figure 2-4: P-receptor afferent responses to RAMs exhibit a broad range of variability.  

A portion of the stimulus presented to each P-receptor afferent is shown on top. Each 

raster of spikes (9 per panel, 500 ms long) illustrates the response of the same P-receptor 
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afferent to a single presentation of the stimulus. The left column (A, C, E, G) illustrates 

responses for fixed stimulus contrast (σ=250 mV) of a neuron with low mean firing rate 

(A and C: mfr=65 ± 2 spike/s) and a different neuron with high firing rate (E, G: mfr=137 

± 1 spike/s) to stimuli with low and high cut-off frequencies (A, E: fc=5 Hz; C, G: fc=60 

Hz). The right column (B, D, F, H) illustrates the responses for a fixed cut-off frequency 

(fc=60 Hz) of a neuron with low firing rate (B, D: mfr=62 ± 1 spike/s) and a different 

neuron with high firing rate (F, H: mfr=151 ± 1 spike/s) to stimuli with low and high 

contrasts (B, F: σ=100 mV; D, H: σ=275 mV). 

 

Figure 2-5: Scalloping of the variance vs. mean spike count relation is not a predictor of spike 

timing variability.  

Plots of spike count variance vs. mean spike count in windows T of 10, 50 and 100 ms. 

A-D were obtained in a neuron firing at low rate (mfr = 65 ±  2 spike/s), for fixed 

contrast ( 250=σ  mV) and various cut-off frequencies cf  (as indicated on the top of 

each panel; 5A is the same experiment as in Figure 4A). E-H were obtained in a different 

neuron with high firing rate (mfr = 151 ±  1 spike/s) for the same contrast and cut-off 

frequency values. Note that the variance vs. mean spike count curves follow the 

theoretical minimum curves in A-D in spite of the fact that reliable spike timing was only 

observed at high values of cf  (see Figure 4A through D). At higher firing rates (E-H) 

scalloping is still observed in some cases but is masked by a general increase in spike 

count variability. The 3 clusters evident in G, H and to a lesser extent in F, correspond to 

the 3 window sizes (if T varies continuously between 10 and 100 ms no clusters are 

observed). In all panels mean equal to variance is indicated by a straight dashed line. 
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Figure 2-6: Scalloping of the variance vs. mean spike count relation measured across trials is 

preserved even after large shifts in the timing of individual spike trains.  

A: The top 10 rasters represent the response of a P-receptor afferent (mfr = 65 ± 2 

spike/s; same experiment as in FIGS. 4A and 5A) to repeated presentations of a RAM 

stimulus ( 250=σ  mV, 10=cf  Hz). The corresponding spike count variance vs. mean 

spike count plot is scalloped as illustrated below. B: The spike trains were successively 

shifted by 10 ms as illustrated on top (see main text) and the variance vs. mean spike 

count relations was recomputed. Note that the scalloping remained present although the 

variance increased as compared to A. C, D: Same stimulation and analysis procedure as 

in A and B for an I&F neuron model with gamma order 10 (mfr = 81 spike/s; see main 

text and Figure 7A for a more detailed description of the model).  

 

Figure 2-7: Spike train distances of P-receptor afferents match those of gamma integrate-and-

fire neurons with order n in the 3-10 range.  

A: The spike trains of a P-receptor afferent (top 10 rasters, labeled P-unit; same 

experiment as in Figure 5B) recorded in response to a RAM stimulus (s(t), shown on top) 

are illustrated together with those elicited by the same stimulus in two I&F models with 

random threshold (labeled n=1 and 10; see Figure 3A). The n=1 model corresponds to 

Poisson spike occurrence times and matches poorly the observed variability while the 

n=10 model matches it quite well. B: Plot of the mean distance )(qDn  between two spike 

trains in response to s(t) for the P-receptor afferent and I&F models shown in A. The 

close match between P-unit and n=10 integrate-and-fire distances confirms quantitatively 
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the visual observation in A (standard errors are too small to be visible, 90=pairsn ). C: 

Plot of the difference in mean distances between n=1 and n=10 models (mean ±  sem, 

90=pairsn ) as a function of q. 
10order 

gammaPoisson )()()( qDqDqD nnn −=∆ , where Poisson)(qDn  

corresponds to the filled circles in B and  
10order 

gamma)(qDn to the squares. Note that the largest 

difference in distances is observed in the range of q values between 0.05 and 0.25 ms-1. In 

B and C the value q = 20 ms-1 was not plotted because it would lie off-scale (see main 

text).  

 

Figure 2-8: Distribution of mean spike time jitter in 69 P-receptor afferents (corresponding to 

508 different RAM stimulations).  

A: Distribution of the average temporal jitter (bin size: 0.4 ms). For display purposes, the 

probability distribution is shown only up to 10 ms; 8.2% of the cumulative distributions 

lied between 10 ms and the maximal value observed (23.2 ms). B: Same distribution of 

jittert  in units of EOD cycles (2 bins per EOD cycle). In each panel, the arrows indicate 

the means of the distributions.   

 

Figure 2-9: The timing jitter decreases with stimulus cut-off frequency at low but not at high 

firing rates.  

A: Plot of the mean jitter in spike occurrence times as a function of stimulus frequency 

for a neuron firing at low rate (mfr = 65 spike/s, 250=σ  mV, 438EOD =f  Hz; 

percentage of spikes moved: 85 ±  3%). B: The slope of timing jitter vs. cut-off 
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frequency plots (see A) is negative at low firing rates but not at high firing rates. The two 

distributions are significantly different (Wilcoxon rank-sum test, p<0.0001). 

 

Figure 2-10: Increase in timing precision with stimulus cut-off frequency at low but not at high 

firing rate is observed across a broad range of spike moving costs.  

A: Mean distance between two spike trains as a function of cut-off frequency for a value 

of q=0.25 ms-1 (1/q = 4 ms) in a low firing rate neuron (mfr = 65 spike/s; 250=σ  mV). 

This represents a particularly clear example. B: Average slopes (mean ±  sem) of 

distance ( )(qDn ) vs. cut-off frequency ( cf ) relations (computed as in A) at low (circles, 

average of n=21 neurons) and high (squares, average over n=12 neurons) firing rates 

plotted as a function of q. C: Average correlation coefficient (mean ±  sem) of distance 

vs. cut-off frequency as a function of q (computed as in A).   

 

Figure 2-11: The timing jitter decreases with increasing stimulus contrast at low but not at high 

firing rates.  

A: Plot of the mean jitter as a function of stimulus contrast for a neuron at low firing rate 

(mfr = 52 spike/s, 5=cf  Hz, 438EOD =f  Hz; percentage of spikes moved: 79 ±  4%). 

B: The slope of the timing jitter vs. stimulus contrast relation (see A) is negative at low 

firing rates (left, -0.030 ±  0.041) but not at high firing rates (right, 0). The two 

distributions are significantly different (Wilcoxon rank-sum test, p<0.001).  

 

Figure 2-12: Increase in timing precision as a function of stimulus contrast is observed at low but 

not at high firing rates across a broad range of spike moving costs.  
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A: Mean distance between two spike trains as a function of stimulus contrast for a value 

of q = 0.25 ms-1 in a low firing rate neuron (mfr = 52 spike/s, 5=cf  Hz, 438EOD =f  

Hz). This represents a particularly clear example. B: Average slopes (mean ±  sem) of 

distance ( )(qDn ) vs. stimulus contrast (σ ) relations (computed as in A) at low (circles, 

average over n = 23 neurons) and high (squares, average over n= 8 neurons) firing rates 

as a function of q. C: Average correlation coefficient (mean ±  sem) of distance vs. cut-

off frequency as a function of q (computed as in A and B).  

 

Figure 2-13: Robustness of RAM encoding decreases with stimulus bandwidth.  

Plot of the timing jitter (mean ±  sem) causing a 50% reduction in the coding fraction as a 

function of stimulus bandwidth. Averages were computed on n = 58, 38, 21, 22, 38 and 9 

stimulus conditions from low to high cf , respectively (the large error at 5=cf  Hz is due 

to extrapolation from shallow slopes, see Methods for the computation of 50
jitterσ ). 

 

Figure 2-14: Fit of linear transfer function properties of a P-receptor afferent by a first order 

high-pass filter.  

A: Plot of the mean instantaneous firing rate as a function of the normalized period 

fraction np  (
π2
s

n
tfp = , bin size: 1/20 of the period cycle) for 3 different sinusoidal 

amplitude modulations ( 1=sf , 20 and 100 Hz, respectively). The solid line represents 

the fit with equation 8 (see Methods; r2 is the correlation coefficient between the data and 

fit). B: Fits of the mean gain and phase ( ± std) obtained from A (see equation 7) with a 
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first order high-pass filter (same neuron as in A; fit parameters: aG  = 147 ±  9 spikes/s, 

cG = 20 ±  2 spikes/s, aτ = 1.2 ±  0.8 ms, 2.3freedom of deg./2 =χ ).  

 

Figure 2-15: Comparison of spike train distances and stimulus encoding properties of P-receptor 

afferents and model.  

A, E: Coding fraction (mean ±  sem) as a function of stimulus cut-off frequency for two 

different neurons with low and high firing rates respectively (circles) and models 

(squares; 250=σ  mV). C, G: Coding fraction as a function of stimulus contrast for the 

same two neurons ( 5=cf  Hz). B, F: Average spike train distances for the same stimuli 

as in A and E, respectively. D, H: Average spike train distances for the same stimuli as in 

B and G, respectively. Model parameters were set as follows. A-D: 17=aG  spikes/s, 

7=cG  spikes/s, 6=aτ  ms, 375EOD =f  Hz, 5base =r  spike/s, n=3, 80=thV  mV. E-H: 

165=aG  Hz, 34=cG  Hz, 2=aτ  ms, 575EOD =f  Hz, 65base =r  spike/s, n=3, 

130=thV  mV.  

 

Figure 2-16: Stimulus reconstruction from the spike density function 

Example of the reconstruction of the stimulus from the spike density function (SDF) 

computed over a variable number of repetitions. (a) Short segment showing the original 

RAM stimulus (dashed line) and the reconstruction (continuous line) from the SDF 

computed for a single repetition. (b) Same as in (a) but using 10 repetitions of the 

identical stimulus to estimate the SDF. (c) Change in coding fraction (see Chapter 1 for 

definition) as a function of the number of repetitions r used to compute the SDF. Each 
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value represents the average for all possible combination of r repetitions out of the n = 10 

available repetitions. The error bars (barely visible in several cases) correspond to the s.d. 

(for r = 1 there is only one possible combination.) 

 

Figure 2-17: Schematic of an oversampled ΣΣΣΣ∆∆∆∆ converter 

Schematic diagram indicating the signal processing steps in an oversampled Σ∆ analog to 

digital converter. A clock pulse regulates the time of generation of pulses. These are 

obtained after integrating the analog signal using a specified threshold. When a pulse is 

generated the voltage is subtracted from the signal in the next integration step. The clock 

pulse timing is much higher than what would be required to sample the incoming signal 

from the Nyquist frequency.  
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3 Stimulus encoding and feature extraction by multiple 

sensory neurons 

 

 

3.1  Overview 

 

Are correlated responses of nearby neurons within topographic sensory maps 

merely a sign of redundancy or do they carry additional information? To tackle this 

problem we recorded simultaneously from pairs of electrosensory pyramidal cells with 

overlapping receptive fields in the hindbrain of weakly electric fish. We found that: first, 

nearby pyramidal cells exhibit strong correlations, mainly due to time-locking of spikes 

to the stimulus. Second, stimulus estimation from simultaneous spike trains resulted in 

significant improvements over single spike trains, but was still inferior to single primary 

afferents. Third, in a feature-extraction task, coincident spikes of pyramidal cell pairs 

performed significantly better than isolated spikes and even bursts of single cells. 

Coincident spikes can thus be considered as “distributed bursts“. Our results suggest that 

stimulus-induced coincident activity can improve the extraction of behaviorally relevant 

features from the stimulus. At the time of writing this Thesis, the results of the current 

Chapter are in press in the Journal of Neuroscience (Krahe et al., 2002). 
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3.2  Introduction 

 

Different stimulus variables of complex sensory signals are mostly extracted in 

segregated sensory pathways, often within structures that each contain a more or less 

complete representation of the sensory epithelium. Such multiple sensory maps, which 

are commonly found in many vertebrate sensory systems, exhibit various physiological 

differences that are presumably correlated with their respective function in computing 

different stimulus features (see for example (Konishi, 1991, Konishi, 1993, Konishi, 

1995, Shumway, 1989b, Shumway, 1989a, Heiligenberg and Bastian, 1984, 

Heiligenberg, 1991, Maunsell, 1995). A defining characteristic of topographic sensory 

maps is that adjacent neurons process information about neighboring locations in the 

sensory environment (for review see (Kaas, 1997, Wandell, 1995, Allman, 1999, Allman 

and McGuinness, 1988, Kandel et al., 2000). Hence, the activity of nearby neurons is 

often correlated (see for example (Usrey and Reid, 1999, Laurent, 1996, Singer and Gray, 

1995). Do such neurons carry largely redundant information or can correlated activity 

itself be useful? So far, several investigations have addressed this question by studying 

stimulus encoding through the combined activity of multiple neurons, each of which 

quite faithfully followed the stimulus time course (see for example (Warland et al., 1997, 

Dan et al., 1998, Stanley et al., 1999, Nirenberg et al., 2001). Using pyramidal cells in the 

hindbrain of weakly electric fish as a model system, we considered cells that do not 

precisely follow the stimulus time course but rather appear specialized to extract stimulus 

features. 
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Previous studies of information encoding in the electrosensory system showed 

that single P-receptor afferents transmit up to 80% of the information on random 

amplitude modulations (RAMs) of the electric field (see Chapter 1 and (Wessel et al., 

1996, Gabbiani and Metzner, 1999) Single pyramidal cells, however, encode the stimulus 

time course only poorly. Instead, they reliably indicate the occurrence of upstrokes and 

downstrokes in stimulus amplitude by bursts of spikes (Gabbiani et al., 1996, Metzner et 

al., 1998). Extending this line of research to multiple pyramidal cells, we now asked three 

questions: first, is the detailed information on the stimulus time course, which is available 

from the primary afferent spike trains, indeed discarded at the level of the ELL, or can it 

still be read from the combined activity of groups of pyramidal cells? Second, how 

strongly correlated is the activity of pyramidal cells whose receptive fields overlap, and 

what is the source of this correlation? Third, can correlations between spike trains of 

multiple neurons enhance the extraction of stimulus features from the combined neuronal 

activity? 

To address these questions, we performed dual recordings in vivo from nearby 

pyramidal cells in the centromedial map (CM) of the ELL and verified the overlap of 

their receptive fields, while presenting RAMs of a mimic of the fish’s electric field. To 

characterize correlations between spike trains of simultaneously recorded neurons we 

applied cross-correlation analysis. Stimulus encoding and feature extraction were 

quantified using reconstruction techniques and methods derived from signal-detection 

theory, respectively (Metzner et al., 1998, Gabbiani et al., 1996, Rieke et al., 1997). 
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3.3  Methods 

 

All the data described in the current Chapter were recorded by the laborious and 

rigorous effort of Ruediger Krahe and Walter Metzner at the University of California at 

Riverside.  

 

3.3.1  Preparation and electrophysiology 

The methods for preparation of the fish for electrophysiology followed the 

guidelines described in Chapter 1. Initially, dual recordings from pyramidal cells were 

obtained using two separate borosilicate glass micropipettes filled with 3 M KCl. After 

recordings from 25 cell pairs we switched to Wood’s metal-filled glass micropipettes 

with platinated tips. These extracellular single-unit recordings proved to be much more 

stable, thus allowing us to determine whether the receptive fields of the two recorded 

cells overlapped (see Section 3.3.3.) 

Recordings for this study were restricted to pyramidal cell bodies within the 

centromedial segment (CM.) The layer of pyramidal cell bodies is easily identified using 

anatomical and physiological criteria (see (Metzner et al., 1998) The ELL is highly 

laminated and the somata of large pyramidal cells are situated in a central layer that 

extends dorso-ventrally over a distance of 200 µm. The CM layer can be identified easily 

by anatomical and physiological criteria. For instance, the center of the pyramidal cell 

layer is located ~ 200 µm dorsal to the spherical cell layer, which is only ~ 100 µm thick 

and physiologically very distinct. Spherical cells are innervated by T-receptor afferents 

and fire, in contrast to pyramidal cells, strictly phase locked to the ECOC mimic even at 
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the low stimulus amplitudes used in our study. This very reliable landmark permitted to 

limit data collection to the pyramidal cell layer. Data collection from within CM was 

verified by first physiologically mapping the border between the adjoining medial 

segment (low-frequency sensitive) and CM and then inserting electrodes laterally only 

within the adjacent 500 µm, which at this rostrocaudal level insures that penetrations do 

not reach the laterally adjoining centrolateral segment. Initially, recording sites were also 

verified histologically by setting small electrolytic lesions at the end of the experiment. 

 

3.3.2  Anatomy  

To measure the terminal spread of single P-receptor afferents in CM we 

iontophoretically injected Neurobiotin (2% in 1 M KCl; Vector Laboratories, 

Burlingame, CA) into the ganglion of the anterior lateral line nerve. After survival times 

between 7 and 14 hours the animals were euthanized with MS222 (tricaine-methane 

sulfonate; Sigma; pH 7) and perfused transcardially with saline followed by fixative (4% 

paraformaldehyde in 0.1 M phosphate buffer.) The brains were postfixed overnight, 

sectioned at 50 µm thickness, and then underwent a standard ABC (Vectastain Elite; 

Vector Laboratories) and DAB reaction (Metzner and Juranek, 1997a). Terminal-spread 

measurements were not corrected for shrinkage of tissue due to fixation. Axons which did 

not contact spherical cells were classified as belonging to P-receptor afferents (Maler et 

al., 1981, Maler, 1979, Carr et al., 1982, Heiligenberg and Dye, 1982). The nomenclature 

of the brain structures used for the light-microscopic analysis follows (Maler et al., 

1991). 
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3.3.3  Stimulation 

Stimuli were presented as described in Chapter 1 (see also (Kreiman et al., 

2000b). The parameter A0 (see Chapter 1) took values between 1 and 5 mV/cm measured 

at the pectoral fin and perpendicular to the body axis. The stimuli, s(t), had a flat power 

spectrum up to a fixed cutoff frequency (fc = 5, 10, 20 Hz; in some experiments cutoff 

frequencies of 40 or 60 Hz were also used.) The standard deviation (or contrast), σ, of the 

stimulus was 25% of the mean amplitude for all fc. For fc = 5 Hz, we additionally 

presented contrasts of 10, 15, 20, and 27.5% if time permitted. The stimuli were D/A-

converted (pyramidal cellI-MIO16E-4, National Instruments, Austin, TX) at a sampling 

rate of 5 kHz. Following lowpass-filtering (2 kHz; Wavetek Rockland Model 452, 

Wavetek, San Diego, CA), a manual attenuator (839 Attenuator, Kay Elemetrics, Lincoln 

Park, NJ) was used to adjust the final stimulus amplitude. The duration of the stimuli was 

15 s, which is shorter than the duration of the stimuli used in earlier studies on pyramidal 

cells (Gabbiani et al., 1996, Metzner et al., 1998). We therefore verified by cross-

validation that this optimized duration gave reliable results12. 

In order to test if the receptive fields of two simultaneously recorded pyramidal 

cells were overlapping, we positioned a local electrode (Shumway, 1989a) close to the 

skin of the animal (see Figure 4-1; distance < 1 mm), and accepted a pair of cells only as 

having overlapping receptive fields if both units gave robust responses to a sinusoidal 

amplitude modulation of 5 Hz presented via the local electrode. The mouth electrode 

                                                 
12 If the stimulus is too short, it is possible to overfit the data upon computing the Euclidian feature and 
probability of misclassification. We therefore compared the results of the estimation of pe with segments of 
15 second duration from data extracted randomly from the 30 seconds of recordings in the previous 
experiments (Metzner et al., 1998). It should also be noted that, in general, we used the same data to 
compute the Euclidian feature and pe. To verify that the degree of overfitting was small, we used a cross-
validation procedure (Fukunaga, 1990) by dividing the data in two sets, one used for "training" (computing 
the Euclidian feature) and the other one for "testing" (computing pe given the Euclidian feature.) 
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served as the reference. We accepted cells for recording and analysis only when, for the 

given stimulation site, they displayed center responses, that is they showed the same 

response type (E or I) as for stimulation with the global field. Response strength 

decreased dramatically within a few mm of the strongest center activity as reported 

previously (Shumway, 1989a). Recording time did not permit a detailed mapping of the 

extent of the receptive fields. 

 

3.3.4  Cross-correlations  

Let xA(n) and xB(n) represent two simultaneously recorded spike trains after 

binning, where x(n)=1 if and only if there is a spike in bin n (n=1,...,N where N is the 

total number of bins in the spike trains.) We computed the cross-correlograms between 

the two pyramical cell spike trains given by:  

BA

N

n
BAAB xxnxnxR o≡+= ∑

−

=

τ

ττ
1

)()()(      

 3.1 

The spike trains as well as τ were binned using bin sizes of 3, 6 and 9 ms. The statistical 

significance in departures from random coincident firing was assessed as described by 

(Palm et al., 1988, Aersten et al., 1989, Perkel et al., 1967). Repeated presentations of 

identical stimuli allowed us to compute the shuffle-correctors, where the cross-

correlograms were evaluated from successive, non-simultaneous repetitions, and 

estimated the degree of departure of the shuffle-corrected correlograms from the null 

hypothesis of independent firing (Palm et al., 1988, Aersten et al., 1989, Perkel et al., 



Gabriel Kreiman  Thesis - Chapter 3 

 

107 

1967, Brody, 1997). The raw cross-correlogram was then computed by averaging the 

correlograms in the individual repetitions, r (r = 1, ... , nrep): 

∑
=
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n
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1)( oτ         

 3.2 

This function evaluates the average correlated activity, including synchronous spikes as 

well as stimulus-induced correlations. The expected value of R as well as the degree of 

departures expected by chance can be easily evaluated (Perkel et al., 1967, Palm et al., 

1988). The stimulus-induced effects are typically subtracted in either of two similar ways 

by subtracting the shift predictor, K, or the shuffle corrector, D, given by: 
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where π(r) represents a permutation of the repetition order and PA, PB indicate the 

average activity of the units across the repetitions ( >=< )()( txtP r
AA ) and is typically 

referred to as the post stimulus time histogram or PSTH. It is possible to similarly define 

the variance in the neuronal response for each unit: 222 ))(()()( AAA xExEt −=σ . The 

shuffle-corrected cross-correlogram can be defined by: 

>−−=< )()( B
r
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r
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Note that KRPPxxV BA
r
B

r
A −>=−<−>=< o . Analogously, one can define 

VD=R-D. Assuming that different trials are independent, then E(V)=E(VD) (Brody, 1997). 
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If the two neurons are independent, then the expected value of V is zero. If there are 

departures from zero, how significant are they? Assuming that xA is independent of xB, 

independence between different trials, and independence in different bins within each 

trial, the variance in the null hypothesis of V is given by:  

)(1 222222
ABBABA

rep
V PP

n
ooo σσσσσ ++=       

 3.6 

Significance in departures from V=0 have typically been assessed then by comparing it to 

the standard deviation in the null hypothesis σV. One problem with this approach is the 

strong assumption of independence between different bins within the same repetition. We 

also performed an assumption-free assessment of significance by using a bootstrap 

procedure (deCharms and Merzenich, 1996).  

In order to assess the properties of the cross-correlograms, each cross-correlogram 

was fitted by a cubic spline with an upsampling factor of 10 (Dierckx, 1993). The width 

at half-height, area, and peak values were computed from this interpolated cross-

correlogram.  

 

3.3.5  Stimulus reconstruction 

We computed the extent to which the stimulus, s(t), could be linearly 

reconstructed from the multiple recorded spike trains (see Chapter 1 and (Wessel et al., 

1996, Metzner et al., 1998, Rieke et al., 1997, Bialek et al., 1991, Kreiman et al., 2000b). 

The method described in Chapter 1 was extended to multiple spike trains (Warland et al., 
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1997, Dan et al., 1998, Poor, 1994). The linear estimator )(ˆ ts can be obtained by 

convolving each spike train with a separate filter:  

∑
=

−=
N

n
nntts

0

)()()(ˆ XH        

 3.7  

where the matrix H contains as many filters (i.e. columns) as the number of recorded 

spike trains, while the matrix X represents the binned spike train of each neuron in a 

separate row after subtracting the mean firing rate for each neuron13. The filters are again 

chosen so as to minimize the mean square error, ε2, between the stimulus and its estimate. 

From the orthogonality condition, it follows that the filters must satisfy the Wiener-Hopf 

equation:  

∑
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n
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 3.8 

where k
Xs ℜ∈C is the cross-correlation between the spike trains and the stimulus and 

kxk
XX ℜ∈C  represents  the cross-correlation between the different spike trains (the 

diagonal terms correspond to the auto-correlograms.) Assuming wide-sense stationarity, 

the cross-correlations depend only on the time difference of the two parameters 
                                                 

13 The expanded form of the matrix X is given by: 
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( )(),( ltlt XsX −= CC s  and, similarly, )(),( lnln XXXX −= CC .) This yields a system of k 

equations in k unknowns; it is computationally easier to solve this system of linear 

equations in the frequency domain after Fourier transformation. The quality of the 

stimulus reconstruction was assessed by computing the coding fraction, γ (see definition 

in Chapter 1.)  

The order of the repetitions of each stimulus was randomized. Assuming 

independence between different trials and identical neurons, successive responses of the 

same unit to the same stimulus can be conceived to represent the firing of adjacent 

neurons14. In this light, we extrapolated our estimation of the stimulus by computing the 

coding fraction from several repetitions as discussed previously (see Chapter 2 and 

(Kreiman et al., 2000b). For this extrapolation, a separate filter was allowed for each 

repetition, effectively treating each response as a separate “unit”.  

 

3.3.6  Feature extraction  

In previous work, we computed the performance of isolated pyramidal-cell spike 

trains in extracting upstrokes and downstrokes of amplitude modulations (see Chapter 1 

and (Gabbiani et al., 1996, Metzner et al., 1998). Briefly, for any time interval, [t-∆t;t], 

let λt=1 if and only if there was a spike in the interval. Further, let us define the stimulus 

vectors preceding these time bins by st=[s(t-100∆t),…,s(t)]. We computed the mean 

stimulus before bins containing a spike (m1) and the mean stimulus before bins not 

containing a spike (m0.) The Euclidian classifier, f =m1-m0, was used to discriminate 
                                                 
14 This is analogous to the ergodic assumption in quantum mechanics where averages over time are 
replaced by averages over multiple systems at a fixed time. To what extent this constitutes a reasonable 
assumption in Neuroscience needs to be empirically explored. 
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stimulus vectors preceding spikes against stimulus vectors preceding no spikes. We 

performed a receiver-operating-characteristic analysis (Metzner et al., 1998, Green and 

Swets, 1966, Gabbiani and Koch, 1998) to quantitatively assess the performance of this 

classifier in predicting the occurrence of a spike. A spike was detected whenever the 

projection of the stimulus onto the Euclidian feature was larger than a certain threshold, 

θ. The probability of correct detection, PD, and the probability of false alarm, PFA, were 

obtained for each threshold by integrating the tails of the probability distributions: 

PD=P( fT.st>θ|λt=1)         

 3.9 

PFA=P( fT.st>θ|λt=0)   

where the superscript 'T' indicates the transpose of the vector. Performance in the feature 

extraction task was quantified by minimizing Perror=0.5 PFA+0.5 (1-PD) yielding the 

value defined as the probability of error, pE (Gabbiani et al., 1996, Metzner et al., 1998). 

If pE =0, the occurrence of the stimulus feature is perfectly predictable, whereas pE = 0.5 

indicates performance at chance level. 

Next, we considered the performance of spikes correlated between pairs of 

pyramidal cells. For that purpose, for a given time window w we separately considered 

those spikes fired by cell A which occured within ±w ms of spikes in cell B, xAw 

( }||../{ wttsxtxx BAAw ≤−∈∃∈= ττ .) Similarly, we considered those spikes in cell B 

that occured within w ms of spikes in cell A, xBw. We used the following values of w: 5, 

10, 20, 50 and 100 ms15. 

                                                 
15 The number of coincident spikes decreases sharply with w (see Figure 3-4.) We therefore did not use 
coincident time windows smaller than 5 ms. At the other extreme, a window of 100 ms included in most 
cases almost all spikes (see Figure 3-4c). The pe value depended on w. In general, a monotonically 
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Let Aw
tλ =1 if and only if there is a spike in xAw (i.e. coincident spike) in the 

interval [t-∆t;t] and Bw
tλ =1 if and only if there is a spike in xBw in the interval [t-∆t;t]. We 

then computed the conditional probability distributions for the projections of the stimulus 

segments preceding such coincident spikes or no spikes within these restricted spike 

trains onto the original Euclidian feature vectors for each cell: )1|( =Aw
tt

T
AP λsf .  and 

)1|( =Bw
tt

T
BP λsf . . The probability of correct detection and false alarm were computed by 

integration over the tails of these probability distributions (see also Chapter 1): 
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Note that we used the original feature vectors fA and fB. We did not recompute the feature 

vectors for the coincident spikes to avoid overfitting the data16. Following the same 

procedure described for the one-cell scenario, we computed the minimum probability of 

error for each cell and for each size of the coincidence window w: Aw
Ep  and Bw

Ep . 

A typical property of pyramidal cells is their tendency to fire spikes in short bursts 

(Gabbiani et al., 1996, Metzner et al., 1998, Bastian and Nguyenkim, 2001). The 

interspike-interval generally showed a bimodal distribution consisting of a sharp peak at 

short intervals and a broader peak at longer intervals (see Section 1.5.5 And Figure 1-5). 

                                                                                                                                                 
increasing function was observed (with a smaller value of pe for shorter values of  ω but in a few cases the 
minimum pe was obtained for ω=10 ms (see Figure 3-5). 
16 This is the same as the criterion used to evaluate the performance of bursts of spikes (see Chapter 1 and 
(Metzner et al., 1998, Gabbiani et al., 1996)). Estimating the Euclidian feature can be seen as a form of 
training the feature detector while estimating pe would correspond to testing the performance of the feature 
detector. Using the same data for training and testing can lead to small errors due to overfitting (Bishop, 
1995, Fukunaga, 1990). When computing the value of pe for all spikes we verified by cross-validation that 
the overfitting error was smaller than 2%. This error increases for smaller number of spikes. 
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The separation between these two peaks was used to determine the maximum interspike 

interval for spikes within a burst (Gabbiani et al., 1996, Metzner et al., 1998). This 

allowed us to assess the feature extraction performance separately for isolated spikes and 

bursts of spikes. Furthermore, we computed the proportion of spikes that occurred in 

bursts and were synchronous with bursts from the other cell. 

 

3.4  Results 

 

We performed simultaneous extracellular recordings from 39 pairs of pyramidal 

cells in the ELL, of which 29 were used for data analysis17. Thirteen pairs were 

composed of opposite types of pyramidal cells (one E- and one I-unit) and 16 pairs were 

of the same type (7 E-E pairs, 9 I-I pairs.) For 11 pairs we confirmed that their receptive 

fields overlapped (4 E-E, 3 I-I, 4 E-I pairs; see Section 3.3.3 and Figure 4-1.) For the 

remaining pyramidal cell pairs we positioned the tips of the two recording electrodes in 

the same way but did not verify the receptive-field overlap because of the difficulty in 

holding the recordings long enough in order to both map the extent of the receptive fields 

and perform the experiments under RAM stimulation. Since cross-correlation analysis 

(see next paragraph) yielded no differences between the two data sets, they were pooled 

for all following analyses. The distribution of the spontaneous firing rates of the 

pyramidal cells that we have studied in the current Chapter is shown in Figure 3-8. 

 

                                                 
17 The remaining cell pairs were discarded from analysis because either the recordings were poor quality 
and unstable or the number of stable experimental conditions was only one.  
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3.4.1  Characteristics of correlated activity in ELL pyramidal cells 

The spiking activity of pairs of pyramidal cells of the same type (E-E or I-I) was 

clearly correlated when driven by RAMs of the electric field surrounding the fish (Figure 

3-1a.) To quantitatively evaluate the degree of coincident firing, we computed the cross-

correlograms of the activity of all pairs recorded simultaneously. For pairs of pyramidal 

cells of the same type, the cross-correlogram showed a strong positive peak (Figure 3-

1b.) In this example more than 50% of the spikes produced by these two I-units coincided 

within a time window of ±5 ms18. This peak was much stronger than would be expected 

by random coincidences from homogeneous Poisson processes (horizontal dashed line in 

Figure 3-1b.) For pairs of pyramidal cells of opposite type (i.e. one E- and one I-unit), the 

cross-correlograms displayed a central trough instead of a peak; that is, the probability of 

one cell’s firing an action potential was reduced for a short time when the other cell fired 

(Figure 3-1c.) 

The maximum of the cross-correlogram of the I-I pair occurred at a time lag of 

6.3 ms (vertical arrow in Figure 3-1b), and the minimum of the opposite-type pair 

occurred at -0.2 ms (Figure 3-1c.) Both these values are well within the distribution of 

time lags found for our population of cell pairs (Figure 3-2a): the peaks occurred near a 

lag of zero ms, ranging from -33 to 55 ms (median 0.30 ms.)  Since the coincident 

spikes seemed to be due to the independent but time-related responses to changes in the 

stimulus, we hypothesized that the properties of the cross-correlograms would be 

correlated with the characteristics of the stimulus itself. We quantified the strength of the 

correlations for pairs of the same type by measuring the width at half-height and the peak 

                                                 
18 Note that the bin size for the cross-correlogram illustrated in Figure 3-1 was 3 ms. The value reported 
here was computed by integrating all coincident spikes within a time window of 5 ms. 
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value of the cross-correlograms. The peak and width of the correlograms varied 

depending on the pair of cells recorded from, but also on the stimulus bandwidth and 

contrast. Overall, the peaks in the raw cross-correlograms ranged from 0.5 to 19 

coincidences per second (Figure 3-2b), the width varied between 41 and 162 ms (Figure 

3-2c.) In 11 of the 16 cell pairs of the same type a strong increase in peak strength 

correlated with increasing bandwidth (average r2 = 0.79 ± 0.17), while one cell pair 

showed a decrease in the correlogram peak with bandwidth (r2=-0.56.) For the remaining 

4 pairs no clear change was observed (data not shown.) An example of the change in the 

strength of the correlogram with stimulus bandwidth is illustrated in Figure 3-10a. The 

stimulus bandwidth was also clearly correlated with the width of the correlograms (see 

Figure 3-10b.) For 10 cells pairs, the width decreased with increasing stimulus bandwidth 

(mean for r2 over the entire sample: -0.85 ± 0.09) indicating that for higher stimulus 

frequencies spike timing became more precise. For the remaining 6 cell pairs, no clear 

correlation was found between stimulus bandwidth and the width of the cross-

correlograms. The time at which the peak occurred did not correlate with bandwidth in 

any of the 16 cell pairs of the same type (Figure 3-10c.) 

To determine if the correlated activity was stimulus-induced or due to shared 

synaptic input to the simultaneously recorded cells, we computed the shuffle corrector, 

that is the cross-correlogram for spike trains that had not been recorded simultaneously 

but successively for consecutive presentations of the same stimulus (see Section 3.3.4.) 

After subtraction of the shuffle corrector the correlograms of most cell pairs studied were 

virtually flat (98% of cross-correlograms for the 95% confidence limits and 100% of 

cross-correlograms for 99% confidence limits; see examples in the insets in Figure 3-
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1b,c.) This result indicates that the observed correlations were almost entirely stimulus-

induced and it also suggests that there is probably a low level of divergence from P-

receptor afferent units to pyramidal cells (see Section 3.5.1 and Figure 3-9.) 

 

3.4.2  Encoding of the time course of RAMs 

Earlier studies using stimulus reconstruction techniques showed that individual P-

receptor afferents reliably transmit information on the detailed time course of RAMs of 

the electric field surrounding the fish (Wessel et al., 1996, Metzner et al., 1998, Kreiman 

et al., 2000b). A single spike train can encode up to 80% of the temporal modulations of a 

stimulus depending on the spectral properties and the contrast of the stimulus. For a 

stimulus with a bandwidth of 5 Hz and a contrast of 25%, the mean coding fraction for P-

receptor afferents was 0.46 (Kreiman et al., 2000b) (see Figure 3-3, left bar.) In contrast, 

and confirming earlier results, we found that single pyramidal cells performed only 

poorly at encoding the detailed time course of amplitude modulations, yielding coding 

fractions of 0.11 ± 0.01 for the same stimulus condition (Figure 3-3; see also (Gabbiani et 

al., 1996, Metzner et al., 1998) We then asked if the information on the detailed stimulus 

time course could be contained in the combined activity of groups of pyramidal cells. For 

this purpose, we applied a simple extension of the stimulus reconstruction algorithm used 

for single-cell spike trains (Rieke et al., 1997, Poor, 1994) to simultaneously recorded 

activities of pairs of pyramidal cells (Kreiman et al., 2000b, Warland et al., 1997, Dan et 

al., 1998); see also Section 3.3.5.) Indeed, the fraction of the stimulus encoded increased 

from an average of 0.11 for reconstructions from single-cell spike trains to 0.15 for 
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reconstructions based on the combined activity of E-E or I-I pairs (Figure 3-3.) Compared 

to single cells the coding fraction for cell pairs of opposite type (E-I) almost doubled. 

To determine if increasing the number of simultaneously decoded spike trains 

could capture more of the information about the amplitude modulations, we extrapolated 

our data on pyramidal cell pairs. Hence, we reconstructed the stimulus from up to 10 

successive responses of any given pair by effectively treating a single cell’s successive 

responses to the same stimulus as spike trains simultaneously recorded from different 

neurons. This assumption seemed justified because the average coding fraction for two 

successively recorded spike trains of single neurons was statistically indistinguishable 

from the coding fraction for two simultaneously recorded spike trains of same-type cell 

pairs (p > 0.1; 2-tailed t-test.) Increasing the number of spike trains of pyramidal cells of 

the same type up to a total of 10 spike trains increased the coding fraction on average up 

to 0.27 ± 0.12. Combining the responses of pyramidal cells of E- and I-type increased the 

encoding up to 0.36 ± 0.13. While these values represent an important gain over the 

single-neuron performance, they are, however, still at least 20% lower than those 

achieved by single P-receptor afferents (see Figure 3-3.) Furthermore, it is interesting to 

note that the gain in coding fraction from this extrapolation in pyramidal cells is smaller 

than the corresponding gain for P-receptor afferents (see Figure 2-16.) However, it should 

be emphasized, as noted in Section 3.3.5, that these extrapolations are subject to strong 

assumptions about the neuronal responses.  
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3.4.3  Feature extraction by multiple pyramidal cells 

Single pyramidal cells in the ELL have been shown to reliably transmit 

information about the occurrence of upstrokes and downstrokes in stimulus amplitude 

(Gabbiani et al., 1996, Metzner et al., 1998). Here, we studied how well the correlated 

activity of pairs of pyramidal cells driven by the same stimulus is able to transmit this 

information. 

For each individual unit of a pyramidal cell pair (composed of neuron A and B) 

we computed a feature vector, f, which predicted the occurrence or non-occurrence of a 

spike in this unit. As described previously (Gabbiani et al., 1996, Metzner et al., 1998), 

the typical feature for an I-unit was a strong downstroke in stimulus amplitude (Figure 3-

4a), for E-units it was a strong upstroke in amplitude. We then selected those spikes from 

the spike train of neuron A for which there was a coincident spike within a certain 

coincidence time window in neuron B (Figure 3-4b,c.) Interestingly, a large proportion of 

the coincident spikes occurred in bursts of spikes fired by the individual cells (63±15%, 

mean ± s.d. for a coincidence window of 5 ms; Figure 3-4c, white bars; burst spikes 

marked by thick lines in the raster plot in Figure 3-1a; for the definition of burst spikes 

see Chapter 1 and Section 3.3.6.) 

To quantify the reliability of coincident spikes indicating the occurrence of 

downstrokes in stimulus amplitude, we computed the probability of misclassification, pE, 

for coincident spikes. pE is the average of the probability that coincident spikes are 

produced without a downstroke occurring in stimulus amplitude (false alarms) and the 

probability that a downstroke fails to elicit spikes in both neurons (misses.) We found 

that the probability of misclassification decreased with decreasing size of the coincidence 
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time window (Figure 3-5a.) Restricting the analysis to spikes coinciding within a time 

window of ±5 ms improved the feature extraction performance with respect to all spikes 

by 22% and 21% for units A and B, respectively. In general, pE decreased monotonically 

with the size of the coincidence window. In most cases, the optimal window size was 5 

ms. In a few cases, however, the lowest values of pE were found for a window size of 10 

ms (see for example unit B in Figure 3-5a.) 

As reported previously (Gabbiani et al., 1996, Metzner et al., 1998), the feature 

extraction for single pyramidal cells improved significantly when only bursts of spikes 

were considered instead of isolated spikes or all spikes (Figure 3-5b.) Analyzing the 

coincident firing of pairs of pyramidal cells, we found that feature extraction improved 

even more: The minimum misclassification error for coincident spikes was significantly 

smaller than that achieved by bursts of spikes of either cell alone (p < 0.01; 2-tailed t-test; 

compare Figure 3-5a and b.) 

Our findings on feature extraction by single versus pairs of pyramidal cells are 

summarized in Figure 3-6 for all cell pairs analyzed. Feature extraction by the correlated 

activity of pairs of E-units and pairs of I-units was significantly improved compared to 

spike bursts fired by single cells of the respective cell types (p < 0.01 in both cases; 2-

tailed t-test.) The overall gain for coincident spikes versus spike bursts of single neurons 

reached values up to 54% with a mean and standard deviation of 10±16%. Compared to 

isolated spikes of single cells the gain was up to 58% (mean±s.d.= 29±10%.) Similar to 

findings for single pyramidal cells (Gabbiani et al., 1996, Metzner et al., 1998), pairs of I-

units performed better than pairs of E-units (p < 0.01.) None of the cross-correlation 

measures yielded any clue as to the origin of this difference. A possible reason may be 
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the difference in connectivity of E- and I-type pyramidal cells (Gabbiani et al., 1996, 

Metzner et al., 1998). The putative role of ovoid cells and the influence of the type of 

stimulation on this observation is discussed in further detail in Section 4.4. For opposite-

type pairs, feature extraction was close to chance performance (chance performance is 

given by pe = 0.5; rightmost two bars in Figure 3-6), which is not surprising considering 

that their responses were virtually anticorrelated (Figure 3-1c.) 

To determine if shared synaptic input from one or more P-receptor afferents to 

both pyramidal cells of a given pair had an effect on feature extraction, we also computed 

pE for coincident spikes after shuffling of trials. For same-type as well as opposite-type 

cell pairs, shuffling did not affect the probability of misclassification (Figure 3-6.) 

Therefore, we conclude that the gain in feature-extraction performance found for 

coincident spikes of same-type cell pairs was due to correlations induced by the stimulus.  

 

3.4.4  Terminal spread of single primary afferents 

The physiological finding that the correlations between simultaneously recorded 

pyramidal cell spike trains were mainly stimulus-induced suggests that there is only little 

shared input from P-receptor afferents to pyramidal cells, i.e. a low degree of afferent 

divergence. To obtain an anatomical estimate of the level of divergence of P-receptor 

afferents, we measured the spatial spread of Neurobiotin-labeled single-fiber terminals in 

CM. We only measured the terminal spread of cells which clearly did not make contact 

with the somata of spherical cells, thus excluding T-receptor afferents from the analysis 

(Maler et al., 1981, Maler, 1979, Carr et al., 1982, Heiligenberg and Dye, 1982). The 

average spread for 5 fibers was 76±14 µm along the rostrocaudal axis and 77±34 µm in 



Gabriel Kreiman  Thesis - Chapter 3 

 

121 

the mediolateral axis (Figure 3-7.) This is within the range of earlier estimates 

(Shumway, 1989b) of terminal spread for P-receptor afferents (rostrocaudal: 115 µm; 

mediolateral: 60 µm.) When relating this terminal spread to the area covered by the entire 

CM, the number of pyramidal cells contained in it, and the width of the basilar dendrite 

of E-units (Maler, 1979, Carr et al., 1982) (Shumway, 1989b), we estimate a divergence 

of 1 afferent fiber onto 3-8 pyramidal cells. 

 

3.5  Discussion 

 
The main result of the present study is that stimulus-induced correlated activity is 

not simply redundant but can indeed carry important information about stimulus features. 

Behaviorally relevant characteristics of an electrosensory “image” (i.e. up- and 

downstrokes in stimulus amplitude) can be extracted significantly more reliably from the 

coincident activity of a neuron pair than even from the best responses of single cells 

(Figure 3-6.) Coincidence time windows of 10 ms or smaller yielded the best results 

(Figure 3-5.) 

 

3.5.1  Source of correlated activity 

Several possibilities can be envisioned for the anatomical connectivity from P-

receptor afferents to pyramidal cells. I will discuss here the direct connections to E-type 

pyramidal cells but a similar discussion is valid for I-type pyramidal cells that receive 

input through interneurons. P-units may show a high degreee of divergence where a singe 

receptor afferent synapses onto a large number of E-type pyramidal cells (Figure 3-9a.) 
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Alternatively the degree of divergence could be small in which case a single P-afferent 

unit would send information to only one or a few pyramidal cells (Figure 3-9b.) It is 

generally assumed that strong synchronous interactions that subsist after subtracting the 

shuffle-corrector (see Section 3.3.4) between two cells can be caused by a common and 

strong input or by strong direct interaction between the two neurons. Thus, the distinction 

between these two possibilities of anatomical connectivity could have important 

consequences for the mechanism of information transmission. A single pyramidal cell 

could receive input from multiple P-receptor afferents (high convergence, Figure 3-9c) or 

from only a few P-afferents (low convergence, Figure 3-9d.) It should be noted that 

divergence does not imply convergence or viceversa. A single pyramidal cell could 

receive input from multiple P-afferents but each P-afferent could only contact very few 

pyramidal cells. In the case of pyramidal cells, another possible source of correlated 

firing is given by the important direct and indirect feedback connections from higher 

order neurons (see Figure 1-1 for a schematic diagram of the anatomy depicting the 

feedback pathways.) The direct and indirect pathways seem to show different levels of 

divergence in their projections to the electrolaterla line lobe (Heiligenberg, 1991, Berman 

and Maler, 1999, Maler et al., 1991). 

Correlated activity of neuronal ensembles can have several causes (for a recent 

review see (Usrey and Reid, 1999): first, cells may engage in coherent oscillations of 

large neuronal ensembles (Singer, 1999, Singer and Gray, 1995, Engel and Singer, 2001). 

In our sample, we could exclude this possibility since no oscillations were observed in 

the cross-correlograms (Figure 3-1b,c.) Second, it can be due to intrinsic connections 

between the cells of the ensemble as found, for example, in the retina of cat 
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(Mastronarde, 1989) and salamander (Brivanlou et al., 1998). In this case one would 

expect to see tight correlations on a millisecond time scale with the correlogram peaks 

being shifted away from zero and persisting in the shuffle-corrected cross-correlogram. 

Neither of these effects was observed in our sample. Third, correlated activity can be 

caused by divergent feedforward or feedback input. Shared feedback input seemed a 

likely source of correlated activity in ELL pyramidal cells considering the strong direct 

and topographical feedback that the apical dendrites of pyramidal cells receive from the 

nucleus praeeminentialis (Bratton and Bastian, 1990, Maler and Mugnaini, 1994) (for 

review see (Berman and Maler, 1999) Such an effect has been shown to play an 

important role for cortical feedback control of thalamic relay cells in the cat’s visual 

system (Sillito et al., 1994). However, the fact that the shuffle-corrected cross-

correlograms did not exhibit significant peaks (Figure 3-1b,c) made it unlikely that direct 

feedback increased the level of correlated activity under the stimulus conditions used in 

the current study. It also excluded that a large proportion of the feedforward input from 

P-receptor afferents was shared among neighboring pyramidal cells. This leaves the 

fourth potential source of correlated activity, the stimulus itself. Indeed, the cross-

correlation analysis suggested that the major source of correlated activity in our sample 

was the stimulus (Figure 3-1b,c.)  

According to our anatomical estimate for the spread of P-receptor afferents, an 

individual afferent fiber may diverge onto 3-8 pyramidal cells. To be meaningful, this 

level of divergence has to be compared with the total number of inputs converging onto 

pyramidal cells. It has been estimated that between 6 and 15 P-receptor afferents 

converge onto a single pyramidal cell (Carr et al., 1982, Shumway, 1989b, Bastian, 
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1981). Taking into account that pyramidal cells receive excitatory and inhibitory input 

from many other sources (intrinsic and commissural interneurons, extrinsic feedback 

circuits)(Berman and Maler, 1999), it seems reasonable to assume that the effect of a 

single P-receptor afferent spike on the joint-firing probability of two target pyramidal 

cells is weak. To be efficiently driven, pyramidal cells may need coincident input from 

two or more primary afferents. Coincidence detection by pyramidal cells has been 

proposed based on evidence of fast primary-afferent-evoked inhibition restricting the 

time window for temporal integration of excitatory afferent input to less than 10 ms 

(Berman and Maler, 1999). This restriction is matched by the temporal precision of P-

receptor afferent spike trains in response to electric-field amplitude modulations (3.5±3.9 

ms)(Kreiman et al., 2000b). The reliability of afferent firing may also explain why, in a 

geometrically homogeneous electric field, where all afferents were driven equally 

strongly, pairs of pyramidal cells showed strongly correlated activity without sharing 

much of their afferent input. 

In conclusion, even for pairs of pyramidal cells with overlapping receptive fields 

coincident activity seemed to be due to largely separate, but spatially overlapping, 

primary-afferent inputs driven by the same stimulus. 

 

3.5.2  Encoding of stimulus time course 

 

Stimulus reconstruction techniques are widely used to assess the transmission of 

information concerning the stimulus time course by spike trains (see for example (Bialek 

et al., 1991, Wessel et al., 1996, Rieke et al., 1997, Stanley et al., 1999, Machens et al., 
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2001, Nirenberg et al., 2001) In previous work, we showed that single pyramidal cells 

poorly encode the time course of random amplitude modulations compared with the 

performance of primary afferents, and that much of the information on the temporal 

modulations of stimulus amplitude is discarded in favor of an improved extraction of 

stimulus features (Figure 3-5) (Wessel et al., 1996, Gabbiani et al., 1996, Metzner et al., 

1998). We extended this approach to analyze whether the stimulus time course is 

preserved in the combined activity of groups of pyramidal cells. Indeed, we found a 

significant gain in the quality of stimulus reconstructions when the stimulus time course 

was estimated from simultaneous spike trains of pairs of neurons (Figure 3-5.) This gain 

was relatively small for pairs of the same type (E-E or I-I), and much larger for pairs of 

opposite type (E-I.) The fact that the coding fraction for opposite-type pairs was almost 

doubled compared to that for single cells indicates that E- and I-units encode different 

aspects of the stimulus independently of each other, that is upstrokes and downstrokes in 

amplitude, respectively.  

The separation of information flow into independent complementary channels is a 

feature of many sensory and motor systems (Metzner and Juranek, 1997b). Using 

information-theoretic measures of stimulus encoding, a doubling of information 

transmission has been demonstrated for pairs of sensory interneurons in the cricket cercal 

system coding for opposite directions of air movements (Theunissen et al., 1996), and for 

combinations of ON- and OFF-retinal ganglion cells in salamanders (Warland et al., 

1997). The latter study found only marginal improvements when reconstructing the 

stimulus from ever larger ensembles of ganglion cells of the same type, while the gain 

was much larger if spike trains from neurons of opposite response types were combined. 
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In order to assess the relationship between reconstruction quality and the size of the 

neuronal ensemble, we extrapolated decoding from pairs of the same and of opposite 

types using consecutively generated spike trains in response to multiple repetitions of the 

same stimulus. Even for ensemble sizes of up to 20 spike trains coding fractions 

remained significantly lower than those computed for single primary afferents (Figure 3-

3.) This contrasts with results from geniculate neurons in cat visual system where 

ensemble sizes of 12-16 relay cells were sufficient to satisfactorily reconstruct natural-

scene movies (that is the stimulus time course at a given pixel) (Stanley et al., 1999). We 

conclude that it is highly unlikely that the population of ELL-pyramidal cells preserves 

and transmits information on the detailed stimulus time course to the next stage of 

electrosensory processing. 

Recently, a negative correlation was found between spontaneous firing rates of 

pyramidal cells in the weakly electric fish, Apteronotus leptorhynchus, and their 

probability to produce bursts of spikes (Bastian and Nguyenkim, 2001). The authors 

suggested that pyramidal cells of low spontaneous activity and concomitantly high 

probability of burst firing may be well suited for feature extraction (see below), while 

cells of high spontaneous activity and low burst probability may be better suited for 

encoding stimulus details (Bastian and Nguyenkim, 2001) (for similar considerations of 

burst and tonic firing in the visual system, see e.g. (Guido et al., 1995, Reinagel et al., 

1999, Sherman, 2001) Although in our sample spontaneous activity varied over a similar 

range (0.4-61 spikes/s; mean: 18.2 spikes/s), we found only a very weak positive 

correlation between coding fraction and spontaneous activity (r2=0.24) and a weak 

negative correlation between the minimum misclassification error and spontaneous 
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activity (r2=-0.18.) Thus, our data do not support a separation of pyramidal cells into 

specialized populations. A possible cause for this difference could be that in the study of 

Bastian and Nguyenkim (Bastian and Nguyenkim, 2001) a different, though closely 

related species was used, and that firing rate and burst probability were determined for 

spontaneous and not for stimulus-driven activity. 

 

3.5.3  Extraction of stimulus features by “distributed bursts” 

 

As shown previously, spikes produced by pyramidal cells reliably indicate the 

presence or absence of specific stimulus features: upstrokes and downstrokes in the 

amplitude of the electric field (Gabbiani et al., 1996, Metzner et al., 1998). Action 

potentials occurring in short bursts perform significantly better than isolated spikes. Here, 

we showed that the reliability of feature extraction further increased when the analysis 

was based on spikes from a pair of neurons of the same type coinciding within a small 

time window of 5-10 ms (Figures 3-5 and 3-6.) If the electrosensory system uses some 

form of coincidence detection to analyze correlations between ELL-pyramidal cell spike 

trains, it can only occur at the next higher-order level of electrosensory processing, that 

is, the torus semicircularis of the midbrain (see Chapter 1, Figure 3-1 and (Heiligenberg, 

1991). A series of studies has described the temporal filtering properties of toral neurons 

for AMs of the electric field, (see for example (Rose and Fortune, 1999, Fortune and 

Rose, 2000), but so far none has directly addressed feature extraction at this level of 

processing or the effect of coincident input from ELL-pyramidal cells. 
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Bursts and synchronous activity by thalamic relay cells in the visual system have 

attracted much attention in recent years. It has been shown that geniculate cells can 

switch between two modes of firing, tonic and burst (for review see (Sherman, 2001) 

Since bursts as well as spikes generated in tonic mode encode visual information, it was 

suggested that bursts signal the detection of objects to the cortex while tonic firing may 

serve in the encoding of object details (Guido et al., 1995, Reinagel et al., 1999, Sherman, 

2001). Interestingly, both bursts of single cells and coincident spikes fired by two relay 

cells with overlapping receptive fields are able to efficiently drive layer IV simple cells 

(Alonso et al., 1996, Usrey et al., 2000, Usrey and Reid, 1999). Both mechanisms have 

been suggested to make information transmission to the cortex more reliable. In addition 

to just “getting the signal through” to the cortex, coincident activity may also contain 

improved spatial information. Enhanced spatial resolution has been demonstrated for the 

coincident activity of pairs of visual cortical cells in cat with overlapping receptive fields 

(Ghose et al., 1994), and has also been suggested for concerted firing patterns among 

salamander retinal ganglion cells (Meister, 1996, Meister et al., 1995). It has been shown 

for geniculate neurons in cat (Dan et al., 1998) and for retinal ganglion cells in 

salamander (Meister et al., 1995) that temporally correlated activity could even be used 

as an additional and channel of information flow to the cortex. Similarly, it is possible 

that correlated activity may improve spatial information in weakly electric fish, since the 

activity of two pyramidal cells with overlapping receptive fields will only then be 

correlated when both receptive fields are affected by the same stimulus. To quantify the 

gain in spatial information as well as in feature-extraction reliability, experiments are 
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needed involving objects being moved across the overlapping receptive fields of two 

simultaneously recorded pyramidal cells.  

The time scales determined for interspike intervals within bursts of single neurons 

were approximately 7-15 ms (Gabbiani et al., 1996, Metzner et al., 1998). The time scales 

estimated for the optimal coincidence time window for feature extraction were 

approximately 5-10 ms (see Figure 3-5). It is interesting to note that these values are 

remarkably similar. This suggests that integration of both burst-like spike patterns 

arriving on single neurons and coincident spikes on groups of pyramidal cells may 

contribute to the detection of stimulus features. Therefore, temporally correlated activity 

of groups of pyramidal cells may be considered to represent a form of “distributed 

bursts“. It has even been suggested that coincident bursts of spikes may constitute the 

“best neural code” used for synaptic transmission and information coding (Lisman, 

1997). Indeed, our data support this notion since a large percentage of the coincident 

spikes occurred in bursts (63±15%, mean ± s.d. for a coincidence window of ±5 ms; see 

Figure 3-4c.) Studying postsynaptic effects of pyramidal-cell spike patterns on their 

target neurons in the midbrain torus will help to elucidate the physiological significance 

of such distributed bursts.  
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3.6  Figure legends 

 

Figure 3-1 Correlated activity of simultaneously recorded pyramidal cells 

(a) Representative raster plot segments of the spike trains of 2 simultaneously recorded I-

units with overlapping receptive fields. The top trace shows the time course of the 

random amplitude modulation (cutoff frequency fc = 10 Hz, contrast 25%.) Action 

potentials occurring within a burst of spikes are indicated by a thick line. The same 

stimulus was repeated 5 times yielding 5 raster lines for each neuron. (b) Cross-

correlograms of the responses of the two I-units computed with a bin size of 3 ms. The x-

axis indicates the time lag between the coincident spikes. The y-axis shows the number of 

coincident spikes per second (that is, the number of coincidences in each 3 ms bin was 

normalized to indicate the coincidences/sec). The strong peak centered at 6.3 ms indicates 

that these two I-units fired coincident spikes within small time windows. The horizontal 

dashed line gives the expected value for two homogeneous Poisson neurons of the same 

firing rates as the recorded units firing independently. The peak and width (37 ms) of the 

responses are marked by vertical and horizontal arrows, respectively. Inset: the shuffle-

corrected cross-correlogram. The horizontal line at 0 indicates the expected value for 

independent responses and the dashed lines show the 2σ-confidence limits under this null 

hypothesis (see Methods.) Since the solid curve fell between these bounds, we conclude 

that the synchrony is mainly stimulus-induced. The average firing rates for the two units 

were 9.4 and 15.2 spikes/s, respectively. (c) Cross-correlogram of the responses of one E- 

and one I-unit. The central trough shows that these cells of opposing response type fired 

in anticorrelation. The minimum occurred at -0.2 ms, the width at half-height was 10 ms. 
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Inset: the shuffle-corrected cross-correlogram. The average firing rates for the two units 

were 17.3 and 12.3 spikes/s, respectively. 

 

Figure 3-2 Properties of the cross-correlograms for pairs of units of the same type  

For each neuronal pair, values for 5 stimulus contrasts are included (n=16; fc=5Hz.) (a) 

Distribution of the times at which the maximum occurred. Bin size = 5 ms. (b) 

Distribution of the maxima of the cross-correlograms. Bin size = 0.25 coincidences/s. 

The x-axis was cut at 5 coincidences/s for clarity; there were 3 values beyond the axis 

limit (at 7.2, 9.3, and 19.1 coincidences/s.) (c) Distribution of the widths at half-height of 

the peaks. Bin size = 25 ms. Arrows indicate mean values. 

 

Figure 3-3 Summarized results of stimulus estimation 

Summarized results of stimulus estimation from spike trains of P-receptor afferents, 

single pyramidal cells, and pairs of simultaneously recorded pyramidal cells of the same 

type (E-E and I-I) and of opposite type (E-I) (fc=5 Hz.) The accuracy of the information 

transmitted about the time course of a stimulus is characterized by the coding fraction. 

Error bars represent standard deviations. n: overall number of experimental conditions 

(contrasts) for all cells or cell pairs analyzed . Data for P-receptor afferents taken from 

(Kreiman et al., 2000b). 

 

Figure 3-4 Euclidian features and coincident spikes 

Euclidian features and coincident spikes for the pair of I-type pyramidal cells depicted in 

Figure 3-1. (a) Euclidian feature for each of the two cells. (b) Raster plot example 
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highlighting those spikes which occur synchronously within a time window of ±5 ms as 

thick bars. (c) The proportion of coincident spikes with respect to the total number of 

spikes for neuron A (top) and neuron B (bottom) is shown as black bars as a function of 

the size of the coincidence window. The percentage of spikes that occur in bursts and 

coincide are shown as white bars. The overall percentage of bursting spikes is indicated 

as a gray bar at right. 

 

Figure 3-5 Feature extraction for pyramidal cell pairs 

Feature extraction by the same pair of I-type pyramidal cells illustrated in Figure 3-1. (a) 

Minimum probability of misclassification, pE, by those spikes of neurons A and B, 

respectively, which had a coincident spike on the respective other neuron plotted against 

the size of the coincidence time window. pE is the average of two error probablities: in 

case of this I-unit pair, these are the probability that coincident spikes are fired even when 

there is no downstroke in stimulus amplitude (false alarms) and the probability that a 

downstroke occurs but fails to elicit coincident spikes (misses.) pE decreased with 

decreasing size of the coincidence time window, indicating that spikes coinciding within 

a time window of ±5 ms transmit the information on the occurrence of stimulus features 

more reliably than spikes of single neurons. Filled symbols: neuron A; open symbols: 

neuron B. (b) Single-neuron performance of unit A and B, respectively. 

 

Figure 3-6 Summary diagram of feature extraction performance by ELL pyramidal cells.  

From left to right, bars indicate the average pE for coincident spikes of E-E pairs and I-I 

pairs, for coincident spikes of E-E and I-I pairs after shuffling of trials, for spike bursts of 
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single E- and single I-units, for isolated spikes of single E-units and single I-units, and for 

coincident spikes of E-I pairs before and after shuffling of trials. Single I-units and pairs 

of I-units performed better than single E-units and pairs of E-units, respectively (p<0.5 

and p<0.01, respectively; 2-tailed t- test.) Pairs of cells of the same type performed better 

than bursts of spikes of single pyramidal cells (p<0.01 for both, E- and I-type neurons), 

which, in turn, performed better than isolated spikes fired by the respective units (p<0.01 

for both, E- and I-type neurons.) Feature extraction by opposite-type pairs was close to 

chance performance (pE = 0.5.) pE computed for shuffled spike trains was not 

significantly different from pE calculated for simultaneously recorded spike trains. The 

mean values of pE were computed from the lowest values of pE observed irrespective of 

the size of the best time window. Time windows smaller than 5 ms were not used because 

the number of spikes coinciding within such a time frame was too small to yield reliable 

results (see Figure 3-4c.) Error bars represent standard errors of the mean. The numbers 

below the bars give the overall number of stimulus conditions (cutoff frequencies and 

contrasts) for all cells or cell pairs analyzed.  

 

Figure 3-7 Terminal spread of P-receptor afferents 

Top: Transverse sections at hindbrain level in two preparations (left and right, 

respectively.) The locations of the terminal fields of two Neurobiotin-filled P-receptor 

afferent fibers within CM are indicated by the boxes. Bottom: Magnified views of the 

respective cells. In both cases the terminal fields were reconstructed from 3 consecutive 

transverse sections (thickness: 50 µm) of the ELL. Section at left corresponds to level -6, 

and section at right to level -9 of the brain atlas of Maler et al.(Maler et al., 1991). C: 
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Cerebello-medullary cistern; CCb: Corpus Cerebelli; CM: Centro-Medial segment of 

ELL; CL: Centro-Lateral segment of ELL; d: dorsal; g: granular cell layer of ELL; l: 

lateral; L: Lateral segment of ELL; M: Medial segment of ELL; MLF: Medial 

Longitudinal Fasciculus. 

 

Figure 3-8: Spontaneous activity of pyramidal cells 

Distribution of the spontaneous firing rates of the pyramidal cell units that were studied 

in this Chapter. The spontaneous activity was recorded during a 30 second period before 

the presentation of RAM stimulus, in this case under an unmodulated carrier signal (that 

is, using the mimic of the fish's own EOD without any amplitude modulation, see 

Chapter 1). In several of the experiments, a 30 second period without RAM or sinusoidal 

modulation was also interspersed within the experiment. The arrow indicates the mean 

value. Bin size = 2 spikes/sec. E-type and I-type pyramidal cells were pooled in this 

figure; no significant differences in the spontaneous activity were observed between the 

two groups. 

 

Figure 3-9: Schematic of different anatomical configurations for the P-receptor to ELL 

projection 

This schematic diagram illustrates different possibilities for the convergence and 

divergence of projections of connectivity from the P-receptor afferent units to the E-type 

pyramidal cells in the ELL. (a) High divergence condition where a single P-receptor 

afferent unit synapses directly onto a large number of E-type pyramidal cells. (b) Low 

divergence situation where a single P-unit is connected to only very few pyramidal cells. 
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In the scheme a one-to-one connection is depicted but the conclusions described in the 

text also apply for a sparse connectivity that is not one-to-one. Furthermore, it is 

important to emphasize that low divergence does not imply low convergence. In this 

scheme a single pyramidal cell is shown to receive input from a single P-receptor afferent 

but it would be easy to depict a low divergence with high convergence situation. (c) High 

convergence situation where multiple P-receptors send information to the same pyramidal 

cell. (d) Low convergence situation where each pyramidal cell only receives information 

from one or very few P-receptor afferent units.  

 

Figure 3-10: Change in correlogram properties with the stimulus bandwidth 

Change in correlogram properties with stimulus bandwidth for the pair illustrated in 

Figure 3-1. (a) The peak value of the correlogram increased with stimulus bandwidth. 

Each point corresponds to a separate stimulus condition (fc or contrast.) The dashed line 

indicates a linear fit to the data (slope = 0.06 coincidences/(sec.Hz), r2 = 0.97.) (b) The 

width at half height decreased with increasing stimulus bandwidth. Each point 

corresponds to a separate stimulus condition. The dashed line indicates a linear fit to the 

data (slope = -6.8 ms/Hz, r2 = -0.72.) (c) There was no clear correlation between the time 

at which the peak occurred and the bandwidth of the stimulus. Each point corresponds to 

a separate stimulus condition. The dashed line indicates a linear fit to the data (slope = 

0.36 ms/Hz, r2 = 0.26.) 



Gabriel Kreiman  Thesis - Chapter 4 

 

146 

4 In search of attentional modulation in the ELL19 

 

 

4.1  Scope and motivation of the project 

 

Selective attention plays a fundamental role in the processing and gating of 

information in the nervous system. This has been most thoroughly explored in the visual 

system where it has been shown that paying attention can modulate the neuronal activity 

in different areas in monkeys and humans (O'Craven et al., 1997, McAdams and 

Maunsell, 1999, Steinmetz et al., 2000, Desimone and Duncan, 1995, Fries et al., 2001, 

Maunsell, 1995) Attention has been shown to alter the blood flow as measured in 

functional imaging experiments, the neuronal firing rates, neuronal reliability and 

neuronal synchrony.  

The electric fish offers an ideal model system to explore the potential role of 

attention in the processing of sensory information. The gating of information from the P-

receptor afferents to the ELL to higher structures like the Torus Semicircularis might be 

influenced by the behavioral significance of the stimuli or the saliency of a stimulus with 

respect to the background information. Pyramidal cells receive massive efferent feedback 

projections, both excitatory and inhibitory, from higher order electrosensory structures 

                                                 
19 A warning to the reader: At the time of writing this Thesis, the preliminary observations that we have 
drawn from the work described in the current Chapter do not seem to yield the fascinating results that we 
had expected. Therefore, these data have not been published and the reader might decide not to engage in 
examining several pages that are not (yet) conclusive. However, as Nobel Prize winner Luis Federico 
Leloir used to say: "The most important and fascinating experiments are those that end up in the sink" (my 
translation.)  
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that terminate primarily on their large apical dendrites (see schematic diagram in Chapter 

1, Figure 1 and (Carr et al., 1986, Maler and Mugnaini, 1994) The extensive inhibitory 

feedback was suggested to play a role in adaptive gain control and a "searchlight" 

mechanism that would allow the animal to increase the detectability of scanned objects 

(Crick, 1984, Bratton and Bastian, 1990, Maler and Mugnaini, 1994, Berman and Maler, 

1999) This putative searchlight mechanism could play an important role in the detection 

of novel stimuli positioned within the receptive field of pyramidal cells. The direct 

feedback pathway to the ELL has many of the characteristics that were suggested by 

Crick to play an important role in sensory "searchlight" mechanism (Crick, 1984): (i) A 

positive feedback loop is formed by a subset of the ELL / nucleus praeminentialis 

dorsalis feedback and feedforward projections. These projections are reciprocal, 

topographic and excitatory. (ii) The nucleus praeminentialis neurons show larger 

receptive fields than those of neurons in the ELL. (iii) the inhibitory direct feedback 

pathway from the nucleus praeminentialis is topographically diffuse. Furthermore, Crick 

suggested that a non-linearity would be required to amplify signals in a searchlight 

mechanism. Maler and colleagues have suggested that the several types of non-linear 

elements occur in the ELL that would be ideally suited for this purpose: (i) voltage-

dependent EPSPs, (ii) Dendritic spike bursts, (iii) voltage-dependent inhibition and (iv) 

frequency-dependent synaptic facilitation (Berman and Maler, 1999). We therefore set to 

attempt to directly evaluate this possibility at the electrophysiological level. 
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4.2  Methodological procedures 

 

4.2.1  Stimulation 

 

As in the previous Chapters, all the experimental work was carried out by Rüdiger 

Krahe and Walter Metzner at the University of California at Riverside20. All the 

experiments described in the previous Chapters were performed by using a global 

stimulation elicited by electrodes in or near the mouth and tail of the animal21 (see 

Chapter 1.) Here we also mapped the cells' receptive fields by using a localized dipole 

stimulus moved along the body of the animal. The responses were tested as described in 

the previous Chapters. In addition to the wide-band RAMs, we also used stimuli that 

were band-pass filtered (5-10 Hz; 10-20 Hz and 20-40 Hz.)22 Performance in stimulus 

reconstruction can be easily compared to the ones with wide-band stimulation by 

integrating the signal-to-noise ratio over the corresponding frequency bands (see Chapter 

1 and (Gabbiani and Koch, 1998)). Thus, when analyzing the responses to band-pass 

stimuli, we computed signal-to-noise ratios for stimulus estimation (or equivalently 

coherence functions) in the frequency domain to quantify the responses of pyramidal 

cells. Whole-body stimuli were presented by modulation of the electric field between the 

mouth and tail of the fish as described in Chapter 1 (see also (Wessel et al., 1996, 

                                                 
20 Currently at the University of California at Los Angeles. 
21 The animal was paralyzed but not anesthetized as in all our previous experiments. To what extent this 
could play a role in the type of responses that we have observed is still unclear. It should be noted that at 
least with the current experimental setup, paralyzing the animal is necessary for performing the 
electrophysiological recordings. 
22 Band-pass white noise stimuli were generated as described before by first generating a white noise signal 
and then filtering the corresponding frequency bands using a 4-pole Butterworth filter in MATLAB.  
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Kreiman et al., 2000b, Metzner et al., 1998) Localized stimuli consisted of the same 

RAMs used for whole-body stimuli, but were presented using a moveable electrode 

positioned < 1 cm from the skin surface within the receptive field of the recorded units 

(reference electrode remains in mouth.) Initially, we used whole-body stimulation with 

sinusoidal AMs to obtain a stable recording. Subsequently, localized stimulation with 

sinusoidal AMs was used to determine which body surface area resulted in an optimal 

response (audio-visual monitoring of recording.)23 The electrode consisted of a chloride 

silver wire within a hand-held, fire-polished glass pipette of 1 mm diameter (see 

(Shumway, 1989a) Localized RAMs was presented through another localized electrode 

attached to a micromanipulator and positioned in the same area on the surface of the skin. 

In addition, a constant background electric field without RAMs was generated by whole-

body stimulation. Although different experimental protocols were tested, in the most 

general case, a global RAM stimulus was presented for a duration of 30 seconds. During 

the first 15 seconds, only the global stimulation was presented. During the last 15 seconds 

the local stimulation was presented on top of the global stimulus. In other experiments, 

the global and local stimuli were presented separately. While the results in Chapter 3 

showed that multiple spike trains from pyramidal cells do not carry detailed time-course 

information under conditions of global stimulation, as used in the previous single cell 

studies (Gabbiani et al., 1996, Metzner et al., 1998), it is however conceivable that 

pyramidal cells might convey such information in response to localized stimuli or under 

conditions mimicking attentionally salient stimuli. 

                                                 
23 The sinusoidal stimuli were used only for establishing a stable recording and for coarse mapping of the 
receptive fields. All the data analysis described in the current Chapter was performed with the RAM stimuli 
(either from 0 up to a given fc or band-pass stimuli as described above). 



Gabriel Kreiman  Thesis - Chapter 4 

 

150 

4.2.2  Electrophysiology 

 
The procedures for electrophysiological recordings were described in Chapter 1 

and some specific details about the recordings from pyramidal cells in the ELL were 

described in Chapter 3. 

 

4.2.3  Data analysis 

We compared the responses of pyramidal cells to localized stimulation with the 

responses of pyramidal cells stimulated only by the whole-body (global) stimulus and 

with local stimulus superimposed on the global one. The computational techniques for 

stimulus reconstruction and feature extraction were described in Chapter 1. The-60 

seconds stimulation time was subdivided into several different segments for analysis. In 

particular we were interested in comparing the initial 30 seconds where only global 

stimulation was applied, the initial phase of the combined local and global stimulation 

and the neuronal activity to the combined stimulus after the initial possibly transient 

response. This is further described in Section 4.3 below. 

 
 
4.3  Preliminary results 

 

Mapping the receptive fields of the recorded neurons (see Figure 4-1) allowed us 

to deliver local stimulation in contrast to the whole-body stimulation procedure utilized in 

the previous work (see Chapters 2, 3 and (Kreiman et al., 2000b, Wessel et al., 1996, 
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Gabbiani et al., 1996, Metzner et al., 1998) While we tried a number of different ways of 

presenting the stimulus, the most typical situation is depicted in Figure 4-2.  

 

4.3.1  Neuronal response, example 

First, there was a period of 30 seconds where only global stimulation was applied 

(Figure 4-2a.) At t = 30 seconds, the global stimulus remained on while a local stimulus 

was delivered through the electrode position within the neuron's receptive field (Figure 

4-2b.) The raster plot does not show any clear indication of changes in the neuronal 

activity upon turning on the local stimulation. The last part of the figure illustrates a later 

portion of the local stimulation superimposed on the global stimulus which lasted for 30 

seconds (Figure 4-2c.) The neuron fires near the peaks of the global stimulus in Figure 

4-2a. During the combined local and global stimulation it seems that the neuron would 

still respond to several of the peaks in the global stimulus but not as strongly and reliably 

as before. In particular, it seems to respond to the troughs in the local stimulus and a 

strong burst of activity seems to occur when there is a close temporal occurrence of peaks 

in the global stimulus and troughs in the local stimulus (Figure 4-2b-c.)  

This was confirmed by computing the Euclidian classifiers as described in 

Chapter 1 independently for the global and local stimulus Figure 4-3b-e. The Euclidian 

feature computed from the global stimulus was an upstroke in the electric field amplitude 

both when the global stimulus was presented alone (Figure 4-3b) or in the presence of the 

local stimulus (Figure 4-3c.) For the local stimulus, the Euclidian feature showed a 

downstroke in the amplitude (Figure 4-3d.) This Euclidian feature was similar in the 

initial phase of the local stimulus or during the later portion of the experiment (Figure 
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4-3e.) We quantified the performance of isolated spikes and bursts of spikes in extracting 

upstrokes and downstrokes by computing the probability of misclassification, pe, during 

different intervals in the experiment (Figure 4-3f.) As discussed previously (see Chapter 

1 and (Gabbiani et al., 1996, Metzner et al., 1998) bursts of spikes yielded a lower value 

of pe than isolated spikes. No statistically significant differences were observed among 

the values of pe computed from the global stimulus in the whole experiment (wg), global 

stimulus alone (g1), global stimulus in the presence of local stimulation (g2), local 

stimulus in the whole experiment (wl), initial local stimulus presentation (l1) or last 

portion of the local stimulus presentation (l2) (one-way ANOVA, p > 0.3 for isolated 

spikes and p > 0.2 for burst of spikes.) We did not observe a significant change in the 

firing rate computed in different time windows of at least 1000 ms duration within the 

experiment (see Figure 4-3g.) 

It is possible that the global versus local stimulation could be accompanied not by 

a change in feature extraction performance or the firing rate but an alteration in the 

reliability of the neuronal responses. The appearance of a sudden salient local stimulus in 

the neuron's receptive field could be correlated with a sharp burst of activity with a 

precise latency. To address this issue, we used the Victor-Purpura distances between 

spike trains as a measure of the trial-to-trial variability in the neuronal response (see 

Chapter 2 for details about this metric.) The mean normalized distances between 

successive repetitions of the identical stimulus are illustrated in Figure 4-4 for three 

different values of the spike moving cost parameter, q. No significant differences were 

observed in the different intervals that were analyzed (see Figure 4-4 for details) at any of 
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the values of q. Thus, there does not seem to be a change in the reliability of the neuronal 

response with the appearance of a sudden local stimulus. 

 

4.3.2  Summary of results 

A summary of the changes in firing rate for the 96 experiments from recordings in 

24 pyramidal cells that were recorded in this particular paradigm is presented in Figure 

4-5. An average of the absolute values of the firing rate during eight relevant different 

time intervals is depicted in Figure 4-5b. The average of the absolute firing rates could 

preclude from observing real differences that could be hidden in the changes in 

spontaneous activity of the neurons. Therefore, Figure 4-5a shows the mean firing rates 

normalized by the mean firing rate of the neuron24. There were no significant differences 

in the firing rates among the different time intervals (one-way ANOVA, p > 0.25.)  

The average performance of the pyramidal neurons in the feature extraction task 

during the different intervals is shown in Figure 4-6. There was no significant difference 

in the probability of misclassification by the Euclidian feature among the global 

stimulation alone or the global stimulation in the presence of local stimulation. There was 

also no statistically significant difference between the period at the onset of the local 

stimulation period and the later period of local stimulation.  

Finally, the average normalized distances between spike trains are shown in 

Figure 4-7. We did not observe a statistically significant difference among the different 

periods of analysis in the trial-to-trial reliability of the neuronal responses. 

 
                                                 
24 The mean firing rate was computed over the whole experimental session. Similar results were obtained 
when using the spontaneous activity for the normalization. 
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4.4  Feature extraction by E vs. I type pyramidal cells under 

different stimulation conditions 

As reported previously (Gabbiani and Metzner, 1999, Gabbiani et al., 1996, 

Metzner et al., 1998), we observed a small but significant difference in the performance 

of E- and I-type pyramidal cells in the feature extraction task (see Chapter 3). In general, 

I units showed smaller values of probability of misclassification than E units. This 

difference was hypothesized to be due to differences in connectivity between the two 

types of pyramidal cells: E-units receive direct inhibitory input from ovoid cells while I-

units do not. Ovoid cells have large dendritic fields (Bastian et al., 1993). This suggests 

that they probably have very broad receptive fields. Furthermore, ovoid cells show 

extensive axon-terminal fields both ipsilateral and contralateral to their dendrites (Bastian 

et al., 1993). This inhibitory input is thought to serve in common-mode rejection: global 

amplitude modulation of the electric field (in an "identical-geometry" field stimulation 

paradigm, (Heiligenberg, 1991, Heiligenberg and Bastian, 1984)) would maximally 

stimulate ovoid cells on both sides of the brain in phase with the E-units. There, the 

responses of E-type pyramidal cells would be down regulated by inhibition from ovoid 

cells. Potentially, I-units may be affected, too, but only indirectly via granule cells. We 

therefore decided to study how the difference in the probability of misclassification 

between E- and I-units is affected by the characteristics of the stimulation. In particular, 

we directly addressed the above hypothesis that would predict that the difference between 

E and I pyramidal cells disappears or decreases when common-mode rejection is 

minimized. The experimental procedures described earlier in this Chapter to investigate 

the putative modulation of neuronal responses by salient stimuli could be directly applied 
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to answer this question. We compared the performance of E and I units under conditions 

in which the ovoid cells would presumably be only weakly stimulated. The weakest input 

to ovoid cells should occur for highly localized stimuli when only a small part of the 

receptive field is subject to amplitude modulation in the electric field. We recorded the 

activity of individual pyramidal cells under global and local stimulation.  

Preliminary results from this study are shown in Figure 4-8. We recorded the 

activity of 27 pyramidal neurons (we analyzed the responses of 24 neurons, 15 I units, 9 

E units, the remaining 3 showed low quality firing) under global and local random 

amplitude modulation. For each experiment, we evaluated the performance of the unit in 

extracting upstrokes (E cells) and downstrokes (I cells) as described previously (see 

Chapter 3). Our preliminary observations suggest that the difference in feature extraction 

between E and I type pyramidal cells (Figure 4-8a) disappears under conditions of local 

stimulation (Figure 4-9b). This suggests that E and I type pyramidal neurons show 

differential processing of the incoming signal; this may be due to the different anatomical 

input provided by the ovoid cells as discussed in the previous paragraph.  

 

4.5  Discussion 

 

We did not observe any clear differences in the neuronal responses during our 

preliminary explorations of the possible effects of local stimulation. Electric fish show a 

remarkable capacity to detect small objects in the environment by using the alterations in 

the electric field (Nelson and Maciver, 1999) Thus, it seems that a salient stimulus should 

elicit a strong and reliable signal.  
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Perhaps the local stimulation that we have presented did not constitute a salient 

stimulus. While it was verified that the neuron's activity was modulated in the presence of 

the local stimulus alone25, it is not entirely clear what the effective stimulus in the skin of 

the fish was. The transdermal potential across the skin is proportional to some weighted 

sum of the global plus local stimulation. But this is too vague for a rigorous quantitative 

analysis. Since we did not measure the transdermal potential (nor the electric field 

directly near the skin), it is unclear what those weights were during the combined 

stimulation. This could be quite important in understanding the efficiency of the local 

stimulus in generating a salient response.  

It is possible that the fact that the animal was paralyzed could be related to the 

lack of attentional gating responses. It is unclear how to verify this assertion given that, at 

least with the current recording technology, protocols and paradigm, this is a necessary 

part of the electrophysiological preparation procedure. It should be noted that the animal 

was not anesthetized but only paralyzed (see Section 4.2). In attempting to draw a 

comparison with the visual system, it seems unlikely that the neuronal responses in early 

visual areas (such as the lateral geniculate nucleus or primary visual cortex) could be 

significantly affected by paralyzing the animal. In fact, anesthesia which has a much 

larger impact on the overall chemistry of the brain, only seems to have an impact in 

higher visual areas. However, this is a point that should be kept in mind in interpreting 

the results here described. 

                                                 
25 This was actually the way we used to define that the local stimulus was presented within the neuron's 
receptive field (see Methods in Section 4.2). In some cases, we also computed the probability of 
misclassification for random amplitude modulation stimulus presented locally; the pe values in those cases 
were clearly much better than chance levels and were comparable to those obtained with global stimulation 
alone (see also Figure 4-3). 
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 It is also conceivable that the modulation of neuronal responses in the presence of 

a salient stimulus is modified at a later stage in the processing of information in the 

nervous system. Within the visual modality, the effects of attention are easier to find in 

later extrastriate visual areas than in the earlier areas (O'Craven et al., 1997, Steinmetz et 

al., 2000, Desimone and Duncan, 1995, Kanwisher and Wojciulik, 2000, Maunsell, 1995, 

Logothetis, 1998). While electrophysiological effects of attention have been shown in 

extrastriate visual areas, the effects seem to be very small in V1 and virtually absent in 

the responses of neurons in the lateral geniculate nucleus. The electrolateral line lobe 

constitutes the second stage of processing of changes in electric field amplitude 

information in the electric fish. The information from the ELL is conveyed to the Torus 

Semicircularis (TS.) The TS already combines information from the amplitude and phase 

sensitive pathways. Our initial speculation was that the effects of attention and feedback 

would be evident before the merging of amplitude and phase information but maybe this 

is not the case. 

 It is also possible that the changes elicited by the presence of a salient stimulus 

within the receptive field are evident at a level beyond the activity of a single neuron. For 

example, we showed in the previous Chapter that the coincident activity of two pyramidal 

cells could significantly enhance the extraction of behaviorally relevant features from the 

environment. Thus, it is possible that the local stimulation could change the degree of 

synchrony between multiple neurons without significantly altering their individual 

responses.  
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 While the preliminary results presented in the current Chapter do not point to a 

clear difference in the responses of individual pyramidal cells, there is still much more to 

explore to understand the possible mechanisms of gating of neuronal information. 
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4.6  Figure legends 

 
 
Figure 4-1: Schematic of stimulation procedure 

Schematic diagram indicating the position of the electrodes for whole body (global) 

stimulation (in or near fish's mouth and tail, see Chapter 1) and those for local stimulation 

(depicted by crosses here.) around an outline of the Eigenmannia electric fish. Local 

electrodes were less than 1 mm away from the skin of the fish. 

 

Figure 4-2: Pyramidal neuron activity, raster plot example 

Sample of the activity of a pyramidal neuron during three 1.5-second duration epochs of 

the experiment. The first epoch (a) shows the response during the initial period where 

only global stimulation (dashed line) was performed. The second epoch (b) indicates the 

neuronal response during the initial part of the local (continuous line) superimposed on 

global stimulation (dashed line.) The last epoch (c) depicts the responses during the latest 

part of the simultaneous global and local stimulation.  Each tick corresponds to an action 

potential and there were 5 subsequent repetitions of identical stimuli. 

 

Figure 4-3: Example of global versus local stimulation 

(a) Sample activity during a period of 5 seconds where local stimulation (gray continuous 

line) was superimposed on global stimulation (black continuous line.) (b-e) Euclidian 

feature classifier (see Chapter 1 for details) for isolated spikes (dashed lines) and bursts 

of spikes (continuous lines) for global stimulation (black, b-c) and local stimulation 
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(gray, d-e.) The Euclidian feature was computed in 15 second periods as indicated at the 

top of each plot: [0;15], [30;45], [30;45] and [45;60] seconds for b through d 

respectively. (f) Probability of misclassification, pe, for isolated spikes (left) and bursts of 

spikes (right.) The periods over which pe was computed correspond to the ones in b-d, 

except for wg which indicates whole global stimulus ([0;60] seconds) and wl which 

indicates whole local stimulus ([30;60 seconds.) See text for details. (g) Mean firing rates 

computed over the time intervals indicated in the abscissa. Black bars indicate values for 

global stimulation, grey bars indicate local stimulation. 

 
Figure 4-4: Pyramidal neuronal trial-to-trial firing variability 

The trial-to-trial variability of the responses of pyramidal cells upon repeated 

presentations (n=5) of identical stimuli were evaluated by using the Victor-Purpura 

distance between spike trains (see Chapter 2 and (Victor and Purpura, 1997) Here we 

show the normalized spike distances in different intervals of the experiment for three 

different values of the spike moving cost parameter: (a) q = 0, (b) q = 0.05, (c) q = 0.25. 

The spike distances were normalized by the value of d(q→∞) (see Chapter 2 for details.) 

The different bars correspond to the following time intervals (from left to right): [0;5], 

[10;15], [20;25], [30;35], [40;45] and [50;55] seconds with respect to the stimulus onset. 

The first three intervals were within a period of global stimulation only while during the 

last three epochs, the local stimulation was superimposed on the global ones (see Section 

4.2.1.) 

 

Figure 4-5: Changes in firing rate, summary 
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Summary of changes in firing rate during different epochs of the experiment. (a) Mean 

normalized firing rates for all (n = 96) experiments. The neuronal firing rate is 

normalized by the mean spontaneous activity of the unit. The time intervals correspond to 

(from left to right): [0;30], [30;40], [30;31], [31;32], [32;33], [33;34], [34;35], [40;60] 

seconds with respect to global stimulation onset. (b) Mean absolute firing rates in the 

same intervals. (c) Mean firing rate after subtraction of the mean activity. 

 

Figure 4-6: Changes in probability of misclassification, summary 

Summary of changes in the probability of misclassification, pe, during different epochs of 

the experiment. Mean normalized values of pe for all experiments (n = 96.) The time 

intervals for the analyses correspond to the ones described in Figure 4-3. 

 

Figure 4-7: Changes in neuronal response variability, summary 

Summary of changes in the trial-to-trial variability as assessed by the mean normalized 

Victor-Purpura spike distances, < dn >, during different epochs of the experiment. Mean 

normalized values of < dn > for all experiments (n = 96.) The time intervals for the 

analyses are indicated in the abscissa. 

 

Figure 4-8: Comparison of E versus I pyramidal cells under different stimulation conditions 

Distribution of the probability of misclassification (pe, see Chapter 3) for extracting 

upstrokes (E-cells, black) and downstrokes (I cells, white) in the random amplitude 

modulation of the electric field. Recordings were performed under global (a) or local (b) 

stimulation conditions (see Section 4.2.1 for methodological procedures). Local random 
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amplitude modulation was done under constant mean amplitude conditions. Bin size = 

0.02. The values of pe illustrated here correspond to the probability of misclassification 

for bursts of spikes. For all the data shown here, fc = 5 Hz. 
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5 Conclusions and future directions 

 

 

5.1  Neural coding and feature extraction 

 

5.1.1  Coding principles 

The general question of exploring how neurons and groups of neurons encode 

information has gained significant momentum in the last few years (see for example 

(Roddey and Jacobs, 1996, Warland et al., 1997, Richmond et al., 1990, Shadlen and 

Newsome, 1994, Warzecha et al., 1998, Shadlen and Newsome, 1998, Dan et al., 1998, 

Gabbiani and Koch, 1998, Rieke et al., 1997, Bair, 1999, Reich et al., 1997, Bialek et al., 

1991, Koch and Laurent, 1999, Hatsopoulos et al., 1995, Laurent, 1996, Laurent et al., 

1996)). Neuroscientists have traveled some way from the influential work of Perkel and 

Bullock (Perkel and Bullock, 1968), yet there are numerous questions that still remain 

largely unclear. Perhaps one important general conclusion from the study of codes in 

general, which was already hinted at in the seminal work of 1968, is that it is not 

necessarily true that we should seek one single type of universal code. This is in contrast 

to other cases such as the genetic code where there is a common representation of 

aminoacids by the nucleotides in the nucleic acids that is largely used by any living 

organism on earth. Let us mention two examples of the different types of codes that 

illustrate this idea. Photoreceptor neurons in the retinae may utilize graded changes in 

intracellular voltage to encode changes in light intensity (Wandell, 1995, Kandel et al., 
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2000) whereas concerted firing among spiking neurons might be more relevant to encode 

stimulus information in the locust olfactory system (Laurent, 1996). This potential lack of 

universality does not imply that one cannot derive general principles of information 

encoding but it does emphasize the high variability of biological systems and it stresses 

the fact that we should keep our minds open for different types of codes dependent on the 

system, perhaps on the type of signal to be stored and other considerations such as 

metabolic costs (Perkel and Bullock, 1968, Laughlin et al., 1998). I will therefore here 

restrict the discussion to the encoding of time-varying signals26 in the initial stages of 

sensory systems.  

We have shown that individual sensory neurons can encode a large fraction of the 

information available from an external stimulus (Chapter 2). Our information theoretic 

approach has its root in the novel methods introduced into Neuroscience by Bialek and 

colleagues (Bialek et al., 1991). The quantitative exploration of the fly motion system by 

Bialek and colleagues shows a remarkable example where it is possible to quite 

accurately reconstruct a time-varying signal from the responses of an individual H1 

neuron (Bialek et al., 1991, Rieke et al., 1997). In the case of Eigenmannia, individual P-

receptor afferents can reach coding fractions up to 80%. It should be emphasized that 

these results were obtained by a linear decoding mechanism from the spiking responses 

of a single neuron. Given these limitations, the amount of information that can be 

conveyed seems quite remarkably high. This clearly suggests that a small group of 
                                                 
26 It is unclear at this point whether one should make a sharp distinction between time-varying signals and 
static ones. From an experimental point of view, many experiments are performed where a constant 
stimulus is presented for a relatively long period of time of several hundred ms up to a second. In the real 
world, no signal is actually constant and every sensory modality is exposed to a time-varying stimulus. A 
more precise formulation of the question is therefore what is the time constant of the change in the stimulus 
compared to the changes in neuronal firing response. As we have discussed in Chapter 2, if the stimulus is 
changing with a frequency close to 100 Hz, a neuron cannot use several hundred ms to integrate 
information without missing interesting aspects of the stimulus.  
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neurons can quite accurately transmit detailed information about the external world to the 

next processing stage, thus providing a highly precise mechanism of transducing the 

external signal (e.g. the visual motion in the case of the fly, the electric amplitude 

modulation in our studies) into a language that can be processed by the nervous system. 

Given that neurons are noisy (i.e. they do not yield the same response upon repeated 

presentation of an identical stimulus, see Chapter 2 and (Shadlen and Newsome, 1994, 

Bair, 1999, Softky and Koch, 1993, Softky, 1995)), many researchers believe that large 

numbers of neurons may be necessary for any meaningful encoding. In spite of the 

success of electrophysiological investigations of the activity of individual neurons, it is 

not uncommon for investigators to claim that only large ensembles can be relevant for 

neural coding. Our results (and those of many other groups) provide strong evidence 

against this notion by showing that individual neurons and extrapolated values to small 

ensembles provide precise information about the incoming signal. 

It can be argued that the main purpose of the sensory nervous system is to allow 

the organism to detect the presence of specific features that are crucial for modulating 

behavioral responses. Thus, neurons in higher areas of the visual system may be tuned to 

detect the presentation of complex stimuli such as faces or hands (Tanaka, 1993, Tanaka, 

1996, Logothetis and Sheinberg, 1996, Kreiman et al., 2000a, Kreiman et al., 2000c, 

Kreiman, 2001, Gross, 1994). One of the key features of the responses of such neurons is 

the invariance to many changes in the physical stimulus (such as location, size, color, 

etc.). In the electric fish, we observed that the second stage of information processing 

already extracts specific stimulus features. Pyramidal cells in the electrolateral line lobe 

show rather restricted receptive fields (see Chapters 3 and 4) and therefore do not show 
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all the invariance properties that are presumably represented higher up in the nervous 

system of the fish (Heiligenberg and Bastian, 1984, Heiligenberg, 1991, Konishi, 1991). 

Yet, the kind of features they extract do seem to be largely invariant to several parameters 

of the stimulus such as its contrast and bandwidth (see Chapter 3).  

We claimed that pyramidal cells do not seem to accurately convey the detailed 

time course of the stimulus. Some cautionary reflections seem appropriate regarding this 

issue. It should be noted that several other decoding algorithms can be deployed that 

could potentially alter these conclusions. This could include non-linear decoding 

schemes, reconstruction of half-wave rectified signals and so on. Some of these 

possibilities were directly addressed previously by Gabbiani et al. (Metzner et al., 1998). 

They showed that even after several of these transformations the responses of pyramidal 

cells could not be used to accurately reconstruct the stimulus. Of course, the list of 

transformations is not exhaustive and we cannot discard the possibility that other 

decoding mechanisms may yield larger information rates. Another related criticism 

concerns the number of neurons used in the decoding procedure. It is conceivable that 

several pyramidal neurons could still transmit high information rates about a time-

varying signal. To address this issue, we recorded from pairs of pyramidal cells (see 

Chapter 3) and we showed that this does not seem to be the case. Pairs of pyramidal cells 

performed significantly worse than individual P-receptor afferents. Again, these dual 

recordings, however heroic and laborious, clearly do not definitively rule out the 

possibility that larger ensembles can yield a more accurate description of the time varying 

characteristics of the stimulus. This type of argument can be made for most of the 

investigations about neural codes. It is not easy from an experimental point of view to 
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isolate the activity of multiple individual neurons by trying to move the electrodes to be 

close to the units. New approaches based on implanting multiple electrodes and careful 

spike sorting of the signal could potentially help study the activity of larger ensembles of 

neurons to address these questions (Kreiman et al., 2000a, Kreiman et al., 2000c, 

Kreiman, 2001, Nicolelis et al., 1997, Nicolelis et al., 1999, Wilson and McNaughton, 

1993, McNaughton et al., 1983, Sahani, 1999). 

 

5.1.2  ΣΣΣΣ-∆∆∆∆ A/D converters 

How would an engineer design a system to encode a complex band-limited time-

varying signal? The sampling theorem establishes that it is possible to reconstruct the 

signal with perfect accuracy with exact samples obtained at a sufficiently high frequency 

that is more than twice the bandwidth27. It is not clear, however, how the nervous system 

would be able to take periodic samples of a continuous signal with arbitrary precision.  

Indeed, taking exact samples of a continuous signal is not an easy feat for digital sensors 

either28. One possibility therefore is to use digitizers that show a large number of possible 

discrete levels or bits. This does not guarantee exact reconstruction but it does allow for a 

relatively accurate representation of the signal assuming that the levels span the range of 

the signal (otherwise saturation of the digitizer takes place) and that the level height is not 

too large compared to the natural variation in the signal (otherwise much detail is 

missed). But again it is not clear how the nervous system could actually be able to 

                                                 
27 Sampling theorem: let x(t) be a band-limited signal with X(jw) = 0 for |ω| > ωM. Then x(t) is uniquely 
determined by its samples x(nT), n = 0, ±1, ±2, … if ωS>2ωM where ωS=2π/T (Oppenheim et al., 1997). 
28 One way to accomplish this is of course to encode (or rather transduce) the continuous signal to analog 
media. Indeed, this is done in many engineering applications and the nervous system also has a way of 
accomplishing something quite similar: photoreceptors in the retinae encode changes in light intensity by 
graded changes in the intracellular potential. 
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accomplish this. For example, 12-bit A/D sampling requires evaluating each sample and 

assigning it to one of 4096 different levels. By and large, the nervous system uses spiking 

neurons that are limited to a binary signal. This is also the case in modern computers that 

use binary logic. An important way of encoding analog data with binary processors is the 

use of oversampled sigma A/D converters (Aziz et al., 1996, Gray, 1995, Wong and 

Gray, 1990). The basic idea here is to sample the signal at a frequency which is much 

higher than the Nyquist limit but using only a binary encoder. Many current digital media 

use this technique. It is interesting to note that Oversampled sigma A/D converters are 

basically equivalent to29 a very simple yet very powerful neuronal model, namely, the 

integrate and fire model. Thus, there seems to be a strong parallel between the 

algorithmic solutions utilized by engineers and P-receptor afferents to encode complex 

time-varying signals in binary form.  

 

5.1.3  Logan's theorem and stimulus reconstruction 

Certain special classes of signals can be exactly reconstructed by their samples. 

Given the important implications of this for signal processing, this has been studied quite 

extensively in the context of analog to digital conversion and signal conditioning and 

sampling. As we mentioned previously, the most important result is the possibility of 

reconstructing a band-limited signal from exact samples obtained at a sufficiently high 

sampling rate given by the Nyquist limit (Oppenheim et al., 1997). Although many of the 

                                                 
29 In the integrate-and-fire model, typically, after crossing the threshold, a spike is emitted and the voltage 
is reset to zero (or the membrane potential)(Koch, 1999, Gabbiani and Koch, 1998). In contrast, in the 
oversampled sigma A/D converters, a fixed voltage (the threshold itself) is subtracted from the signal. 
Many models of oversampled sigma A/D converters actually use the integrate-and-fire model for 
mathematical simplicity. 
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natural signals encountered by the fish might be band-limited, it seems that the nervous 

system does not encode them by attempting to take exact samples. Instead, the principle 

seems to be closer to that of oversampled sigma A/D converters as discussed in the 

previous section.  

Another interesting result from the signal processing field is the possibility of 

reconstructing a signal from its zero crossings (Logan, 1977). It may seem at first that the 

information carried by the zero crossings is insufficient to adequately characterize a 

signal30. This is indeed the case for most signals but Logan showed that a special class of 

signals can be accurately estimated (up to a multiplicative constant of course) by their 

zero crossings. A band-pass signal can be uniquely determined by its real zero crossings 

(within a multiplicative constant) even if it has complex zeros if the following two 

conditions are met (Logan, 1977):  

(1) The bandpass function and its Hilbert transform31 should have no zeros in 

common other than real simple zeros 

(2) The bandwidth of the signal must be less than an octave 

This is an existence theorem and as such it defines the sufficient conditions. 

However, it does not provide an algorithm for signal reconstruction from its zero 

crossings, nor does it address the important issue of stability. In general, it may not be 

easy to reconstruct a signal from the zero crossings. Furthermore, in most biological 

                                                 
30 It is interesting to observe that in the visual system, the edges of an image, provide a large amount of 
information for object recognition. An important method for extracting the edges considers the zero 
crossings of the G2∇ operator on an image. Again, this does not imply that the visual system attempts to 
reconstruct an image from this type of operation but it does point out that the zero crossings of a signal may 
carry much more information than one might initially imagine. 
31 Given a signal x(t), its Hilbert transform y(t) is defined by(Oppenheim et al., 1997): 
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systems the zero crossings may be read with some degree of uncertainty. P-receptor 

afferents do not seem to provide clear information about the zero crossings of signals. 

Pyramidal cells can reliably detect the upstrokes and downstrokes in the stimulus but still 

provide poor information about the exact location of the zero crossings32. However, the 

other branch of the electrosensory system provides more accurate information about the 

phase of the signal. The T-receptor afferents provide information about the zero crossings 

of the electric organ discharge. This information proves to be fundamental for the ability 

of the fish at least in one well studied behavior: the jamming avoidance response 

(Heiligenberg and Bastian, 1984, Heiligenberg, 1991). But it is not clear that the 

information from T-receptor afferents could be used to detect zero crossings of the 

amplitude modulation as presented here. Pyramidal cells in the ELL do not receive input 

from the T cells and the information from the phase pathway and the amplitude pathway 

converge in the next processing stage, the Torus.  The evidence seems to indicate that 

these are independent pathways and the information from them may be combined after 

appropriate features have been determined in each.  

 
 

5.2  How might this relevant to the electric fish? 

 

As emphasized in the next Section one important piece of work that remains to 

be done is to attempt to correlate the computational measures that we have developed 

with the behavior of the electric fish. While the coding fraction and probability of 
                                                 
32 It can be observed that if one has detailed information about the extremes of a function (maxima, minima 
and inflection points), then one effectively has information about the zero-crossings of the derivative of the 
function and therefore the structure of the function itself could be determined.  
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misclassification could constitute accurate indicators of signal encoding and feature 

extraction respectively, we still lack a quantitative correspondence between these 

values and electrolocation, communication or some other aspect of the behavioral 

output of the fish. Perhaps one of the best-characterized behaviors of the electric fish 

is the jamming avoidance response. When two fish with similar electric organ 

discharge frequencies are close to each other, they change the frequency of their 

discharge in a systematic manner to avoid jamming of the two signals. The 

quantitative characteristics of the behavior as well as its anatomical substrates have 

been studied extensively (see for example (Konishi, 1991, Kawasaki, 1997, 

Heiligenberg and Partridge, 1981, Heiligenberg and Bastian, 1984, Heiligenberg, 

1991). One of the key variables in elicit this behavior is the detection of amplitude and 

phase distortions in the EOD signal. Thus, the signals from P-receptor afferents and 

pyramidal cells in the ELL provide very important information, at the very least for 

this particular response. Our results provide evidence that the P-receptor afferents 

provide accurate, robust and detailed information about amplitude modulations. This 

can be used by pyramidal cells to reliably detect upstrokes and downstrokes in the 

stimulus, which is a key input to the Torus where amplitude and phase information are 

combined. The accuracy of the information conveyed by P-receptor afferents suggest 

that this may also be used for other types of behaviors including electrolocation that 

may require a precise characterization of the patterns of electric field amplitude 

changes.  
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5.3  Future directions 

One of the nice features about scientific research, in contrast to other types of 

jobs, is that advancement generates more work. Although this may sometimes be hard to 

understand for people engaged in other activities, the more we know about something, 

the more new questions arise. There are numerous unresolved questions that stem from 

our investigations of the mechanisms and codes used by neurons to encode time-varying 

signals using the electric fish as a model. I will here outline some specific directions that 

seem particularly interesting.  

As we described in Chapter 3, the performance of bursts of spikes in extracting 

behaviorally relevant features was better than that of isolated spikes or all spikes 

(Metzner et al., 1998). There are several reasons that stem from experimental (Guido et 

al., 1995, Bair et al., 1994, Reinagel et al., 1999, Gabbiani et al., 1996, Martinez-Conde 

et al., 2000, Csicsvari et al., 2000), theoretical and modeling (Softky and Koch, 1993, 

Sherman, 2001, Lisman, 1997) work that suggest that bursts may play a very important 

role in encoding information. Due to failures in spike transmission or neurotransmitter 

release, the efficiency of a message carried by isolated spikes can be highly reduced. 

Bursts can thus provide a mechanism to increase the probability that the information will 

be transmitted to the post-synaptic neurons, a crucial yet many times neglected aspect of 

neural coding. We still do not understand how bursts are generated neither at the 

phenomenological level nor at the biophysical level in the pyramidal cells of 

Eigenmannia. What are the types of input from P-receptor afferents that can give rise to 

bursts in pyramidal cells? What type of channels and kinetics are involved in generating 

bursts in the pyramidal cells? Furthermore, what are the anatomical connections that are 
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relevant for the generation or modulation of bursting activity (e.g. does feedback play an 

important role in either of these processes)?  

Stimulus encoding and feature extraction constitute two fundamental processes in 

the neuronal representation of sensory stimuli. It may be conjectured that neurons closer 

to the sensory transduction mechanism will play a major role in the former while neurons 

in higher brain stages will be more involved in extracting relevant stimulus features. The 

electric fish provides a very nice model system to study how the detailed encoding of the 

stimulus gives rise to the extraction of specific features. For example, it would be 

interesting to build on the model of P-receptor afferents (Chapter 2) to construct a larger 

model that can incorporate the projections onto pyramidal cells and the responses of 

pyramidal cells. The low divergence of P-afferents onto pyramidal cells (Chapter 3) 

suggests that at least the feed-forward input to a single pyramidal cell does not require 

modeling more than approximately 10 separate afferent neurons.  

Feedback projections abound in most complex nervous systems studied so far. In 

particular, within the primate visual system, the amount of feedback outnumbers the 

quantity of feed-forward in terms of the number of anatomical projections (Felleman and 

Van Essen, 1991). There are numerous theories and models that attempt to suggest a 

plausible explanation for the presence of such feedback connections. Yet, it is very 

difficult to experimentally interfere with the feedback without at the same time affecting 

the feed-forward connections (Murphy et al., 1999, Sillito et al., 1994, Miyashita, 1995, 

Sherman, 2001). As reviewed earlier in this Thesis (see Chapter 1 and Chapter 3), 

pyramidal cells in the electrolateral line lobe receive strong feedback projections (Maler 

and Mugnaini, 1994, Berman and Maler, 1999, Maler et al., 1991, Carr et al., 1982). 
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Furthermore, it is possible to pharmacologically inhibit the feedback connections leaving 

the feed-forward activity relatively intact. This provides an excellent opportunity to study 

the role of feedback connections. In particular, it would be interesting to explore the role 

of feedback in feature extraction. Furthermore, some behavioral responses of electric fish 

have been well characterized, allowing also to directly study the putative functional 

aspects of feedback connections. 

In spite of the availability of some robust behaviors, we still have not 

characterized the relationship between signal encoding and behavioral performance (in 

terms of electrolocation, jamming avoidance response or communication). This is 

perhaps one of the major criticisms to most of the current studies about neural coding 

including the work presented in the current Thesis (with notable exceptions, see for 

example (Stopfer et al., 1997)). Thus, there are important gaps in our understanding 

about the behavioral relevance of the measures that we have studied. While we know that 

encoding the amplitude modulation is important for the fish, we lack a quantitative 

understanding of the correlation of information transmission with behavior. For example, 

is a change of coding fraction from 10% to 50% relevant for the fish? How about a 

change from 10% to 15%? How many bits/second need to be transmitted for reliable 

electrolocation or jamming avoidance response? While these questions may not be easy 

to address experimentally, I believe they constitute an essential next step to be able to 

move beyond the correlation stage to gain a much further understanding of neural coding. 

Similar quantitative questions can be raised about the extraction of stimulus features. 

Finally, there is more important venue for further research that is important to 

mention. There is an increasingly large number of researchers that have raised the issue 
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of the importance of studying the neuronal responses to behaviorally relevant and natural 

stimuli. The claim is that the responses to an artificial laboratory stimulus can be 

significantly different from those to natural stimuli. While we have used random 

amplitude modulations within behaviorally relevant ranges of contrast and frequencies, 

we still lack a clear understanding of the type of amplitude modulation that reach P-

receptor afferent as the fish is swimming around the tank. A quantitative characterization 

of the "natural" stimulus could prove to be very important.  

There is one other line of research that seems highly promising and worth 

mentioning here. To a large degree, investigators working in Neuroscience at the level of 

molecules typically have little contact with those interested in questions of Systems 

Neuroscience. Initial steps have been taken in the electric fish to attempt to utilize the 

tools of molecular biology to gain further understanding into the computational principles 

of information transmission in the amplitude sensory pathway at the molecular level. 

These are just some of the many unresolved questions that remain to be investigated in 

terms of how time varying signals are encoded and processed. The electric fish 

constitutes a fascinating model system that allows the combination of multiple different 

tools to quantitatively address detailed questions and mechanisms of neural coding. 
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